Table S4. RAE Analysis of Dedifferentiated Liposarcoma

Total Page:16

File Type:pdf, Size:1020Kb

Table S4. RAE Analysis of Dedifferentiated Liposarcoma Table S4. RAE analysis of dedifferentiated liposarcoma Model Chromosome Region start Region end Size q value freqX0* # genes genes Amp 1 57809872 60413476 2603605 0.00026 34.6 10 DAB1,RPS26P15,OMA1,TACSTD2,MYSM1,JUN,FGGY,HOOK1,CYP2J2,C1orf87 Amp 1 158619146 158696968 77823 0.053 25 1 VANGL2 Amp 1 158883523 158922841 39319 0.081 23.1 2 SLAMF1,CD48 Amp 1 162042586 162118557 75972 0.072 25 0 [Nearest:NUF2] Amp 1 162272460 162767627 495168 0.017 26.9 0 [Nearest:PBX1] Amp 1 165486554 165532374 45821 0.057 25 1 POU2F1 Amp 1 167138282 167483267 344986 0.024 26.9 2 ATP1B1,NME7 Amp 1 167612872 167708844 95973 0.041 25 3 BLZF1,C1orf114,SLC19A2 Amp 1 167728199 167808161 79963 0.076 21.2 1 F5 Amp 1 168436370 169233893 797524 0.018 26.9 3 GORAB,PRRX1,C1orf129 Amp 1 169462231 170768440 1306210 1.3E-06 38.5 10 FMO1,FMO4,TOP1P1,BAT2D1,MYOC,VAMP4,METTL13,DNM3,C1orf105,PIGC Amp 1 171026247 171291427 265181 0.015 26.9 1 TNFSF18 Del 1 201860394 202299299 438906 0.0047 25 6 ATP2B4,SNORA77,LAX1,ZC3H11A,SNRPE,C1orf157 Del 1 210909187 212021116 1111930 0.017 19.2 8 BATF3,NSL1,TATDN3,C1orf227,FLVCR1,VASH2,ANGEL2,RPS6KC1 Del 1 215937857 216049214 111358 0.079 23.1 1 SPATA17 Del 1 218237257 218367476 130220 0.0063 26.9 3 EPRS,BPNT1,IARS2 Del 1 222100886 222727238 626353 5.2E-05 32.7 5 FBXO28,DEGS1,NVL,CNIH4,WDR26 Del 1 223166548 224519805 1353258 0.0063 26.9 15 DNAH14,LBR,ENAH,SRP9,EPHX1,TMEM63A,LEFTY1,PYCR2,LEFTY2,C1orf55,H3F3A,LOC440926 ,ACBD3,MIXL1,LIN9 Del 1 225283136 225374166 91031 0.054 23.1 1 CDC42BPA Del 1 227278990 229012661 1733672 0.091 21.2 13 RAB4A,SPHAR,C1orf96,ACTA1,NUP133,ABCB10,TAF5L,URB2,GALNT2,PGBD5,COG2,AGT,CAP Del 1 229602259 229673038 70780 0.020 25 1 EGLN1N9 Del 1 233309013 234365436 1056424 0.0014 28.8 10 TOMM20,SNORA14B,RBM34,ARID4B,GGPS1,TBCE,B3GALNT2,GNG4,LYST,NID1 Del 1 234407392 234755921 348530 0.048 23.1 4 GPR137B,ERO1LB,EDARADD,LGALS8 Del 1 239674808 240239705 564898 0.039 23.1 7 FH,KMO,OPN3,CHML,WDR64,EXO1,MAP1LC3C Del 1 240760677 247185356 6424680 8.3E-05 44.2 72 CEP170,SDCCAG8,AKT3,ZNF238,C1orf100,ADSS,C1orf101,PPPDE1,FAM36A,HNRNPU,EFCAB2, KIF26B,SMYD3,TFB2M,C1orf71,SCCPDH,AHCTF1,ZNF695,ZNF670,ZNF669,FLJ45717,ZNF124,V N1R5,ZNF496,NLRP3,OR2B11,OR2W5,OR2C3,C1orf150,OR2G2,OR2G3,OR6F1,OR1C1,OR14A1 6,OR11L1,TRIM58,OR2W3,OR2T8,OR2L13,OR2L8,OR2AK2,OR2L1P,OR2L2,OR2L3,OR2M1P,OR 2M5,OR2M2,OR2M3,OR2M4,OR2T33,OR2T12,OR2M7,OR14C36,OR2T4,OR2T6,OR2T1,OR2T2 ,OR2T3,OR2T5,OR2G6,OR2T29,OR2T34,OR2T10,OR2T11,OR2T35,OR2T27,OR14I1,LOC646627 Del 2 241844891 242579492 734602 0.038 28.8 10 HDLBP,2-Sep,FARP2,STK25,BOK,ING5,GAL3ST2,NEU4,PDCD1,C2orf85,SH3BP5L,ZNF672,ZNF692,PGBD2 Del 3 10016504 10254819 238316 0.028 23.1 7 LOC401052,CIDECP,FANCD2,C3orf24,C3orf10,VHL,IRAK2 Del 3 12604063 12680013 75951 0.083 21.2 1 RAF1 Del 3 41806019 41852414 46396 0.083 19.2 1 ULK4 Del 3 47039911 53977519 6937609 4.0E-07 38.5 150 SETD2,KIF9,KLHL18,PTPN23,SCAP,C3orf75,CSPG5,SMARCC1,DHX30,MAP4,CDC25A,CAMP,ZNF 589,NME6,SPINK8,FBXW12,PLXNB1,CCDC51,CCDC72,ATRIP,TREX1,SHISA5,PFKFB4,UCN2,COL 7A1,UQCRC1,TMEM89,SLC26A6,CELSR3,NCKIPSD,IP6K2,PRKAR2A,SLC25A20,C3orf71,ARIH2,P 4HTM,WDR6,DALRD3,NDUFAF3,IMPDH2,QRICH1,QARS,USP19,LAMB2,LAMB2L,CCDC71,KLH DC8B,LOC646498,CCDC36,C3orf62,USP4,GPX1,RHOA,TCTA,AMT,NICN1,DAG1,BSN,APEH,MST 1,RNF123,AMIGO3,GMPPB,IP6K1,CDH29,C3orf54,UBA7,TRAIP,CAMKV,MST1R,MON1A,RBM6 ,RBM5,SEMA3F,GNAT1,SLC38A3,GNAI2,SEMA3B,C3orf45,IFRD2,HYAL3,NAT6,HYAL1,HYAL2,T USC2,RASSF1,ZMYND10,TUSC4,CYB561D2,TMEM115,CACNA2D2,C3orf18,HEMK1,CISH,MAPK APK3,DOCK3,ARMET,RBM15B,VPRBP,RAD54L2,TEX264,GRM2,IQCF3,IQCF2,IQCF1,RRP9,PARP 3,GPR62,PCBP4,ABHD14B,ABHD14A,ACY1,RPL29,DUSP7,WDR51A,ALAS1,TLR9,TWF2,PPM1M ,WDR82,GLYCTK,DNAH1,BAP1,PHF7,SEMA3G,TNNC1,NISCH,STAB1,NT5DC2,LOC440957,PBR M1,GNL3,GLT8D1,SPCS1,NEK4,ITIH1,ITIH3,ITIH4,MUSTN1,TMEM110,SFMBT1,RFT1,PRKCD,TK Del 3 56229193 58360129 2130937 0.00037 28.8 19 ERC2,CCDC66,C3orf63,ARHGEF3,SPATA12,IL17RD,HESX1,APPL1,ASB14,DNAH12,PDE12,ARF4, FAM116A,SLMAP,FLNB,DNASE1L3,ABHD6,RPP14,PXK Del 3 69268931 69400527 131597 0.044 23.1 1 FRMD4B Del 3 72657187 73277953 620767 0.022 25 4 SHQ1,GLT8D4,PPP4R2,FLJ10213 Del 3 110414130 110683868 269739 0.088 21.2 2 DPPA2,DPPA4 Del 3 139908783 140149821 241039 0.024 23.1 3 PIK3CB,FOXL2,C3orf72 Del 3 171328741 171590705 261965 0.020 23.1 3 PHC3,PRKCI,SKIL Del 3 196481383 199329592 2848210 1.1E-06 51.9 37 ACAP2,PPP1R2,APOD,SDHALP2,MUC20,MUC4,TNK2,SDHALP1,TFRC,ZDHHC19,OSTalpha,PCYT 1A,TCTEX1D2,TM4SF19,UBXN7,RNF168,C3orf43,WDR53,FBXO45,LRRC33,C3orf34,PIGX,PAK2, SENP5,NCBP2,PIGZ,MFI2,DLG1,BDH1,LOC220729,KIAA0226,FYTTD1,LRCH3,IQCG,RPL35A,LML Del 4 39682282 39820681 138400 0.052 23.1 1 N4BP2 Amp 5 1093705 1543862 450158 0.0020 30.8 7 SLC12A7,SLC6A19,SLC6A18,TERT,CLPTM1L,SLC6A3,LPCAT1 Amp 5 1697394 1789892 92499 0.065 25 0 [Nearest:LOC728613] Amp 5 13319637 13466970 147334 0.054 26.9 0 [Nearest:DNAH5] Amp 5 13620666 13737186 116521 0.043 26.9 0 [Nearest:DNAH5] Amp 5 15649221 15660073 10853 0.054 25 1 FBXL7 Amp 5 24058033 24297675 239643 0.038 26.9 0 [Nearest:CDH10] Amp 5 24480832 24582277 101446 0.075 23.1 1 CDH10 Amp 5 25201868 25258652 56785 0.087 23.1 0 [Nearest:CDH10] Amp 5 25986189 26103823 117635 0.079 23.1 0 [Nearest:CDH9] Amp 6 103477930 103845083 367154 0.087 25 0 [Nearest:GRIK2] Amp 6 113439154 117189663 3750510 0.0054 30.8 17 MARCKS,HDAC2,HS3ST5,FRK,NT5DC1,COL10A1,TSPYL4,TSPYL1,DSE,FAM26F,FAM26E,FAM26 D,RWDD1,RSPH4A,ZUFSP,KPNA5,FAM162B Amp 6 117302727 117338857 36131 0.083 23.1 1 RFX6 Amp 6 117388338 117692206 303869 0.081 25 0 [Nearest:VGLL2] Amp 6 128176607 128529036 352430 0.061 26.9 2 C6orf190,PTPRK Amp 6 128878261 129057937 179677 0.078 25 1 PTPRK Amp 6 134681434 145160649 10479216 0.00018 38.5 42 ALDH8A1,HBS1L,MYB,AHI1,PDE7B,FAM54A,BCLAF1,MAP7,MAP3K5,PEX7,SLC35D3,IL20RA,IL2 2RA2,IFNGR1,OLIG3,TNFAIP3,PERP,KIAA1244,PBOV1,HEBP2,CCDC28A,ECT2L,REPS1,C6orf115 ,HECA,TXLNB,CITED2,NMBR,VTA1,GPR126,HIVEP2,AIG1,ADAT2,PEX3,FUCA2,PHACTR2,LTV1,P LAGL1,HYMAI,SF3B5,STX11,UTRN Amp 6 145988967 146457034 468068 0.029 25 4 EPM2A,FBXO30,SHPRH,GRM1 Amp 6 146998782 147048234 49453 0.036 25 1 C6orf103 Amp 6 147282904 149969228 2686325 0.00049 34.6 10 STXBP5,SAMD5,SASH1,UST,MAP3K7IP2,SUMO4,ZC3H12D,PPIL4,C6orf72,KATNA1 Amp 7 13538028 13699329 161302 0.095 23.1 0 [Nearest:ETV1] Amp 7 16772441 16801091 28651 0.090 25 2 TSPAN13,AGR2 Amp 7 25253943 25955523 701581 0.025 28.8 0 [Nearest:NPVF] Amp 7 27099126 27240566 141441 0.00031 36.5 12 HOXA1,HOXA2,HOXA3,HOXA4,HOXA5,HOXA6,HOXA7,HOXA9,HOXA10,HOXA11,HOXA11AS,H Amp 7 29519225 31543483 2024259 0.088 25 20 CHN2,PRR15,WIPF3,SCRN1,FKBP14,PLEKHA8,C7orf41,ZNRF2,DKFZP586I1420,NOD1,GGCT,GAOXA13 RS,CRHR2,INMT,C7orf67,AQP1,GHRHR,ADCYAP1R1,NEUROD6,CCDC129 Del 7 75205238 75309970 104733 0.049 23.1 3 HIP1,CCL26,CCL24 Amp 7 141720324 142192030 471707 1.1E-06 42.3 3 PRSS1,TRY6,PRSS2 Amp 8 99393649 99532186 138538 0.048 26.9 1 KCNS2 Del 8 145909942 146264846 354905 0.016 23.1 10 ZNF251,ZNF34,RPL8,ZNF517,ZNF7,COMMD5,ZNF250,ZNF16,TMED10P,C8orf33 Del 9 194193 16047005 15852813 0.0077 32.7 51 C9orf66,DOCK8,KANK1,DMRT1,DMRT3,DMRT2,SMARCA2,FLJ35024,VLDLR,KCNV2,KIAA0020, RFX3,GLIS3,SLC1A1,C9orf68,PPAPDC2,CDC37L1,AK3,RCL1,JAK2,INSL6,INSL4,RLN2,RLN1,C9orf 46,CD274,PDCD1LG2,KIAA1432,ERMP1,MLANA,KIAA2026,RANBP6,IL33,TPD52L3,UHRF2,GLD C,JMJD2C,C9orf123,PTPRD,TYRP1,C9orf150,MPDZ,NFIB,ZDHHC21,CER1,FREM1,LOC389705,T Del 9 16455531 23807986 7352456 1.5E-08 42.3 39 BNC2,CNTLN,SH3GL2,ADAMTSL1,FAM154A,RRAGA,FAM29A,SCARNA8,ADFP,DENND4C,RPS6, ACER2,SLC24A2,MLLT3,KIAA1797,PTPLAD2,IFNB1,IFNW1,IFNA21,IFNA4,IFNA7,IFNA10,IFNA1 6,IFNA17,IFNA14,IFNA5,KLHL9,IFNA6,IFNA13,IFNA2,IFNA8,IFNA1,IFNE,MTAP,CDKN2A,CDKN2 BAS,CDKN2B,DMRTA1,ELAVL2 Del 9 24053497 25573028 1519532 0.030 23.1 0 [Nearest:TUSC1] Del 9 26736903 31829311 5092409 0.017 26.9 10 C9orf82,PLAA,IFT74,LRRC19,TEK,C9orf11,MOBKL2B,IFNK,C9orf72,LINGO2 Del 9 32375919 32490919 115001 0.051 23.1 2 ACO1,DDX58 Del 9 32803501 32894286 90786 0.052 23.1 0 [Nearest:TMEM215] Del 9 33803335 37898880 4095546 3.5E-06 36.5 73 UBE2R2,UBAP2,WDR40A,UBAP1,KIF24,NUDT2,KIAA1161,C9orf24,C9orf25,DNAI1,ENHO,CNTF R,C9orf23,DCTN3,ARID3C,SIGMAR1,GALT,IL11RA,CCL27,CCL19,CCL21,KIAA1045,DNAJB5,C9or f131,VCP,FANCG,PIGO,STOML2,KIAA1539,UNC13B,LOC158381,RUSC2,FAM166B,TESK1,CD72, SIT1,RMRP,CCDC107,C9orf100,CA9,TPM2,TLN1,CREB3,GBA2,RGP1,MSMP,NPR2,SPAG8,HINT 2,C9orf128,C9orf127,OR13J1,HRCT1,OR2S2,RECK,GLIPR2,CCIN,CLTA,GNE,RNF38,MELK,PAX5, ZCCHC7,GRHPR,ZBTB5,POLR1E,FBXO10,TOMM5,FRMPD1,RG9MTD3,EXOSC3,WDR32,MCART Del 9 38435900 43530076 5094177 0.081 28.8 10 CNTNAP3,FAM75A2,FAM75A1,FAM75A3,FAM74A3,ZNF658,LOC653501,ZNF658B,KGFLP2,AN Amp 9 71552270 71888549 336280 0.098 25 3 PTAR1,C9orf135,MAMDC2 Amp 9 84329796 84853118 523323 0.045 26.9 1 RASEF Amp 9 85635121 85718742 83622 0.083 25 1 KIF27 Amp 9 85901224 87149173 1247950 0.041 26.9 2 SLC28A3,NTRK2 Amp 9 90182693 93177300 2994608 0.0057 28.8 13 SPIN1,NXNL2,LOC286238,C9orf47,S1PR3,SHC3,CKS2,SECISBP2,SEMA4D,GADD45G,DIRAS2,SY Amp 9 93564711 98074124 4509414 0.013 30.8 34 ROR2,SPTLC1,LOC100128076,IARS,NOL8,CENPP,OGN,OMD,ASPN,ECM2,IPPK,BICD2,ZNF484,F GD3,SUSD3,C9orf89,NINJ1,WNK2,C9orf129,FAM120AOS,FAM120A,PHF2,BARX1,PTPDC1,ZNF 169,FAM22F,HIATL1,FBP2,FBP1,C9orf3,FANCC,PTCH1,C9orf102,HSD17B3 Amp 9 99075283 99262711 187429 0.040 26.9 2 KIAA1529,TDRD7 Amp 9 99393409 99647356 253948 0.047 26.9 4 TMOD1,C9orf97,NCBP1,XPA Amp 9 100100965 100238966 138002 0.051 26.9 1 GABBR2 Amp 9 100353031 102993750 2640720 0.017 28.8 16 GABBR2,ANKS6,GALNT12,COL15A1,TGFBR1,ALG2,SEC61B,NR4A3,STX17,ERP44,INVS,TEX10,C 9orf30,TMEFF1,MURC,RP11-35N6.1 Amp 9 103099517 103151635 52119 0.047 26.9 1 RP11-35N6.1 Amp 9 103837411 106370277 2532867 0.014 30.8 5 CYLC2,SMC2,OR13F1,OR13C4,OR13C3
Recommended publications
  • DNA Methylation of GHSR, GNG4, HOXD9 and SALL3 Is a Common Epigenetic Alteration in Thymic Carcinoma
    INTERNATIONAL JOURNAL OF ONCOLOGY 56: 315-326, 2020 DNA methylation of GHSR, GNG4, HOXD9 and SALL3 is a common epigenetic alteration in thymic carcinoma REINA KISHIBUCHI1, KAZUYA KONDO1, SHIHO SOEJIMA1, MITSUHIRO TSUBOI2, KOICHIRO KAJIURA2, YUKIKIYO KAWAKAMI2, NAOYA KAWAKITA2, TORU SAWADA2, HIROAKI TOBA2, MITSUTERU YOSHIDA2, HIROMITSU TAKIZAWA2 and AKIRA TANGOKU2 1Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8509; 2Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan Received August 17, 2019; Accepted October 25, 2019 DOI: 10.3892/ijo.2019.4915 Abstract. Thymic epithelial tumors comprise thymoma, promoter methylation of the 4 genes was not significantly thymic carcinoma and neuroendocrine tumors of the thymus. higher in advanced-stage tumors than in early-stage tumors in Recent studies have revealed that the incidence of somatic all thymic epithelial tumors. Among the 4 genes, relapse-free non‑synonymous mutations is significantly higher in thymic survival was significantly worse in tumors with a higher DNA carcinoma than in thymoma. However, limited information methylation than in those with a lower DNA methylation in all is currently available on epigenetic alterations in these types thymic epithelial tumors. Moreover, relapse-free survival was of cancer. In this study, we thus performed genome-wide significantly worse in thymomas with a higher DNA methyla- screening of aberrantly methylated CpG islands in thymoma tion of HOXD9 and SALL3 than in those with a lower DNA and thymic carcinoma using Illumina HumanMethylation450 methylation. On the whole, the findings of this study indicated K BeadChip. We identified 92 CpG islands significantly that the promoter methylation of cancer-related genes was hypermethylated in thymic carcinoma in relation to thymoma significantly higher in thymic carcinoma than in thymoma and and selected G protein subunit gamma 4 (GNG4), growth the thymus.
    [Show full text]
  • Diagnosing Platelet Secretion Disorders: Examples Cases
    Diagnosing platelet secretion disorders: examples cases Martina Daly Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Disclosures for Martina Daly In compliance with COI policy, ISTH requires the following disclosures to the session audience: Research Support/P.I. No relevant conflicts of interest to declare Employee No relevant conflicts of interest to declare Consultant No relevant conflicts of interest to declare Major Stockholder No relevant conflicts of interest to declare Speakers Bureau No relevant conflicts of interest to declare Honoraria No relevant conflicts of interest to declare Scientific Advisory No relevant conflicts of interest to declare Board Platelet granule release Agonists (FIIa, Collagen, ADP) Signals Activation Shape change Membrane fusion Release of granule contents Platelet storage organelles lysosomes a granules Enzymes including cathepsins Adhesive proteins acid hydrolases Clotting factors and their inhibitors Fibrinolytic factors and their inhibitors Proteases and antiproteases Growth and mitogenic factors Chemokines, cytokines Anti-microbial proteins Membrane glycoproteins dense (d) granules ADP/ATP Serotonin histamine inorganic polyphosphate Platelet a-granule contents Type Prominent components Membrane glycoproteins GPIb, aIIbb3, GPVI Clotting factors VWF, FV, FXI, FII, Fibrinogen, HMWK, FXIII? Clotting inhibitors TFPI, protein S, protease nexin-2 Fibrinolysis components PAI-1, TAFI, a2-antiplasmin, plasminogen, uPA Other protease inhibitors a1-antitrypsin, a2-macroglobulin
    [Show full text]
  • Genetic Variation Across the Human Olfactory Receptor Repertoire Alters Odor Perception
    bioRxiv preprint doi: https://doi.org/10.1101/212431; this version posted November 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Genetic variation across the human olfactory receptor repertoire alters odor perception Casey Trimmer1,*, Andreas Keller2, Nicolle R. Murphy1, Lindsey L. Snyder1, Jason R. Willer3, Maira Nagai4,5, Nicholas Katsanis3, Leslie B. Vosshall2,6,7, Hiroaki Matsunami4,8, and Joel D. Mainland1,9 1Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA 2Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York, USA 3Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA 4Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA 5Department of Biochemistry, University of Sao Paulo, Sao Paulo, Brazil 6Howard Hughes Medical Institute, New York, New York, USA 7Kavli Neural Systems Institute, New York, New York, USA 8Department of Neurobiology and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, USA 9Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA *[email protected] ABSTRACT The human olfactory receptor repertoire is characterized by an abundance of genetic variation that affects receptor response, but the perceptual effects of this variation are unclear. To address this issue, we sequenced the OR repertoire in 332 individuals and examined the relationship between genetic variation and 276 olfactory phenotypes, including the perceived intensity and pleasantness of 68 odorants at two concentrations, detection thresholds of three odorants, and general olfactory acuity.
    [Show full text]
  • Viewed Under 23 (B) Or 203 (C) fi M M Male Cko Mice, and Largely Unaffected Magni Cation; Scale Bars, 500 M (B) and 50 M (C)
    BRIEF COMMUNICATION www.jasn.org Renal Fanconi Syndrome and Hypophosphatemic Rickets in the Absence of Xenotropic and Polytropic Retroviral Receptor in the Nephron Camille Ansermet,* Matthias B. Moor,* Gabriel Centeno,* Muriel Auberson,* † † ‡ Dorothy Zhang Hu, Roland Baron, Svetlana Nikolaeva,* Barbara Haenzi,* | Natalya Katanaeva,* Ivan Gautschi,* Vladimir Katanaev,*§ Samuel Rotman, Robert Koesters,¶ †† Laurent Schild,* Sylvain Pradervand,** Olivier Bonny,* and Dmitri Firsov* BRIEF COMMUNICATION *Department of Pharmacology and Toxicology and **Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland; †Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts; ‡Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia; §School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; |Services of Pathology and ††Nephrology, Department of Medicine, University Hospital of Lausanne, Lausanne, Switzerland; and ¶Université Pierre et Marie Curie, Paris, France ABSTRACT Tight control of extracellular and intracellular inorganic phosphate (Pi) levels is crit- leaves.4 Most recently, Legati et al. have ical to most biochemical and physiologic processes. Urinary Pi is freely filtered at the shown an association between genetic kidney glomerulus and is reabsorbed in the renal tubule by the action of the apical polymorphisms in Xpr1 and primary fa- sodium-dependent phosphate transporters, NaPi-IIa/NaPi-IIc/Pit2. However, the milial brain calcification disorder.5 How- molecular identity of the protein(s) participating in the basolateral Pi efflux remains ever, the role of XPR1 in the maintenance unknown. Evidence has suggested that xenotropic and polytropic retroviral recep- of Pi homeostasis remains unknown. Here, tor 1 (XPR1) might be involved in this process. Here, we show that conditional in- we addressed this issue in mice deficient for activation of Xpr1 in the renal tubule in mice resulted in impaired renal Pi Xpr1 in the nephron.
    [Show full text]
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • A Genome-Wide Association Study of Body Mass Index
    International Journal of Epidemiology, 2015, 700–712 doi: 10.1093/ije/dyv077 Advance Access Publication Date: 7 May 2015 Original article Genetic Epidemiology A genome-wide association study of body mass index across early life and childhood Nicole M Warrington,1,2* Laura D Howe,3,4* Lavinia Paternoster,3,4 Marika Kaakinen,5,6,7 Sauli Herrala,6 Ville Huikari,6 Yan Yan Wu,8 Downloaded from John P Kemp,2,3 Nicholas J Timpson,3,4 Beate St Pourcain,3,4 George Davey Smith,3,4 Kate Tilling,3,4 Marjo-Riitta Jarvelin,5,6,9,10,11 Craig E Pennell,1 David M Evans,2,3,4 Debbie A Lawlor,3,4 Laurent Briollais8,† and Lyle J Palmer12,† http://ije.oxfordjournals.org/ 1School of Women’s and Infants’ Health, University of Western Australia, Perth, WA, Australia, 2University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia, 3MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK, 4School of Social and Community Medicine, University of Bristol, Bristol, UK, 5Biocenter Oulu, and 6Institute of Health Sciences, University of Oulu, Oulu, Finland, 7Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, UK, 8Lunenfeld-Tanenbaum Research Institute, Mount 9 Sinai Hospital, Toronto, ON, Canada, Department of Children and Young People and Families, National at MPI Psycholinguistics on September 22, 2015 Institute for Health and Welfare, Oulu, Finland, 10Department of Epidemiology and Biostatistics, MRC- HPA Centre for Environment and Health, School of Public Health, Imperial College London, London, UK, 11Unit of Primary Care, Oulu University Hospital, Oulu, Finland and 12The Joanna Briggs Institute, The Robinson Research Institute, and School of Translational Health Science, University of Adelaide, Adelaide, SA, Australia *Corresponding authors.
    [Show full text]
  • Investigating the Genetic Basis of Cisplatin-Induced Ototoxicity in Adult South African Patients
    --------------------------------------------------------------------------- Investigating the genetic basis of cisplatin-induced ototoxicity in adult South African patients --------------------------------------------------------------------------- by Timothy Francis Spracklen SPRTIM002 SUBMITTED TO THE UNIVERSITY OF CAPE TOWN In fulfilment of the requirements for the degree MSc(Med) Faculty of Health Sciences UNIVERSITY OF CAPE TOWN University18 December of Cape 2015 Town Supervisor: Prof. Rajkumar S Ramesar Co-supervisor: Ms A Alvera Vorster Division of Human Genetics, Department of Pathology, University of Cape Town 1 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Declaration I, Timothy Spracklen, hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university. I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever. Signature: Date: 18 December 2015 ' 2 Contents Abbreviations ………………………………………………………………………………….. 1 List of figures …………………………………………………………………………………... 6 List of tables ………………………………………………………………………………….... 7 Abstract ………………………………………………………………………………………… 10 1. Introduction …………………………………………………………………………………. 11 1.1 Cancer …………………………………………………………………………….. 11 1.2 Adverse drug reactions ………………………………………………………….. 12 1.3 Cisplatin …………………………………………………………………………… 12 1.3.1 Cisplatin’s mechanism of action ……………………………………………… 13 1.3.2 Adverse reactions to cisplatin therapy ……………………………………….
    [Show full text]
  • Supplementary Data
    Supplemental Data A novel mouse model of X-linked nephrogenic diabetes insipidus: Phenotypic analysis and therapeutic implications Jian Hua Li, Chung-Lin Chou, Bo Li, Oksana Gavrilova, Christoph Eisner, Jürgen Schnermann, Stasia A. Anderson, Chu-Xia Deng, Mark A. Knepper, and Jürgen Wess Supplemental Methods Metabolic cage studies. Animals were maintained in mouse metabolic cages (Hatteras Instruments, Cary, NC) under controlled temperature and light conditions (12 hr light and dark cycles). Mice received a fixed daily ration of 6.5 g of gelled diet per 20 g of body weight per day. The gelled diet was composed of 4 g of Basal Diet 5755 (Test Diet, Richmond, IN), 2.5 ml of deionized water, and 65 mg agar. Preweighted drinking water was provided ad libitum during the course of the study. Mice were acclimated in the metabolic cages for 1-2 days. Urine was collected under mineral oil in preweighted collection vials for successive 24 hr periods. Analysis of GPCR expression in mouse IMCD cells via TaqMan real-time qRT-PCR. Total RNA prepared from mouse IMCD tubule suspensions was reverse transcribed as described under Experimental Procedures. Tissues from ten 10-week old C57BL/6 WT mice were collected and pooled for each individual experiment. cDNA derived from 640 ng of RNA was mixed with an equal volume of TaqMan gene expression 2 x master mix (Applied Biosystems, Foster City, CA). 100 μl-aliquots of this mixture (corresponding to 80 ng of RNA) were added to each of the 8 fill ports of a 384-well plate of a mouse GPCR array panel (Applied Biosystems).
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]