Cellular and Molecular Defects in a Patient with Hermansky-Pudlak Syndrome Type 5
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diagnosing Platelet Secretion Disorders: Examples Cases
Diagnosing platelet secretion disorders: examples cases Martina Daly Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Disclosures for Martina Daly In compliance with COI policy, ISTH requires the following disclosures to the session audience: Research Support/P.I. No relevant conflicts of interest to declare Employee No relevant conflicts of interest to declare Consultant No relevant conflicts of interest to declare Major Stockholder No relevant conflicts of interest to declare Speakers Bureau No relevant conflicts of interest to declare Honoraria No relevant conflicts of interest to declare Scientific Advisory No relevant conflicts of interest to declare Board Platelet granule release Agonists (FIIa, Collagen, ADP) Signals Activation Shape change Membrane fusion Release of granule contents Platelet storage organelles lysosomes a granules Enzymes including cathepsins Adhesive proteins acid hydrolases Clotting factors and their inhibitors Fibrinolytic factors and their inhibitors Proteases and antiproteases Growth and mitogenic factors Chemokines, cytokines Anti-microbial proteins Membrane glycoproteins dense (d) granules ADP/ATP Serotonin histamine inorganic polyphosphate Platelet a-granule contents Type Prominent components Membrane glycoproteins GPIb, aIIbb3, GPVI Clotting factors VWF, FV, FXI, FII, Fibrinogen, HMWK, FXIII? Clotting inhibitors TFPI, protein S, protease nexin-2 Fibrinolysis components PAI-1, TAFI, a2-antiplasmin, plasminogen, uPA Other protease inhibitors a1-antitrypsin, a2-macroglobulin -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Discovery of Genes Required for Body Axis and Limb Formation by Global Identification of Conserved Retinoic Acid Regulated Enhancers and Silencers
bioRxiv preprint doi: https://doi.org/10.1101/778191; this version posted December 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Discovery of genes required for body axis and limb formation by global identification of conserved retinoic acid regulated enhancers and silencers Marie Berenguer1, Karolin F. Meyer1, Jun Yin2, and Gregg Duester1,* 1Development, Aging, and Regeneration Program 2Bioinformatics Core Facility Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA *Corresponding Author ([email protected]) Keywords: Body axis formation; retinoic acid signaling; enhancer; silencer; Aldh1a2 knockout; Nr2f1; Nr2f2 Short title: RNA-seq/ChIP-seq to find RA target genes 1 bioRxiv preprint doi: https://doi.org/10.1101/778191; this version posted December 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Identification of target genes for transcription factors is hampered by the large number of genes whose expression changes when the factor is removed from a specific tissue and the numerous binding sites for the factor in the genome. Retinoic acid (RA) regulates transcription via RA receptors bound to RA response elements (RAREs) of which there are thousands in vertebrate genomes. Here, we combined ChIP-seq and RNA-seq on trunk tissue from wild-type and Aldh1a2-/- embryos lacking RA synthesis that exhibit body axis and forelimb defects. We identified a relatively small number of genes with altered expression when RA is missing that also have nearby RA- regulated deposition of H3K27ac (gene activation mark) or H3K27me3 (gene repression mark) associated with conserved RAREs. -
Supplementary Material
BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Neurol Neurosurg Psychiatry Page 1 / 45 SUPPLEMENTARY MATERIAL Appendix A1: Neuropsychological protocol. Appendix A2: Description of the four cases at the transitional stage. Table A1: Clinical status and center proportion in each batch. Table A2: Complete output from EdgeR. Table A3: List of the putative target genes. Table A4: Complete output from DIANA-miRPath v.3. Table A5: Comparison of studies investigating miRNAs from brain samples. Figure A1: Stratified nested cross-validation. Figure A2: Expression heatmap of miRNA signature. Figure A3: Bootstrapped ROC AUC scores. Figure A4: ROC AUC scores with 100 different fold splits. Figure A5: Presymptomatic subjects probability scores. Figure A6: Heatmap of the level of enrichment in KEGG pathways. Kmetzsch V, et al. J Neurol Neurosurg Psychiatry 2021; 92:485–493. doi: 10.1136/jnnp-2020-324647 BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Neurol Neurosurg Psychiatry Appendix A1. Neuropsychological protocol The PREV-DEMALS cognitive evaluation included standardized neuropsychological tests to investigate all cognitive domains, and in particular frontal lobe functions. The scores were provided previously (Bertrand et al., 2018). Briefly, global cognitive efficiency was evaluated by means of Mini-Mental State Examination (MMSE) and Mattis Dementia Rating Scale (MDRS). Frontal executive functions were assessed with Frontal Assessment Battery (FAB), forward and backward digit spans, Trail Making Test part A and B (TMT-A and TMT-B), Wisconsin Card Sorting Test (WCST), and Symbol-Digit Modalities test. -
The University of Chicago Genetic Services Laboratories Labolaboratories
The University of Chicago Genetic Services Laboratories LaboLaboratories5841 S. Maryland Ave., Rm. G701, MC 0077, Chicago, Illinois 60637 3637 [email protected] dnatesting.uchicago.edu CLIA #: 14D0917593 CAP #: 18827-49 Next Generation Sequencing Panel for Albinism Clinical Features: Albinism is a group of inherited disorders in which melanin biosynthesis is reduced or absent [1]. The lack or reduction in pigment can affect the eyes, skin and hair, or only the eyes. In addition, there are several syndromic forms of albinism in which the hypopigmented and visual phenotypes are seen in addition to other systems involvement [2]. Our Albinism Sequencing Panel includes sequence analysis of all 20 genes listed below. Our Albinism Deletion/Duplication Panel includes sequence analysis of all 20 genes listed below. Albinism Sequencing Panel Chediak- Griscelli Oculocutaneous Ocular Hermansky Pudlak syndrome Higashi syndrome Albinism Albinism syndrome TYR SLC45A2 GPR143 HPS1 HPS4 DTNBP1 LYST MYO5A OCA2 SLC24A5 AP3B1 HPS5 BLOC1S3 RAB27A TYRP1 C10ORF11 HPS3 HPS6 BLOC1S6 MLPH Oculocutaneous Albinism Oculocutaneous albinism (OCA) is a genetically heterogeneous congenital disorder characterized by decreased or absent pigmentation in the hair, skin, and eyes. Clinical features can include varying degrees of congenital nystagmus, hypopigmentation and translucency, reduced pigmentation of the retinal pigment epithelium and foveal hypoplasia. Vision acuity is typically reduced and refractive errors, color vision impairment and photophobia also occur [3]. Gene Clinical Features Details TYR Albinism, OCA1 is caused by mutations in the tyrosinase gene, TYR. Mutations completely oculocutaneous, abolishing tyrosinase activity result in OCA1A, while mutations rendering some type I enzyme activity result in OCA1B allowing some accumulation of melanin pigment production throughout life. -
Molecular Diagnostic Requisition
BAYLOR MIRACA GENETICS LABORATORIES SHIP TO: Baylor Miraca Genetics Laboratories 2450 Holcombe, Grand Blvd. -Receiving Dock PHONE: 800-411-GENE | FAX: 713-798-2787 | www.bmgl.com Houston, TX 77021-2024 Phone: 713-798-6555 MOLECULAR DIAGNOSTIC REQUISITION PATIENT INFORMATION SAMPLE INFORMATION NAME: DATE OF COLLECTION: / / LAST NAME FIRST NAME MI MM DD YY HOSPITAL#: ACCESSION#: DATE OF BIRTH: / / GENDER (Please select one): FEMALE MALE MM DD YY SAMPLE TYPE (Please select one): ETHNIC BACKGROUND (Select all that apply): UNKNOWN BLOOD AFRICAN AMERICAN CORD BLOOD ASIAN SKELETAL MUSCLE ASHKENAZIC JEWISH MUSCLE EUROPEAN CAUCASIAN -OR- DNA (Specify Source): HISPANIC NATIVE AMERICAN INDIAN PLACE PATIENT STICKER HERE OTHER JEWISH OTHER (Specify): OTHER (Please specify): REPORTING INFORMATION ADDITIONAL PROFESSIONAL REPORT RECIPIENTS PHYSICIAN: NAME: INSTITUTION: PHONE: FAX: PHONE: FAX: NAME: EMAIL (INTERNATIONAL CLIENT REQUIREMENT): PHONE: FAX: INDICATION FOR STUDY SYMPTOMATIC (Summarize below.): *FAMILIAL MUTATION/VARIANT ANALYSIS: COMPLETE ALL FIELDS BELOW AND ATTACH THE PROBAND'S REPORT. GENE NAME: ASYMPTOMATIC/POSITIVE FAMILY HISTORY: (ATTACH FAMILY HISTORY) MUTATION/UNCLASSIFIED VARIANT: RELATIONSHIP TO PROBAND: THIS INDIVIDUAL IS CURRENTLY: SYMPTOMATIC ASYMPTOMATIC *If family mutation is known, complete the FAMILIAL MUTATION/ VARIANT ANALYSIS section. NAME OF PROBAND: ASYMPTOMATIC/POPULATION SCREENING RELATIONSHIP TO PROBAND: OTHER (Specify clinical findings below): BMGL LAB#: A COPY OF ORIGINAL RESULTS ATTACHED IF PROBAND TESTING WAS PERFORMED AT ANOTHER LAB, CALL TO DISCUSS PRIOR TO SENDING SAMPLE. A POSITIVE CONTROL MAY BE REQUIRED IN SOME CASES. REQUIRED: NEW YORK STATE PHYSICIAN SIGNATURE OF CONSENT I certify that the patient specified above and/or their legal guardian has been informed of the benefits, risks, and limitations of the laboratory test(s) requested. -
Slc15a4, AP-3, and Hermansky-Pudlak Syndrome Proteins Are Required for Toll-Like Receptor Signaling in Plasmacytoid Dendritic Cells
Slc15a4, AP-3, and Hermansky-Pudlak syndrome proteins are required for Toll-like receptor signaling in plasmacytoid dendritic cells Amanda L. Blasius, Carrie N. Arnold, Philippe Georgel1, Sophie Rutschmann2, Yu Xia, Pei Lin, Charles Ross, Xiaohong Li, Nora G. Smart, and Bruce Beutler3 Department of Genetics, The Scripps Research Institute, La Jolla, CA 92037 Contributed by Bruce Beutler, September 17, 2010 (sent for review September 16, 2010) Despite their low frequency, plasmacytoid dendritic cells (pDCs) abrogate TLR7 and TLR9 signaling in pDCs. We show that lyso- produce most of the type I IFN that is detectable in the blood some-related organelle (LRO) trafficking and biogenesis proteins, following viral infection. The endosomal Toll-like receptors (TLRs) such as adapter-related protein complex-3 (AP-3) and Hermansky- TLR7 and TLR9 are required for pDCs, as well as other cell types, to Pudlack syndrome (HPS) proteins of the biogenesis of lysosome- sense viral nucleic acids, but the mechanism by which signaling related organelle complex (BLOC)-1 and BLOC-2 groups, are through these shared receptors results in the prodigious production specifically required for type I IFN and cytokine production in of type I IFN by pDCs is not understood. We designed a genetic pDCs. Moreover, Slc15a4, an obscure solute channel protein, is screen to identify proteins required for the development and essential for TLR-mediated signaling in pDCs. Our data reveal a specialized function of pDCs. One phenovariant, which we named specialized membrane trafficking mechanism necessary for TLR feeble, showed abrogation of both TLR-induced type I IFN and pro- signaling in pDCs, which could explain their unique responses to inflammatory cytokine production by pDCs, while leaving TLR re- viral infection. -
The Life Cycle of Platelet Granules
The life cycle of platelet granules The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Sharda, Anish, and Robert Flaumenhaft. 2018. “The life cycle of platelet granules.” F1000Research 7 (1): 236. doi:10.12688/f1000research.13283.1. http://dx.doi.org/10.12688/ f1000research.13283.1. Published Version doi:10.12688/f1000research.13283.1 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:35981871 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA F1000Research 2018, 7(F1000 Faculty Rev):236 Last updated: 28 FEB 2018 REVIEW The life cycle of platelet granules [version 1; referees: 2 approved] Anish Sharda, Robert Flaumenhaft Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA First published: 28 Feb 2018, 7(F1000 Faculty Rev):236 (doi: Open Peer Review v1 10.12688/f1000research.13283.1) Latest published: 28 Feb 2018, 7(F1000 Faculty Rev):236 (doi: 10.12688/f1000research.13283.1) Referee Status: Abstract Invited Referees Platelet granules are unique among secretory vesicles in both their content and 1 2 their life cycle. Platelets contain three major granule types—dense granules, α-granules, and lysosomes—although other granule types have been reported. version 1 Dense granules and α-granules are the most well-studied and the most published physiologically important. -
Transforming Growth Factor ß1-Mediated Functional Inhibition Of
Myelodysplastic Syndromes SUPPLEMENTARY APPENDIX Transforming growth factor 1- mediated functional inhibition of mesenchymal stromal celβls in myelodysplastic syndromes and acute myeloid leukemia Stefanie Geyh, 1* Manuel Rodríguez-Paredes, 1,2 * Paul Jäger, 1 Annemarie Koch, 1 Felix Bormann, 2 Julian Gutekunst, 2 Christoph Zilkens, 3 Ulrich Germing, 1 Guido Kobbe, 1 Frank Lyko, 2 Rainer Haas 1 and Thomas Schroeder 1 1Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty; 2Division of Epigenetics, DKFZ- ZMBH Alliance, German Cancer Research Center, Heidelberg and 3Department of Orthopedic Surgery, University of Duesseldorf, Medical Faculty, Germany *SG and MR-P contributed equally to this work. ©2018 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2017.186734 Received: December 19, 2017. Accepted: May 14, 2018. Pre-published: May 17, 2018. Correspondence: [email protected] Figure S1 Downregulated genes Downregulated genes Upregulated Figure S1. Heatmaps showing the 50 most upregulated and downregulated genes between the 3 healthy MSC controls and the 9 RCMD-, RAEB- and AML-derived MSC samples. Color scale depicts the rlog-transformed FPKM values for each gene and every sample. Figure S2 Downregulated genes Downregulated genes Upregulated Figure S2. Heatmaps showing the 50 most upregulated and downregulated genes between the 3 healthy MSC controls and the 3 RCMD, RAEB and AML MSC samples, respectively. Color scales depict the rlog-transformed FPKM values for each gene and every sample. Figure S3 A. B. 0.0015 *** ** <-3 -2 0.0010 RCMD RAEB AML -1 0 1 0.0005 Log2FC LTF 2 CCL26/GAPDH INHBB >3 0.0000 TGFB2 y S h D ML M A ealt ll LTF H a EGF 0.003 *** ** INHBB TGFB2 0.002 INHBB IGFBP7 0.001 GDF11 LIF/GAPDH BMP1 0.000 y L th M TNFSF12 l A FGF13 ea ll MDS H a FGF13 0.0015 * TNFSF10 TNFSF10 0.0010 0.0005 SPP1/GAPDH 0.0000 y th l AML ea H all MDS Figure S3. -
Hermansky-Pudlak Syndrome
Chapter 8 Hermansky-Pudlak Syndrome Naoki Oiso and Akira Kawada Additional information is available at the end of the chapter http://dx.doi.org/10.5772/53573 1. Introduction Oculocutaneous albinism is classified into non-syndromic oculocutaneous albinism (OCA) and syndromic OCA including Hermansky-Pudlak syndrome (HPS), Chediak-Higashi syndrome (CHS) and Griscelli syndrome (GS). Both non-syndromic and syndromic OCAs are autosomal recessive disorders. Human HPS is genetically divided into nine forms, HPS type 1 (HPS-1) to HPS-9. Human HPS can be sub-classified into four subgroups which are associated with protein complexes encoded by the causative genes. In this session, we summarize (1) the clinical features of HPS, (2) the mice and rat models of HPS, and (3) the molecular functions. 2. The clinical features of HPS In 1959, Hermansky and Pudklak described two cases of OCA associated with hemorrhagic diathesis.1 Currently, the condition is known as HPS. HPS is a rare heterogeneous autosomal recessive syndrome which is typically characterized by OCA, bleeding diathesis, and lysosomal ceroid storage resulting from defects of multiple cytoplasmic organelles: melanosomes, platelet dense core granules, and lysosomes.2 The storage of ceroid-like material in lysosomes induces restrictive lung disease, ulcerative colitis, kidney failure, and cardiomyopathy. Accumulation of mice models, identification of causative genes and functional analysis indicated that HPS could be sub-classified into four groups according to four protein complexes, biogenesis of lysosome-related organelles complex-3 (BLOC-3) (HPS-1 and HPS- 4), adaptor protein-3 (AP-3) (HPS-2), BLOC-2 (HPS-3, HPS-5 and HPS-6) and BLOC-1( HPS- 7, HPS-8 and HPS-9).3-5 Currently, more than 16 mice strains and more than 2 rat strains are known as models of human HPS (Table 1). -
Table S4. RAE Analysis of Dedifferentiated Liposarcoma
Table S4. RAE analysis of dedifferentiated liposarcoma Model Chromosome Region start Region end Size q value freqX0* # genes genes Amp 1 57809872 60413476 2603605 0.00026 34.6 10 DAB1,RPS26P15,OMA1,TACSTD2,MYSM1,JUN,FGGY,HOOK1,CYP2J2,C1orf87 Amp 1 158619146 158696968 77823 0.053 25 1 VANGL2 Amp 1 158883523 158922841 39319 0.081 23.1 2 SLAMF1,CD48 Amp 1 162042586 162118557 75972 0.072 25 0 [Nearest:NUF2] Amp 1 162272460 162767627 495168 0.017 26.9 0 [Nearest:PBX1] Amp 1 165486554 165532374 45821 0.057 25 1 POU2F1 Amp 1 167138282 167483267 344986 0.024 26.9 2 ATP1B1,NME7 Amp 1 167612872 167708844 95973 0.041 25 3 BLZF1,C1orf114,SLC19A2 Amp 1 167728199 167808161 79963 0.076 21.2 1 F5 Amp 1 168436370 169233893 797524 0.018 26.9 3 GORAB,PRRX1,C1orf129 Amp 1 169462231 170768440 1306210 1.3E-06 38.5 10 FMO1,FMO4,TOP1P1,BAT2D1,MYOC,VAMP4,METTL13,DNM3,C1orf105,PIGC Amp 1 171026247 171291427 265181 0.015 26.9 1 TNFSF18 Del 1 201860394 202299299 438906 0.0047 25 6 ATP2B4,SNORA77,LAX1,ZC3H11A,SNRPE,C1orf157 Del 1 210909187 212021116 1111930 0.017 19.2 8 BATF3,NSL1,TATDN3,C1orf227,FLVCR1,VASH2,ANGEL2,RPS6KC1 Del 1 215937857 216049214 111358 0.079 23.1 1 SPATA17 Del 1 218237257 218367476 130220 0.0063 26.9 3 EPRS,BPNT1,IARS2 Del 1 222100886 222727238 626353 5.2E-05 32.7 5 FBXO28,DEGS1,NVL,CNIH4,WDR26 Del 1 223166548 224519805 1353258 0.0063 26.9 15 DNAH14,LBR,ENAH,SRP9,EPHX1,TMEM63A,LEFTY1,PYCR2,LEFTY2,C1orf55,H3F3A,LOC440926 ,ACBD3,MIXL1,LIN9 Del 1 225283136 225374166 91031 0.054 23.1 1 CDC42BPA Del 1 227278990 229012661 1733672 0.091 21.2 13 RAB4A,SPHAR,C1orf96,ACTA1,NUP133,ABCB10,TAF5L,URB2,GALNT2,PGBD5,COG2,AGT,CAP -
NIH Public Access Author Manuscript Annu Rev Genomics Hum Genet
NIH Public Access Author Manuscript Annu Rev Genomics Hum Genet. Author manuscript; available in PMC 2009 October 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Annu Rev Genomics Hum Genet. 2008 ; 9: 359±386. doi:10.1146/annurev.genom.9.081307.164303. Disorders of Lysosome-related Organelle Biogenesis: Clinical and Molecular Genetics Marjan Huizing1, Amanda Helip-Wooley2, Wendy Westbroek2, Meral Gunay-Aygun2, and William A. Gahl2 Marjan Huizing: [email protected]; Amanda Helip-Wooley: [email protected]; Wendy Westbroek: [email protected]; Meral Gunay-Aygun: [email protected]; William A. Gahl: [email protected] 1 Cell Biology of Metabolic Disorders Unit, National Institutes of Health, Bethesda, Maryland 20892 2 Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892 Abstract Lysosome-related organelles (LROs) are a heterogeneous group of vesicles that share various features with lysosomes, but are distinct in function, morphology, and composition. The biogenesis of LROs employs a common machinery, and genetic defects in this machinery can affect all LROs or only an individual LRO, resulting in a variety of clinical features. In this review, we discuss the main components in LRO biogenesis. We also address the function, composition and resident cell type of the major LROs. Finally, we describe the clinical characteristics of the major human LRO disorders. Keywords Chediak-Higashi syndrome; Griscelli syndrome; Hermansky-Pudlak syndrome; melanosome; platelet INTRODUCTION Lysosomes are membrane-bound cytoplasmic organelles that serve as major degradative compartments in eukaryotic cells (65).