The Transport Layer: Tutorial and Survey SAMI IREN and PAUL D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Solutions to Chapter 2
CS413 Computer Networks ASN 4 Solutions Solutions to Assignment #4 3. What difference does it make to the network layer if the underlying data link layer provides a connection-oriented service versus a connectionless service? [4 marks] Solution: If the data link layer provides a connection-oriented service to the network layer, then the network layer must precede all transfer of information with a connection setup procedure (2). If the connection-oriented service includes assurances that frames of information are transferred correctly and in sequence by the data link layer, the network layer can then assume that the packets it sends to its neighbor traverse an error-free pipe. On the other hand, if the data link layer is connectionless, then each frame is sent independently through the data link, probably in unconfirmed manner (without acknowledgments or retransmissions). In this case the network layer cannot make assumptions about the sequencing or correctness of the packets it exchanges with its neighbors (2). The Ethernet local area network provides an example of connectionless transfer of data link frames. The transfer of frames using "Type 2" service in Logical Link Control (discussed in Chapter 6) provides a connection-oriented data link control example. 4. Suppose transmission channels become virtually error-free. Is the data link layer still needed? [2 marks – 1 for the answer and 1 for explanation] Solution: The data link layer is still needed(1) for framing the data and for flow control over the transmission channel. In a multiple access medium such as a LAN, the data link layer is required to coordinate access to the shared medium among the multiple users (1). -
Moving to Ipv6(PDF)
1 Chicago, IL 9/1/15 2 Moving to IPv6 Mark Kosters, Chief Technology Officer With some help from Geoff Huston 3 The Amazing Success of the Internet • 2.92 billion users! • 4.5 online hours per day per user! • 5.5% of GDP for G-20 countries Just about anything about the Internet Time 3 4 Success-Disaster 5 The Original IPv6 Plan - 1995 Size of the Internet IPv6 Deployment IPv6 Transition – Dual Stack IPv4 Pool Size Time 6 The Revised IPv6 Plan - 2005 IPv4 Pool Size Size of the Internet IPv6 Transition – Dual Stack IPv6 Deployment 2004 2006 2008 2010 2012 Date 7 Oops! We were meant to have completed the transition to IPv6 BEFORE we completely exhausted the supply channels of IPv4 addresses! 8 Today’s Plan IPv4 Pool Size Today Size of the Internet ? IPv6 Transition IPv6 Deployment 0.8% Time 9 Transition... The downside of an end-to-end architecture: – There is no backwards compatibility across protocol families – A V6-only host cannot communicate with a V4-only host We have been forced to undertake a Dual Stack transition: – Provision the entire network with both IPv4 AND IPv6 – In Dual Stack, hosts configure the hosts’ applications to prefer IPv6 to IPv4 – When the traffic volumes of IPv4 dwindle to insignificant levels, then it’s possible to shut down support for IPv4 10 Dual Stack Transition ... We did not appreciate the operational problems with this dual stack plan while it was just a paper exercise: • The combination of an end host preference for IPv6 and a disconnected set of IPv6 “islands” created operational problems – Protocol -
Routing Loop Attacks Using Ipv6 Tunnels
Routing Loop Attacks using IPv6 Tunnels Gabi Nakibly Michael Arov National EW Research & Simulation Center Rafael – Advanced Defense Systems Haifa, Israel {gabin,marov}@rafael.co.il Abstract—IPv6 is the future network layer protocol for A tunnel in which the end points’ routing tables need the Internet. Since it is not compatible with its prede- to be explicitly configured is called a configured tunnel. cessor, some interoperability mechanisms were designed. Tunnels of this type do not scale well, since every end An important category of these mechanisms is automatic tunnels, which enable IPv6 communication over an IPv4 point must be reconfigured as peers join or leave the tun- network without prior configuration. This category includes nel. To alleviate this scalability problem, another type of ISATAP, 6to4 and Teredo. We present a novel class of tunnels was introduced – automatic tunnels. In automatic attacks that exploit vulnerabilities in these tunnels. These tunnels the egress entity’s IPv4 address is computationally attacks take advantage of inconsistencies between a tunnel’s derived from the destination IPv6 address. This feature overlay IPv6 routing state and the native IPv6 routing state. The attacks form routing loops which can be abused as a eliminates the need to keep an explicit routing table at vehicle for traffic amplification to facilitate DoS attacks. the tunnel’s end points. In particular, the end points do We exhibit five attacks of this class. One of the presented not have to be updated as peers join and leave the tunnel. attacks can DoS a Teredo server using a single packet. The In fact, the end points of an automatic tunnel do not exploited vulnerabilities are embedded in the design of the know which other end points are currently part of the tunnels; hence any implementation of these tunnels may be vulnerable. -
Is QUIC a Better Choice Than TCP in the 5G Core Network Service Based Architecture?
DEGREE PROJECT IN INFORMATION AND COMMUNICATION TECHNOLOGY, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Is QUIC a Better Choice than TCP in the 5G Core Network Service Based Architecture? PETHRUS GÄRDBORN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE Is QUIC a Better Choice than TCP in the 5G Core Network Service Based Architecture? PETHRUS GÄRDBORN Master in Communication Systems Date: November 22, 2020 Supervisor at KTH: Marco Chiesa Supervisor at Ericsson: Zaheduzzaman Sarker Examiner: Peter Sjödin School of Electrical Engineering and Computer Science Host company: Ericsson AB Swedish title: Är QUIC ett bättre val än TCP i 5G Core Network Service Based Architecture? iii Abstract The development of the 5G Cellular Network required a new 5G Core Network and has put higher requirements on its protocol stack. For decades, TCP has been the transport protocol of choice on the Internet. In recent years, major Internet players such as Google, Facebook and CloudFlare have opted to use the new QUIC transport protocol. The design assumptions of the Internet (best-effort delivery) differs from those of the Core Network. The aim of this study is to investigate whether QUIC’s benefits on the Internet will translate to the 5G Core Network Service Based Architecture. A testbed was set up to emulate traffic patterns between Network Functions. The results show that QUIC reduces average request latency to half of that of TCP, for a majority of cases, and doubles the throughput even under optimal network conditions with no packet loss and low (20 ms) RTT. Additionally, by measuring request start and end times “on the wire”, without taking into account QUIC’s shorter connection establishment, we believe the results indicate QUIC’s suitability also under the long-lived (standing) connection model. -
Medium Access Control Layer
Telematics Chapter 5: Medium Access Control Sublayer User Server watching with video Beispielbildvideo clip clips Application Layer Application Layer Presentation Layer Presentation Layer Session Layer Session Layer Transport Layer Transport Layer Network Layer Network Layer Network Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller Data Link Layer Data Link Layer Data Link Layer Computer Systems and Telematics (CST) Physical Layer Physical Layer Physical Layer Institute of Computer Science Freie Universität Berlin http://cst.mi.fu-berlin.de Contents ● Design Issues ● Metropolitan Area Networks ● Network Topologies (MAN) ● The Channel Allocation Problem ● Wide Area Networks (WAN) ● Multiple Access Protocols ● Frame Relay (historical) ● Ethernet ● ATM ● IEEE 802.2 – Logical Link Control ● SDH ● Token Bus (historical) ● Network Infrastructure ● Token Ring (historical) ● Virtual LANs ● Fiber Distributed Data Interface ● Structured Cabling Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.2 Design Issues Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.3 Design Issues ● Two kinds of connections in networks ● Point-to-point connections OSI Reference Model ● Broadcast (Multi-access channel, Application Layer Random access channel) Presentation Layer ● In a network with broadcast Session Layer connections ● Who gets the channel? Transport Layer Network Layer ● Protocols used to determine who gets next access to the channel Data Link Layer ● Medium Access Control (MAC) sublayer Physical Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.4 Network Types for the Local Range ● LLC layer: uniform interface and same frame format to upper layers ● MAC layer: defines medium access .. -
Lecture 11: PKI, SSL and VPN Information Security – Theory Vs
Lecture 11: PKI, SSL and VPN Information Security – Theory vs. Reality 0368-4474-01, Winter 2011 Yoav Nir ©2011 Check Point Software Technologies Ltd. | [Restricted] ONLY for designated groups and individuals What is VPN ° VPN stands for Virtual Private Network ° A private network is pretty obvious – An Ethernet LAN running in my building – Wifi with access control – A locked door and thick walls can be access control – An optical fiber running between two buildings ©2011 Check Point Software Technologies Ltd. 2 What is a VPN ° What is a non-private network? – Obviously, someone else’s network. ° Obvious example: the Internet. ° The Internet is pretty fast, and really cheap. ° What do I do if I have offices in several cities – And people working from home – And sales people working from who knows where ° We could use the Internet, but… – People could see my data – People could modify my messsages – People could pretend to be other people ©2011 Check Point Software Technologies Ltd. 3 What is a VPN ° I could run my own cables around the world. ° I could buy an MPLS connection from a local telco – Bezeq would love to sell me one. They call it IPVPN, and it’s pretty much a switched link just for my company – But I can’t get that to the home or mobile users – And it’s mediocre (but consistent) speed – And Bezeq can still do whatever it wants – And it’s really expensive – The incremental cost of using the Internet is zero ° A virtual private network combines the relative low-cost of using the Internet with the privacy of a leased line. -
Chapter 3 Transport Layer
Chapter 3 Transport Layer A note on the use of these Powerpoint slides: We’re making these slides freely available to all (faculty, students, readers). They’re in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following: Computer § If you use these slides (e.g., in a class) that you mention their source (after all, we’d like people to use our book!) Networking: A Top § If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this Down Approach material. 7th edition Thanks and enjoy! JFK/KWR Jim Kurose, Keith Ross All material copyright 1996-2016 Pearson/Addison Wesley J.F Kurose and K.W. Ross, All Rights Reserved April 2016 Transport Layer 2-1 Chapter 3: Transport Layer our goals: § understand principles § learn about Internet behind transport transport layer protocols: layer services: • UDP: connectionless • multiplexing, transport demultiplexing • TCP: connection-oriented • reliable data transfer reliable transport • flow control • TCP congestion control • congestion control Transport Layer 3-2 Chapter 3 outline 3.1 transport-layer 3.5 connection-oriented services transport: TCP 3.2 multiplexing and • segment structure demultiplexing • reliable data transfer 3.3 connectionless • flow control transport: UDP • connection management 3.4 principles of reliable 3.6 principles -
Guidelines for the Secure Deployment of Ipv6
Special Publication 800-119 Guidelines for the Secure Deployment of IPv6 Recommendations of the National Institute of Standards and Technology Sheila Frankel Richard Graveman John Pearce Mark Rooks NIST Special Publication 800-119 Guidelines for the Secure Deployment of IPv6 Recommendations of the National Institute of Standards and Technology Sheila Frankel Richard Graveman John Pearce Mark Rooks C O M P U T E R S E C U R I T Y Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 December 2010 U.S. Department of Commerce Gary Locke, Secretary National Institute of Standards and Technology Dr. Patrick D. Gallagher, Director GUIDELINES FOR THE SECURE DEPLOYMENT OF IPV6 Reports on Computer Systems Technology The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analysis to advance the development and productive use of information technology. ITL’s responsibilities include the development of technical, physical, administrative, and management standards and guidelines for the cost-effective security and privacy of sensitive unclassified information in Federal computer systems. This Special Publication 800-series reports on ITL’s research, guidance, and outreach efforts in computer security and its collaborative activities with industry, government, and academic organizations. National Institute of Standards and Technology Special Publication 800-119 Natl. Inst. Stand. Technol. Spec. Publ. 800-119, 188 pages (Dec. 2010) Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. -
Ipsec and IKE Administration Guide
IPsec and IKE Administration Guide Sun Microsystems, Inc. 4150 Network Circle Santa Clara, CA 95054 U.S.A. Part No: 816–7264–10 April 2003 Copyright 2003 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, SunOS, Sun ONE Certificate Server, and Solaris are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements. -
QUIC Record Layer
A Security Model and Fully Verified Implementation for the IETF QUIC Record Layer Antoine Delignat-Lavaud∗, Cédric Fournet∗, Bryan Parnoy, Jonathan Protzenko∗, Tahina Ramananandro∗, Jay Bosamiyay, Joseph Lallemandz, Itsaka Rakotonirinaz, Yi Zhouy ∗Microsoft Research yCarnegie Mellon University zINRIA Nancy Grand-Est, LORIA Abstract—Drawing on earlier protocol-verification work, we investigate the security of the QUIC record layer, as standardized Application Application by the IETF in draft version 30. This version features major HTTP/2 HTTP/3 differences compared to Google’s original protocol and early IETF drafts. It serves as a useful test case for our verification TLS QUIC methodology and toolchain, while also, hopefully, drawing atten- tion to a little studied yet crucially important emerging standard. TCP UDP We model QUIC packet and header encryption, which uses IP IP a custom construction for privacy. To capture its goals, we propose a security definition for authenticated encryption with Fig. 1: Modularity of current networking stack vs. QUIC semi-implicit nonces. We show that QUIC uses an instance of a generic construction parameterized by a standard AEAD-secure scheme and a PRF-secure cipher. We formalize and verify the it is possible to combine both features in a single message, security of this construction in F?. The proof uncovers interesting saving a full network round-trip. limitations of nonce confidentiality, due to the malleability of short From a security standpoint, a fully-integrated secure trans- headers and the ability to choose the number of least significant port protocol offers the potential for a single, clean security bits included in the packet counter. -
An Introduction to the Identifier-Locator Network Protocol (ILNP)
An Introduction to the Identifier-Locator Network Protocol (ILNP) Presented by Joel Halpern Material prepared by Saleem N. Bhatti & Ran Atkinson https://ilnp.cs.st-andrews.ac.uk/ IETF102, Montreal, CA. (C) Saleem Bhatti, 21 June 2018. 1 Thanks! • Joel Halpern: presenting today! • Ran Atkinson: co-conspirator. • Students at the University of St Andrews: • Dr Ditchaphong Phoomikiatissak (Linux) • Dr Bruce Simpson (FreeBSD, Cisco) • Khawar Shezhad (DNS/Linux, Verisign) • Ryo Yanagida (Linux, Time Warner) • … many other students on sub-projects … • IRTF (Routing RG, now concluded) • Discussions on various email lists. IETF102, Montreal, CA. (C) Saleem Bhatti, 21 June 2018. 2 Background to Identifier-Locator IETF102, Montreal, CA. (C) Saleem Bhatti, 21 June 2018. 3 “IP addresses considered harmful” • “IP addresses considered harmful” Brian E. Carpenter ACM SIGCOMM CCR, vol. 44, issue 2, Apr 2014 http://dl.acm.org/citation.cfm?id=2602215 http://dx.doi.org/10.1145/2602204.2602215 • Abstract This note describes how the Internet has got itself into deep trouble by over-reliance on IP addresses and discusses some possible ways forward. IETF102, Montreal, CA. (C) Saleem Bhatti, 21 June 2018. 4 RFC2104 (I), IAB, Feb 1997 • RFC2104, “IPv4 Address Behaviour Today”. • Ideal behaviour of Identifiers and Locators: Identifiers should be assigned at birth, never change, and never be re-used. Locators should describe the host's position in the network's topology, and should change whenever the topology changes. Unfortunately neither of the these ideals are met by IPv4 addresses. IETF102, Montreal, CA. (C) Saleem Bhatti, 21 June 2018. 5 RFC6115 (I), Feb 2011 • RFC6115, “Recommendation for a Routing Architecture”. -
Secure Socket Layer Transport Layer Security
VPN Secure Socket Layer Transport Layer Security Mureed HUSSAIN, Ahmed MEHAOUA, Dominique SERET Technologies VPN Communication layers Security protocols Application layer ssh, S/MIME, PGP Transport layer SSL, TLS, WTLS Network layer IPsec MPLS Data Link layer PPTP, L2TP Physical layer Scrambling, Hopping, Quantum Communications 1 Agenda • Introduction – Motivation, evolution, standardization – Applications • SSL Protocol – SSL phases and services – Sessions and connections – SSL protocols and layers • SSL Handshake protocol • SSL Record protocol / layer • SSL solutions and products • Conclusion Sécurisation des échanges • Pour sécuriser les échanges ayant lieu sur le réseau Internet, il existe plusieurs approches : - niveau applicatif (PGP) - niveau réseau (protocole IPsec) - niveau physique (boîtiers chiffrant). • TLS/SSL vise à sécuriser les échanges au niveau de la couche Transport. • Application typique : sécurisation du Web 2 Transport Layer Security • Advantages – Does not require enhancement to each application – NAT friendly – Firewall Friendly • Disadvantages – Embedded in the application stack (some mis-implementation) – Protocol specific --> need to duplicated for each transport protocol – Need to maintain context for connection (not currently implemented for UDP) – Doesn’t protect IP adresses & headers Security-Sensitive Web Applications • Online banking • Online purchases, auctions, payments • Restricted website access • Software download • Web-based Email • Requirements – Authentication: Of server, of client, or (usually)