Chapter 3 Transport Layer

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these Powerpoint slides: We’re making these slides freely available to all (faculty, students, readers). They’re in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following: Computer § If you use these slides (e.g., in a class) that you mention their source (after all, we’d like people to use our book!) Networking: A Top § If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this Down Approach material. 7th edition Thanks and enjoy! JFK/KWR Jim Kurose, Keith Ross All material copyright 1996-2016 Pearson/Addison Wesley J.F Kurose and K.W. Ross, All Rights Reserved April 2016 Transport Layer 2-1 Chapter 3: Transport Layer our goals: § understand principles § learn about Internet behind transport transport layer protocols: layer services: • UDP: connectionless • multiplexing, transport demultiplexing • TCP: connection-oriented • reliable data transfer reliable transport • flow control • TCP congestion control • congestion control Transport Layer 3-2 Chapter 3 outline 3.1 transport-layer 3.5 connection-oriented services transport: TCP 3.2 multiplexing and • segment structure demultiplexing • reliable data transfer 3.3 connectionless • flow control transport: UDP • connection management 3.4 principles of reliable 3.6 principles of congestion data transfer control 3.7 TCP congestion control Transport Layer 3-3 Transport services and protocols application transport § provide logical communication network data link between app processes physical running on different hosts § transport protocols run in end systems • send side: breaks app messages into segments, passes to network layer • rcv side: reassembles application segments into messages, transport network passes to app layer data link physical § more than one transport protocol available to apps • Internet: TCP and UDP Transport Layer 3-4 Transport vs. network layer § network layer: logical communication household analogy: 12 kids in Ann’s house sending between hosts letters to 12 kids in Bill’s § transport layer: house: logical § hosts = houses communication § processes = kids between processes § app messages = letters in envelopes • relies on, enhances, § transport protocol = Ann network layer and Bill who demux to in- services house siblings § network-layer protocol = postal service Transport Layer 3-5 Internet transport-layer protocols application transport § reliable, in-order network data link delivery (TCP) physical network network data link • congestion control data link physical physical network • flow control data link • connection setup physical network data link § unreliable, unordered physical network delivery: UDP data link physical network • no-frills extension of data link application physical “best-effort” IP network transport data link network physical data link § services not available: physical • delay guarantees • bandwidth guarantees Transport Layer 3-6 Chapter 3 outline 3.1 transport-layer 3.5 connection-oriented services transport: TCP 3.2 multiplexing and • segment structure demultiplexing • reliable data transfer 3.3 connectionless • flow control transport: UDP • connection management 3.4 principles of reliable 3.6 principles of congestion data transfer control 3.7 TCP congestion control Transport Layer 3-7 Multiplexing/demultiplexing multiplexing at sender: handle data from multiple demultiplexing at receiver: sockets, add transport header use header info to deliver (later used for demultiplexing) received segments to correct socket application application P1 P2 application socket P3 P4 transport process transport network transport network link network link physical link physical physical Transport Layer 3-8 How demultiplexing works § host receives IP datagrams 32 bits • each datagram has source IP source port # dest port # address, destination IP address other header fields • each datagram carries one transport-layer segment • each segment has source, application destination port number data § host uses IP addresses & (payload) port numbers to direct segment to appropriate socket TCP/UDP segment format Transport Layer 3-9 Connectionless demultiplexing § recall: created socket has § recall: when creating host-local port #: datagram to send into UDP DatagramSocket mySocket1 socket, must specify = new DatagramSocket(12534); • destination IP address • destination port # § when host receives UDP IP datagrams with same segment: dest. port #, but different • checks destination port # source IP addresses in segment and/or source port numbers will be directed • directs UDP segment to to same socket at dest socket with that port # Transport Layer 3-10 Connectionless demux: example DatagramSocket DatagramSocket serverSocket = new DatagramSocket DatagramSocket mySocket2 = new mySocket1 = new DatagramSocket (6428); DatagramSocket (9157); application (5775); application P1 application P3 P4 transport transport transport network network link network link physical link physical physical source port: 6428 source port: ? dest port: 9157 dest port: ? source port: 9157 source port: ? dest port: 6428 dest port: ? Transport Layer 3-11 Connection-oriented demux § TCP socket identified § server host may support by 4-tuple: many simultaneous TCP • source IP address sockets: • source port number • each socket identified by • dest IP address its own 4-tuple • dest port number § web servers have § demux: receiver uses all different sockets for four values to direct each connecting client segment to appropriate • non-persistent HTTP will socket have different socket for each request Transport Layer 3-12 Connection-oriented demux: example application application P4 P5 P6 application P3 P2 P3 transport transport transport network network link network link physical link physical server: IP physical address B host: IP source IP,port: B,80 host: IP address A dest IP,port: A,9157 source IP,port: C,5775 address C dest IP,port: B,80 source IP,port: A,9157 dest IP, port: B,80 source IP,port: C,9157 dest IP,port: B,80 three segments, all destined to IP address: B, dest port: 80 are demultiplexed to different sockets Transport Layer 3-13 Connection-oriented demux: example threaded server application application application P4 P3 P2 P3 transport transport transport network network link network link physical link physical server: IP physical address B host: IP source IP,port: B,80 host: IP address A dest IP,port: A,9157 source IP,port: C,5775 address C dest IP,port: B,80 source IP,port: A,9157 dest IP, port: B,80 source IP,port: C,9157 dest IP,port: B,80 Transport Layer 3-14 Chapter 3 outline 3.1 transport-layer 3.5 connection-oriented services transport: TCP 3.2 multiplexing and • segment structure demultiplexing • reliable data transfer 3.3 connectionless • flow control transport: UDP • connection management 3.4 principles of reliable 3.6 principles of congestion data transfer control 3.7 TCP congestion control Transport Layer 3-15 UDP: User Datagram Protocol [RFC 768] § “no frills,” “bare bones” § UDP use: Internet transport § streaming multimedia protocol apps (loss tolerant, rate § “best effort” service, UDP sensitive) segments may be: § DNS • lost § SNMP • delivered out-of-order § reliable transfer over to app UDP: § connectionless: § add reliability at • no handshaking application layer between UDP sender, receiver § application-specific error recovery! • each UDP segment handled independently of others Transport Layer 3-16 UDP: segment header length, in bytes of 32 bits UDP segment, source port # dest port # including header length checksum why is there a UDP? § no connection application establishment (which can data add delay) (payload) § simple: no connection state at sender, receiver § small header size UDP segment format § no congestion control: UDP can blast away as fast as desired Transport Layer 3-17 UDP checksum Goal: detect “errors” (e.g., flipped bits) in transmitted segment sender: receiver: § treat segment contents, § compute checksum of including header fields, received segment as sequence of 16-bit § integers check if computed checksum equals checksum field value: § checksum: addition (one’s complement sum) • NO - error detected of segment contents • YES - no error detected. § sender puts checksum But maybe errors value into UDP checksum nonetheless? More later field …. Transport Layer 3-18 Internet checksum: example example: add two 16-bit integers 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 wraparound 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 sum 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 checksum 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 Note: when adding numbers, a carryout from the most significant bit needs to be added to the result * Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Transport Layer 3-19 Chapter 3 outline 3.1 transport-layer 3.5 connection-oriented services transport: TCP 3.2 multiplexing and • segment structure demultiplexing • reliable data transfer 3.3 connectionless • flow control transport: UDP • connection management 3.4 principles of reliable 3.6 principles of congestion data transfer control 3.7 TCP congestion control Transport Layer 3-20 Principles of reliable data transfer § important in application, transport, link layers • top-10 list of important networking
Recommended publications
  • The Transport Layer: Tutorial and Survey SAMI IREN and PAUL D
    The Transport Layer: Tutorial and Survey SAMI IREN and PAUL D. AMER University of Delaware AND PHILLIP T. CONRAD Temple University Transport layer protocols provide for end-to-end communication between two or more hosts. This paper presents a tutorial on transport layer concepts and terminology, and a survey of transport layer services and protocols. The transport layer protocol TCP is used as a reference point, and compared and contrasted with nineteen other protocols designed over the past two decades. The service and protocol features of twelve of the most important protocols are summarized in both text and tables. Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General—Data communications; Open System Interconnection Reference Model (OSI); C.2.1 [Computer-Communication Networks]: Network Architecture and Design—Network communications; Packet-switching networks; Store and forward networks; C.2.2 [Computer-Communication Networks]: Network Protocols; Protocol architecture (OSI model); C.2.5 [Computer- Communication Networks]: Local and Wide-Area Networks General Terms: Networks Additional Key Words and Phrases: Congestion control, flow control, transport protocol, transport service, TCP/IP 1. INTRODUCTION work of routers, bridges, and communi- cation links that moves information be- In the OSI 7-layer Reference Model, the tween hosts. A good transport layer transport layer is the lowest layer that service (or simply, transport service) al- operates on an end-to-end basis be- lows applications to use a standard set tween two or more communicating of primitives and run on a variety of hosts. This layer lies at the boundary networks without worrying about differ- between these hosts and an internet- ent network interfaces and reliabilities.
    [Show full text]
  • Solutions to Chapter 2
    CS413 Computer Networks ASN 4 Solutions Solutions to Assignment #4 3. What difference does it make to the network layer if the underlying data link layer provides a connection-oriented service versus a connectionless service? [4 marks] Solution: If the data link layer provides a connection-oriented service to the network layer, then the network layer must precede all transfer of information with a connection setup procedure (2). If the connection-oriented service includes assurances that frames of information are transferred correctly and in sequence by the data link layer, the network layer can then assume that the packets it sends to its neighbor traverse an error-free pipe. On the other hand, if the data link layer is connectionless, then each frame is sent independently through the data link, probably in unconfirmed manner (without acknowledgments or retransmissions). In this case the network layer cannot make assumptions about the sequencing or correctness of the packets it exchanges with its neighbors (2). The Ethernet local area network provides an example of connectionless transfer of data link frames. The transfer of frames using "Type 2" service in Logical Link Control (discussed in Chapter 6) provides a connection-oriented data link control example. 4. Suppose transmission channels become virtually error-free. Is the data link layer still needed? [2 marks – 1 for the answer and 1 for explanation] Solution: The data link layer is still needed(1) for framing the data and for flow control over the transmission channel. In a multiple access medium such as a LAN, the data link layer is required to coordinate access to the shared medium among the multiple users (1).
    [Show full text]
  • Is QUIC a Better Choice Than TCP in the 5G Core Network Service Based Architecture?
    DEGREE PROJECT IN INFORMATION AND COMMUNICATION TECHNOLOGY, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Is QUIC a Better Choice than TCP in the 5G Core Network Service Based Architecture? PETHRUS GÄRDBORN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE Is QUIC a Better Choice than TCP in the 5G Core Network Service Based Architecture? PETHRUS GÄRDBORN Master in Communication Systems Date: November 22, 2020 Supervisor at KTH: Marco Chiesa Supervisor at Ericsson: Zaheduzzaman Sarker Examiner: Peter Sjödin School of Electrical Engineering and Computer Science Host company: Ericsson AB Swedish title: Är QUIC ett bättre val än TCP i 5G Core Network Service Based Architecture? iii Abstract The development of the 5G Cellular Network required a new 5G Core Network and has put higher requirements on its protocol stack. For decades, TCP has been the transport protocol of choice on the Internet. In recent years, major Internet players such as Google, Facebook and CloudFlare have opted to use the new QUIC transport protocol. The design assumptions of the Internet (best-effort delivery) differs from those of the Core Network. The aim of this study is to investigate whether QUIC’s benefits on the Internet will translate to the 5G Core Network Service Based Architecture. A testbed was set up to emulate traffic patterns between Network Functions. The results show that QUIC reduces average request latency to half of that of TCP, for a majority of cases, and doubles the throughput even under optimal network conditions with no packet loss and low (20 ms) RTT. Additionally, by measuring request start and end times “on the wire”, without taking into account QUIC’s shorter connection establishment, we believe the results indicate QUIC’s suitability also under the long-lived (standing) connection model.
    [Show full text]
  • Medium Access Control Layer
    Telematics Chapter 5: Medium Access Control Sublayer User Server watching with video Beispielbildvideo clip clips Application Layer Application Layer Presentation Layer Presentation Layer Session Layer Session Layer Transport Layer Transport Layer Network Layer Network Layer Network Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller Data Link Layer Data Link Layer Data Link Layer Computer Systems and Telematics (CST) Physical Layer Physical Layer Physical Layer Institute of Computer Science Freie Universität Berlin http://cst.mi.fu-berlin.de Contents ● Design Issues ● Metropolitan Area Networks ● Network Topologies (MAN) ● The Channel Allocation Problem ● Wide Area Networks (WAN) ● Multiple Access Protocols ● Frame Relay (historical) ● Ethernet ● ATM ● IEEE 802.2 – Logical Link Control ● SDH ● Token Bus (historical) ● Network Infrastructure ● Token Ring (historical) ● Virtual LANs ● Fiber Distributed Data Interface ● Structured Cabling Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.2 Design Issues Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.3 Design Issues ● Two kinds of connections in networks ● Point-to-point connections OSI Reference Model ● Broadcast (Multi-access channel, Application Layer Random access channel) Presentation Layer ● In a network with broadcast Session Layer connections ● Who gets the channel? Transport Layer Network Layer ● Protocols used to determine who gets next access to the channel Data Link Layer ● Medium Access Control (MAC) sublayer Physical Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.4 Network Types for the Local Range ● LLC layer: uniform interface and same frame format to upper layers ● MAC layer: defines medium access ..
    [Show full text]
  • Guidelines for the Secure Deployment of Ipv6
    Special Publication 800-119 Guidelines for the Secure Deployment of IPv6 Recommendations of the National Institute of Standards and Technology Sheila Frankel Richard Graveman John Pearce Mark Rooks NIST Special Publication 800-119 Guidelines for the Secure Deployment of IPv6 Recommendations of the National Institute of Standards and Technology Sheila Frankel Richard Graveman John Pearce Mark Rooks C O M P U T E R S E C U R I T Y Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 December 2010 U.S. Department of Commerce Gary Locke, Secretary National Institute of Standards and Technology Dr. Patrick D. Gallagher, Director GUIDELINES FOR THE SECURE DEPLOYMENT OF IPV6 Reports on Computer Systems Technology The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analysis to advance the development and productive use of information technology. ITL’s responsibilities include the development of technical, physical, administrative, and management standards and guidelines for the cost-effective security and privacy of sensitive unclassified information in Federal computer systems. This Special Publication 800-series reports on ITL’s research, guidance, and outreach efforts in computer security and its collaborative activities with industry, government, and academic organizations. National Institute of Standards and Technology Special Publication 800-119 Natl. Inst. Stand. Technol. Spec. Publ. 800-119, 188 pages (Dec. 2010) Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately.
    [Show full text]
  • QUIC Record Layer
    A Security Model and Fully Verified Implementation for the IETF QUIC Record Layer Antoine Delignat-Lavaud∗, Cédric Fournet∗, Bryan Parnoy, Jonathan Protzenko∗, Tahina Ramananandro∗, Jay Bosamiyay, Joseph Lallemandz, Itsaka Rakotonirinaz, Yi Zhouy ∗Microsoft Research yCarnegie Mellon University zINRIA Nancy Grand-Est, LORIA Abstract—Drawing on earlier protocol-verification work, we investigate the security of the QUIC record layer, as standardized Application Application by the IETF in draft version 30. This version features major HTTP/2 HTTP/3 differences compared to Google’s original protocol and early IETF drafts. It serves as a useful test case for our verification TLS QUIC methodology and toolchain, while also, hopefully, drawing atten- tion to a little studied yet crucially important emerging standard. TCP UDP We model QUIC packet and header encryption, which uses IP IP a custom construction for privacy. To capture its goals, we propose a security definition for authenticated encryption with Fig. 1: Modularity of current networking stack vs. QUIC semi-implicit nonces. We show that QUIC uses an instance of a generic construction parameterized by a standard AEAD-secure scheme and a PRF-secure cipher. We formalize and verify the it is possible to combine both features in a single message, security of this construction in F?. The proof uncovers interesting saving a full network round-trip. limitations of nonce confidentiality, due to the malleability of short From a security standpoint, a fully-integrated secure trans- headers and the ability to choose the number of least significant port protocol offers the potential for a single, clean security bits included in the packet counter.
    [Show full text]
  • Congestion Control Tuning of the QUIC Transport Layer Protocol Spring 2018
    Congestion Control Tuning of the QUIC Transport Layer Protocol Spring 2018 Wendi Qu Director: Llorenç Cerdà-Alabern Departament d'Arquitectura de Computadors Degree: Bachelor Specialization: Information Technologies Facultat d’Informatica de Barcelona (FIB) Universitat Politecnica de Catalunya (UPC) - BarcelonaTech April 2018 UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC) Abstract The QUIC protocol is a new type of reliable transmission protocol based on UDP. Its establishment is mainly to solve the problem of network delay. It is efficient, fast, and takes up less resources. The QUIC gathers the advantages of both TCP and UDP. The first part of this thesis studies the development background of the QUIC protocol in terms of characteristics and perspectives of what they can do and how they work. Because it adds the congestion control algorithm used by TCP based on the UDP protocol, we have conducted further research and analysis of the Cubic algorithm to investigate the impact of its parameters on the behavior. The second part includes performance and fairness tests for QUIC and TCP implementations. The simulation framework Mininet is used to perform these tests using controlled network properties. In this process we verified the reliability of the mininet. This work shows how Mininet builds a test system to analyze the implementation of the transport protocol. QUIC's tests show that the performance of QUIC has improved, and the test of fairness have identified specific areas that may require further analysis. In the third part, we test the influence of the parameter on the behavior of the algorithm in the congestion control algorithm. We present an initial experimental evaluation of the newly proposed Cubic-TCP algorithm.
    [Show full text]
  • Computer Network Transport Layer.Pdf
    The Transport Layer Chapter 6 Transport Layer • It is the heart of the whole protocol hierarchy. • Its task is to provide reliable, cost-effective data transport from the source machine to the destination machine, independently of the physical network or networks currently in use. • It provides service to the application layer. • Transport layer makes use of the services provided by the network layer. • The hardware and/or software within the transport layer that does the work is called the transport entity. • It provides both connectionless and connection oriented service. • Connections have three phases: establishment, data transfer, and release. Services Provided to the Upper Layers The relationship of network, transport, and application layers Transport Service Primitives The primitives for a simple transport service Transport Service Primitives • To see how these primitives might be used, consider an application with a server and a number of remote clients. To start with, the server executes a LISTEN primitive, typically by calling a library procedure that makes a system call to block the server until a client turns up. When a client wants to talk to the server, it executes a CONNECT primitive. The transport entity carries out this primitive by blocking the caller and sending a packet to the server. Encapsulated in the payload of this packet is a transport layer message for the server's transport entity. Transport Service Primitives Nesting of TPDUs, packets, and frames. Elements of Transport Protocols • Addressing • Connection establishment • Connection release • Error control and flow control • Multiplexing • Crash recovery Addressing How a user process in host 1 establishes a connection with a mail server in host 2 via a process server.
    [Show full text]
  • Medium Access Control Sublayer
    Telematics Chapter 5: Medium Access Control Sublayer User Server watching with video Beispielbildvideo clip clips Application Layer Application Layer Presentation Layer Presentation Layer Session Layer Session Layer Transport Layer Transport Layer Network Layer Network Layer Network Layer Prof. Dr. Mesut Güneş Data Link Layer Data Link Layer Data Link Layer Computer Systems and Telematics (CST) Physical Layer Physical Layer Physical Layer Distributed, embedded Systems Institute of Computer Science Freie Universität Berlin http://cst.mi.fu-berlin.de Contents ● Design Issues ● Metropolitan Area Networks ● Network Topologies (()MAN) ● The Channel Allocation Problem ● Wide Area Networks (WAN) ● Multiple Access Protocols ● Frame Relay ● Ethernet ● ATM ● IEEE 802.2 – Logical Link Control ● SDH ● Token Bus ● Network Infrastructure ● Token Ring ● Virtual LANs ● Fiber Distributed Data Interface ● Structured Cabling Prof. Dr. Mesut Güneş ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.2 Design Issues Prof. Dr. Mesut Güneş ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.3 Design Issues ● Two kinds of connections in networks ● Point-to-point connections OSI Reference Model ● Broadcast (Multi-access channel, Application Layer Random access channel) Presentation Layer ● In a network with broadcast Session Layer connections ● Who gets the channel? Transport Layer Network Layer ● PtProtoco ls use dtdtd to determ ine w ho gets next access to the channel Data Link Layer ● Medium Access Control (()MAC) sublay er Phy sical Laye r Prof. Dr. Mesut Güneş ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.4 Network Types for the Local Rang e ● LLC layer: uniform interface and same frame format to upper layers ● MAC layer: defines medium access - LLC IEEE 802.2 Logical Link Control ..
    [Show full text]
  • TS 102 636-3 V1.1.1 (2010-03) Technical Specification
    ETSI TS 102 636-3 V1.1.1 (2010-03) Technical Specification Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking; Part 3: Network architecture 2 ETSI TS 102 636-3 V1.1.1 (2010-03) Reference DTS/ITS-0030004 Keywords addressing, ITS, network, point-to-multipoint, point-to-point, protocol ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.
    [Show full text]
  • The Network Layer
    TheThe NetworkNetwork LayerLayer • Concerned with getting packets from the source all the way to the destination: Routing through the subnet, load balancing, congestion control. • Protocol Data Unit (PDU) for network layer protocols = packet • Types of network services to the transport layer: – Connectionless: Each packet carries full destination address. – Connection-oriented: • Connection is set up between network layer processes on the sending and receiving sides. • The connection is given a special identifier until all data has been sent. • Internal organization of the network layer (in the subnet): – Datagram: Packets are sent and routed independently with each carrying the full destination address (TCP/IP) – Virtual circuit: A virtual circuit is set up to the destination using a circuit number stored in tables in routers along the way. Packets only carry the virtual circuit number. All packets follow the same route (ATM). EECC694 - Shaaban #1 Final Review Spring2000 5-11-2000 RoutingRouting AlgorithmsAlgorithms To decide which output line an incoming packet should be transmitted on. • Static Routing (Nonadaptive algorithms): – Shortest path routing: • Build a graph of the subnet with each node representing a router and each arc representing a communication link. • The weight on the arcs represents: a function of distance, bandwidth, communication costs mean queue length and other performance factors. • Several algorithms exist including Dijkstra’s shortest path algorithm. – Selective flooding: Send the packet on all output lines going in the right direction to the destination. – Flow-based routing: Based on known capacity and link loads. EECC694 - Shaaban #2 Final Review Spring2000 5-11-2000 StaticStatic Routing:Routing: ShortestShortest PathPath RoutingRouting • First five steps of an example using Dijktra’s algorithm EECC694 - Shaaban #3 Final Review Spring2000 5-11-2000 StaticStatic Routing:Routing: Flow-BasedFlow-Based RoutingRouting • A routing matrix is constructed; used when the mean data flow in network links is known and stable.
    [Show full text]
  • TCP/IP Model Overview
    TCP/IP Model Overview Table of Contents OSI Model vs. TCP/IP Model ........................................................................................................... 2 TCP/IP Model .................................................................................................................................. 3 TCP/IP Layer 1 – Physical ................................................................................................................ 4 TCP/IP Layer 2 – Data-link ............................................................................................................... 5 TCP/IP Layer 3 – Network ............................................................................................................... 6 TCP/IP Layer 4 – Transport ............................................................................................................. 7 TCP/IP Layer 5 – Application ........................................................................................................... 8 TCP/IP Model .................................................................................................................................. 9 TCP/IP Model – Sender -1 ............................................................................................................. 12 TCP/IP Model – Sender -2 ............................................................................................................. 13 TCP/IP Model – Sender -3 ............................................................................................................
    [Show full text]