Slc15a4, AP-3, and Hermansky-Pudlak Syndrome Proteins Are Required for Toll-Like Receptor Signaling in Plasmacytoid Dendritic Cells

Total Page:16

File Type:pdf, Size:1020Kb

Slc15a4, AP-3, and Hermansky-Pudlak Syndrome Proteins Are Required for Toll-Like Receptor Signaling in Plasmacytoid Dendritic Cells Slc15a4, AP-3, and Hermansky-Pudlak syndrome proteins are required for Toll-like receptor signaling in plasmacytoid dendritic cells Amanda L. Blasius, Carrie N. Arnold, Philippe Georgel1, Sophie Rutschmann2, Yu Xia, Pei Lin, Charles Ross, Xiaohong Li, Nora G. Smart, and Bruce Beutler3 Department of Genetics, The Scripps Research Institute, La Jolla, CA 92037 Contributed by Bruce Beutler, September 17, 2010 (sent for review September 16, 2010) Despite their low frequency, plasmacytoid dendritic cells (pDCs) abrogate TLR7 and TLR9 signaling in pDCs. We show that lyso- produce most of the type I IFN that is detectable in the blood some-related organelle (LRO) trafficking and biogenesis proteins, following viral infection. The endosomal Toll-like receptors (TLRs) such as adapter-related protein complex-3 (AP-3) and Hermansky- TLR7 and TLR9 are required for pDCs, as well as other cell types, to Pudlack syndrome (HPS) proteins of the biogenesis of lysosome- sense viral nucleic acids, but the mechanism by which signaling related organelle complex (BLOC)-1 and BLOC-2 groups, are through these shared receptors results in the prodigious production specifically required for type I IFN and cytokine production in of type I IFN by pDCs is not understood. We designed a genetic pDCs. Moreover, Slc15a4, an obscure solute channel protein, is screen to identify proteins required for the development and essential for TLR-mediated signaling in pDCs. Our data reveal a specialized function of pDCs. One phenovariant, which we named specialized membrane trafficking mechanism necessary for TLR feeble, showed abrogation of both TLR-induced type I IFN and pro- signaling in pDCs, which could explain their unique responses to inflammatory cytokine production by pDCs, while leaving TLR re- viral infection. sponses intact in other cells. The feeble phenotype was mapped to a mutation in Slc15a4, which encodes the peptide/histidine trans- Results porter 1 (PHT1) and has not previously been implicated in pDC func- Forward Genetic Screen to Identify Proteins with Nonredundant Roles fi feeble tion. The identi cation of the mutation led to our subsequent in Type I IFN Production by pDCs. To detect defects in pDC de- observations that AP-3, as well as the BLOC-1 and BLOC-2 Herman- velopment or function, we injected randomly mutagenized mice sky-Pudlak syndrome proteins are essential for pDC signaling with the TLR9 agonist CpG-A mixed with the cationic lipid through TLR7 and TLR9. These proteins are not necessary for TLR7 DOTAP, and measured type I IFN in serum six hours later. As or TLR9 signaling in conventional DCs and thus comprise a mem- expected, mice with defects in TLR9 signaling or type I IFN fi − − brane traf cking pathway uniquely required for endosomal TLR production, Tlr9 / , Myd88poc/poc, Irak4otiose/otiose, Unc93b13d/3d, − − signaling in pDCs. and Ifnar1 / , failed to produce detectable type I IFN following CpG challenge (Fig. 1A). Among more than 4,500 third genera- IMMUNOLOGY adapter protein 3 | lysosome-related organelle | solute carrier | tion (G3) C57BL/6J mice homozygous for random ENU- type I interferon | vesicular trafficking induced germline mutations produced as previously described (12), mice derived from 5 different pedigrees failed to produce lasmacytoid dendritic cells (pDCs) are a rare subset of DCs serum type I IFN after CpG-A challenge (Fig. 1B). The first mu- Pfound in the blood and peripheral lymphoid organs. They tation, denoted CpG6, also impaired TNF production by perito- differ from conventional DCs in that they are derived from neal macrophages in response to CpG-B oligodeoxynucleotide lymphoid rather than myeloid precursors and by differences in stimulation. Tlr9 was therefore sequenced, which revealed a G→A cell-surface markers. Despite their rarity, pDCs are the source of transition in exon 2 of Tlr9 (Fig. S1A). A second mutation, named most of the type I IFN produced in vivo during most viral inept, was found to affect not only pDC responses to CpG-A, but infections (1–3). pDCs also secrete proinflammatory cytokines also to resiquimod. The inept mutation, an A→G transition in exon and chemokines that initiate the innate immune response and 4ofIrf7, was identified by whole genome sequencing using the help orchestrate the subsequent adaptive immune response. Applied Biosystems SOLiD 3+ sequencing platform and verified However, their role in host defense remains uncertain because by Sanger dideoxynucleotide sequencing (Fig. S1B). The gemini depletion studies have not yet demonstrated a clear susceptibility mutation, which was initially identified in a screen for proteins phenotype in any viral infection (3, 4). required for the innate immune response to MCMV infection, was pDCs are activated upon engagement of Toll-like receptors subsequently found to also abrogate the type I IFN response to in (TLRs), which recognize molecular signatures of microbes in- vivo CpG-A challenge. In addition to these phenotypes, gemini cluding viruses (reviewed in ref. 5). In particular, ssRNA and mice were characterized by marked neutrophilia and a paucity of ssDNA engage TLR7 and TLR9, respectively, within acidified endosomal compartments. Signaling through both of these recep- tors is MyD88- and IRAK-4–dependent, and in pDCs, additionally Author contributions: A.L.B. and B.B. designed research; A.L.B., C.N.A., P.G., S.R., P.L., C.R., dependent on inhibitor κ-B kinase-α (IKKα), osteopontin, and IFN and X.L. performed research; A.L.B., Y.X., and B.B. analyzed data; and A.L.B., C.N.A., regulator factor 7 (IRF7) for type I IFN production (6, 7). At least N.G.S., and B.B. wrote the paper. three chaperone molecules (PRAT4A, GP96, and UNC93B) are The authors declare no conflict of interest. 1 necessary for trafficking TLR7 and TLR9 to their correct sub- Present address: Laboratoire d’Immunogénétique Moléculaire Humaine, Centre de Re- – cherche d’Immunologie et d’Hématologie, Faculté de Médecine, 4 rue Kirschleger, Stras- cellular location in most or all cell types (8 10); a specialized bourg, Cedex 67085, France. fi traf cking system for TLRs in pDCs, which may be required for 2Present address: Imperial College London, Faculty of Medicine, Du Cane Road, London TLR-induced type I IFN production, has been proposed but not W12 0NN, United Kingdom. described (11). 3To whom correspondence should be addressed: E-mail: [email protected]. Here, we describe a series of mutations, detected in an in vivo This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. screen for proteins required for pDC function, which selectively 1073/pnas.1014051107/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1014051107 PNAS | November 16, 2010 | vol. 107 | no. 46 | 19973–19978 Downloaded by guest on October 2, 2021 1000 with TLR7 or TLR9 ligands (Fig. 2A) despite having normal A 900 800 frequencies of splenic pDCs (Fig. 2C). pDCs also develop in vitro 700 in Flt3L-treated bone marrow cultures from feeble mice (Fig. 2C); 600 α 500 however, these cells do not secrete type I IFN or TNF- , IL-12, or 400 IL-6 in response to TLR7 and TLR9 ligands (Fig. 2 A and B). 300 200 pDCs were enriched to high purity from the Flt3L cultures to 100 prevent detection of cytokines generated by other cell pop- Serum Type I IFN (U/ml) Serum Type 0 WT TLR9-/- poc otiose 3d IFNAR1-/- dom ulations. The defect in type I IFN production by feeble pDCs is not 400 due to an inability to secrete type I IFN-because Ifna transcripts B and intracellular type I IFN protein could not be detected in in 300 vitro-generated feeble pDCs, even when exogenous type I IFN was 200 added to circumvent the requirement for the IFN feed-forward loop (Fig. 3 A and B). Uptake of CpG by feeble pDCs is normal, 100 Type I IFN (U/ml) suggesting that the feeble defect occurs after TLR ligands are in- 0 ternalized (Fig. 3C). G3 CpG6 inept gemini meager feeble In contrast to our observation that pDCs from feeble mice fail Fig. 1. Identification of mutants with in vivo defects in pDC type I IFN pro- to respond to TLR ligands, we found that conventional dendritic duction. Mice were injected with the TLR9 ligand CpG-A along with DOTAP cells (cDCs) from these mutants (generated in vitro from GM- and serum type I IFN levels measured six hours later. The screen was validated CSF-treated bone marrow cells) produce near normal amounts of by testing mice with mutations in genes known to be essential for the type I α − − TNF- following stimulation with all TLR stimuli, including IFN response to CpG-A. Tlr9 / , MyD88poc/poc, Irak4otiose/otiose, Unc93b13d/3d, − − TLR7 and TLR9 ligands (Fig. S2A). Furthermore, TRIF-dependent Ifnar1 / , and Stat1dom/dom mice all displayed little to no serum type I IFN (A). Screening ENU-mutagenized G3 mice revealed five unique pedigrees with signaling through TLR4 is intact in cDCs from feeble mice (Fig. defects in the CpG-induced type I IFN response. These mutations included S2B). Finally, feeble cDCs transfected with double-stranded DNA alleles in Tlr9 (CpG6), Irf7 (inept), and Irf8 (gemini). Gemini and meager mice produce IFN, demonstrating that DNA sensing through DNA cy- were assayed on a different day (B). All error bars represent SEM. tosolic sensors is intact in these mice (Fig. S2C). Collectively, these observations show that the feeble mutation selectively impairs the ability of pDCs, but not cDCs, to respond to TLR ligands and monocytes and mature macrophages (Fig. S1C). The MCMV produce IFN. susceptibility and cellular phenotypes were mapped to chromo- some 8 by bulk segregation analysis (BSA) (13) (Fig. S1D), and Mapping and Identification of the feeble Mutation. We mapped the candidate gene sequencing revealed a nonsense mutation in the feeble phenotype by crossing homozygous mutant mice to C3H/ DNA binding domain of IRF8.
Recommended publications
  • Diagnosing Platelet Secretion Disorders: Examples Cases
    Diagnosing platelet secretion disorders: examples cases Martina Daly Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Disclosures for Martina Daly In compliance with COI policy, ISTH requires the following disclosures to the session audience: Research Support/P.I. No relevant conflicts of interest to declare Employee No relevant conflicts of interest to declare Consultant No relevant conflicts of interest to declare Major Stockholder No relevant conflicts of interest to declare Speakers Bureau No relevant conflicts of interest to declare Honoraria No relevant conflicts of interest to declare Scientific Advisory No relevant conflicts of interest to declare Board Platelet granule release Agonists (FIIa, Collagen, ADP) Signals Activation Shape change Membrane fusion Release of granule contents Platelet storage organelles lysosomes a granules Enzymes including cathepsins Adhesive proteins acid hydrolases Clotting factors and their inhibitors Fibrinolytic factors and their inhibitors Proteases and antiproteases Growth and mitogenic factors Chemokines, cytokines Anti-microbial proteins Membrane glycoproteins dense (d) granules ADP/ATP Serotonin histamine inorganic polyphosphate Platelet a-granule contents Type Prominent components Membrane glycoproteins GPIb, aIIbb3, GPVI Clotting factors VWF, FV, FXI, FII, Fibrinogen, HMWK, FXIII? Clotting inhibitors TFPI, protein S, protease nexin-2 Fibrinolysis components PAI-1, TAFI, a2-antiplasmin, plasminogen, uPA Other protease inhibitors a1-antitrypsin, a2-macroglobulin
    [Show full text]
  • A Network-Informed Analysis of SARS-Cov-2 and Hemophagocytic Lymphohistiocytosis Genes' Interactions Points to Neutrophil Extr
    medRxiv preprint doi: https://doi.org/10.1101/2020.07.01.20144121; this version posted July 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . 1 A network-informed analysis of SARS-CoV-2 and hemophagocytic 2 lymphohistiocytosis genes’ interactions points to Neutrophil Extracellular Traps as 3 mediators of thromBosis in COVID-19 4 5 Jun Ding1, David Earl Hostallero2, Mohamed Reda El Khili2, Gregory Fonseca3, Simon 6 Millette4, Nuzha Noorah3, Myriam Guay-Belzile3, Jonathan Spicer5, Noriko Daneshtalab6, 7 Martin Sirois7, Karine Tremblay8, Amin Emad2,* and Simon Rousseau3,* 8 9 10 1Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA, 15204 11 12 2Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada. 13 14 3The Meakins-Christie Laboratories at the Research Institute of the McGill University Heath 15 Centre Research Institute, 1001 Boul. Décarie, Montréal, H4A 3J1, Canada. 16 17 4Goodman Cancer Research Centre, McGill University 18 19 5Division of Thoracic and Upper Gastrointestinal Surgery, McGill University Health Centre 20 Research Institute, 1001 Boul. Décarie, Montréal, H4A 3J1, Canada. 21 22 6School of Pharmacy, Memorial University of Newfoundland, 300 Prince Philip Drive, Health 23 Sciences Center, St. John’s, Newfoundland, Canada, A1B 3V6 24 25 7Montreal Heart Institute and Department of pharmacology and physiology, Faculty of medicine, 26 Université de Montréal. 27 28 8Pharmacology-physiology Department, Faculty of Medicine and Health Sciences, Université de 29 Sherbrooke, Centre intégré universitaire de santé et de services sociaux du Saguenay–Lac-Saint- 30 Jean (Chicoutimi University Hospital) Research Center, Saguenay, QC, Canada.
    [Show full text]
  • New Approaches to Functional Process Discovery in HPV 16-Associated Cervical Cancer Cells by Gene Ontology
    Cancer Research and Treatment 2003;35(4):304-313 New Approaches to Functional Process Discovery in HPV 16-Associated Cervical Cancer Cells by Gene Ontology Yong-Wan Kim, Ph.D.1, Min-Je Suh, M.S.1, Jin-Sik Bae, M.S.1, Su Mi Bae, M.S.1, Joo Hee Yoon, M.D.2, Soo Young Hur, M.D.2, Jae Hoon Kim, M.D.2, Duck Young Ro, M.D.2, Joon Mo Lee, M.D.2, Sung Eun Namkoong, M.D.2, Chong Kook Kim, Ph.D.3 and Woong Shick Ahn, M.D.2 1Catholic Research Institutes of Medical Science, 2Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul; 3College of Pharmacy, Seoul National University, Seoul, Korea Purpose: This study utilized both mRNA differential significant genes of unknown function affected by the display and the Gene Ontology (GO) analysis to char- HPV-16-derived pathway. The GO analysis suggested that acterize the multiple interactions of a number of genes the cervical cancer cells underwent repression of the with gene expression profiles involved in the HPV-16- cancer-specific cell adhesive properties. Also, genes induced cervical carcinogenesis. belonging to DNA metabolism, such as DNA repair and Materials and Methods: mRNA differential displays, replication, were strongly down-regulated, whereas sig- with HPV-16 positive cervical cancer cell line (SiHa), and nificant increases were shown in the protein degradation normal human keratinocyte cell line (HaCaT) as a con- and synthesis. trol, were used. Each human gene has several biological Conclusion: The GO analysis can overcome the com- functions in the Gene Ontology; therefore, several func- plexity of the gene expression profile of the HPV-16- tions of each gene were chosen to establish a powerful associated pathway, identify several cancer-specific cel- cervical carcinogenesis pathway.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Discovery of Genes Required for Body Axis and Limb Formation by Global Identification of Conserved Retinoic Acid Regulated Enhancers and Silencers
    bioRxiv preprint doi: https://doi.org/10.1101/778191; this version posted December 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Discovery of genes required for body axis and limb formation by global identification of conserved retinoic acid regulated enhancers and silencers Marie Berenguer1, Karolin F. Meyer1, Jun Yin2, and Gregg Duester1,* 1Development, Aging, and Regeneration Program 2Bioinformatics Core Facility Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA *Corresponding Author ([email protected]) Keywords: Body axis formation; retinoic acid signaling; enhancer; silencer; Aldh1a2 knockout; Nr2f1; Nr2f2 Short title: RNA-seq/ChIP-seq to find RA target genes 1 bioRxiv preprint doi: https://doi.org/10.1101/778191; this version posted December 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Identification of target genes for transcription factors is hampered by the large number of genes whose expression changes when the factor is removed from a specific tissue and the numerous binding sites for the factor in the genome. Retinoic acid (RA) regulates transcription via RA receptors bound to RA response elements (RAREs) of which there are thousands in vertebrate genomes. Here, we combined ChIP-seq and RNA-seq on trunk tissue from wild-type and Aldh1a2-/- embryos lacking RA synthesis that exhibit body axis and forelimb defects. We identified a relatively small number of genes with altered expression when RA is missing that also have nearby RA- regulated deposition of H3K27ac (gene activation mark) or H3K27me3 (gene repression mark) associated with conserved RAREs.
    [Show full text]
  • Chromosomal Rearrangements Are Commonly Post-Transcriptionally Attenuated in Cancer
    bioRxiv preprint doi: https://doi.org/10.1101/093369; this version posted February 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Chromosomal rearrangements are commonly post-transcriptionally attenuated in cancer 1 3 1 3, 4, 5 Emanuel Gonçalves ,​ Athanassios Fragoulis ,​ Luz Garcia-Alonso ,​ Thorsten Cramer ,​ ​ ​ ​ ​ 1,2# 1# Julio Saez-Rodriguez ,​ Pedro Beltrao ​ ​ 1 ​ European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK 2 ​ RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine, Aachen 52057, Germany 3 ​ Molecular Tumor Biology, Department of General, Visceral and Transplantation Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany 4 ​ NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands 5 ​ ESCAM – European Surgery Center Aachen Maastricht, Germany and The Netherlands # ​ co-last authors: [email protected]; [email protected] ​ ​ ​ Running title: Chromosomal rearrangement attenuation in cancer Keywords: Cancer; Gene dosage; Proteomics; Copy-number variation; Protein complexes 1 bioRxiv preprint doi: https://doi.org/10.1101/093369; this version posted February 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Chromosomal rearrangements, despite being detrimental, are ubiquitous in cancer and often act as driver events.
    [Show full text]
  • NICU Gene List Generator.Xlsx
    Neonatal Crisis Sequencing Panel Gene List Genes: A2ML1 - B3GLCT A2ML1 ADAMTS9 ALG1 ARHGEF15 AAAS ADAMTSL2 ALG11 ARHGEF9 AARS1 ADAR ALG12 ARID1A AARS2 ADARB1 ALG13 ARID1B ABAT ADCY6 ALG14 ARID2 ABCA12 ADD3 ALG2 ARL13B ABCA3 ADGRG1 ALG3 ARL6 ABCA4 ADGRV1 ALG6 ARMC9 ABCB11 ADK ALG8 ARPC1B ABCB4 ADNP ALG9 ARSA ABCC6 ADPRS ALK ARSL ABCC8 ADSL ALMS1 ARX ABCC9 AEBP1 ALOX12B ASAH1 ABCD1 AFF3 ALOXE3 ASCC1 ABCD3 AFF4 ALPK3 ASH1L ABCD4 AFG3L2 ALPL ASL ABHD5 AGA ALS2 ASNS ACAD8 AGK ALX3 ASPA ACAD9 AGL ALX4 ASPM ACADM AGPS AMELX ASS1 ACADS AGRN AMER1 ASXL1 ACADSB AGT AMH ASXL3 ACADVL AGTPBP1 AMHR2 ATAD1 ACAN AGTR1 AMN ATL1 ACAT1 AGXT AMPD2 ATM ACE AHCY AMT ATP1A1 ACO2 AHDC1 ANK1 ATP1A2 ACOX1 AHI1 ANK2 ATP1A3 ACP5 AIFM1 ANKH ATP2A1 ACSF3 AIMP1 ANKLE2 ATP5F1A ACTA1 AIMP2 ANKRD11 ATP5F1D ACTA2 AIRE ANKRD26 ATP5F1E ACTB AKAP9 ANTXR2 ATP6V0A2 ACTC1 AKR1D1 AP1S2 ATP6V1B1 ACTG1 AKT2 AP2S1 ATP7A ACTG2 AKT3 AP3B1 ATP8A2 ACTL6B ALAS2 AP3B2 ATP8B1 ACTN1 ALB AP4B1 ATPAF2 ACTN2 ALDH18A1 AP4M1 ATR ACTN4 ALDH1A3 AP4S1 ATRX ACVR1 ALDH3A2 APC AUH ACVRL1 ALDH4A1 APTX AVPR2 ACY1 ALDH5A1 AR B3GALNT2 ADA ALDH6A1 ARFGEF2 B3GALT6 ADAMTS13 ALDH7A1 ARG1 B3GAT3 ADAMTS2 ALDOB ARHGAP31 B3GLCT Updated: 03/15/2021; v.3.6 1 Neonatal Crisis Sequencing Panel Gene List Genes: B4GALT1 - COL11A2 B4GALT1 C1QBP CD3G CHKB B4GALT7 C3 CD40LG CHMP1A B4GAT1 CA2 CD59 CHRNA1 B9D1 CA5A CD70 CHRNB1 B9D2 CACNA1A CD96 CHRND BAAT CACNA1C CDAN1 CHRNE BBIP1 CACNA1D CDC42 CHRNG BBS1 CACNA1E CDH1 CHST14 BBS10 CACNA1F CDH2 CHST3 BBS12 CACNA1G CDK10 CHUK BBS2 CACNA2D2 CDK13 CILK1 BBS4 CACNB2 CDK5RAP2
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Supplementary Material
    BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Neurol Neurosurg Psychiatry Page 1 / 45 SUPPLEMENTARY MATERIAL Appendix A1: Neuropsychological protocol. Appendix A2: Description of the four cases at the transitional stage. Table A1: Clinical status and center proportion in each batch. Table A2: Complete output from EdgeR. Table A3: List of the putative target genes. Table A4: Complete output from DIANA-miRPath v.3. Table A5: Comparison of studies investigating miRNAs from brain samples. Figure A1: Stratified nested cross-validation. Figure A2: Expression heatmap of miRNA signature. Figure A3: Bootstrapped ROC AUC scores. Figure A4: ROC AUC scores with 100 different fold splits. Figure A5: Presymptomatic subjects probability scores. Figure A6: Heatmap of the level of enrichment in KEGG pathways. Kmetzsch V, et al. J Neurol Neurosurg Psychiatry 2021; 92:485–493. doi: 10.1136/jnnp-2020-324647 BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Neurol Neurosurg Psychiatry Appendix A1. Neuropsychological protocol The PREV-DEMALS cognitive evaluation included standardized neuropsychological tests to investigate all cognitive domains, and in particular frontal lobe functions. The scores were provided previously (Bertrand et al., 2018). Briefly, global cognitive efficiency was evaluated by means of Mini-Mental State Examination (MMSE) and Mattis Dementia Rating Scale (MDRS). Frontal executive functions were assessed with Frontal Assessment Battery (FAB), forward and backward digit spans, Trail Making Test part A and B (TMT-A and TMT-B), Wisconsin Card Sorting Test (WCST), and Symbol-Digit Modalities test.
    [Show full text]
  • The University of Chicago Genetic Services Laboratories Labolaboratories
    The University of Chicago Genetic Services Laboratories LaboLaboratories5841 S. Maryland Ave., Rm. G701, MC 0077, Chicago, Illinois 60637 3637 [email protected] dnatesting.uchicago.edu CLIA #: 14D0917593 CAP #: 18827-49 Next Generation Sequencing Panel for Albinism Clinical Features: Albinism is a group of inherited disorders in which melanin biosynthesis is reduced or absent [1]. The lack or reduction in pigment can affect the eyes, skin and hair, or only the eyes. In addition, there are several syndromic forms of albinism in which the hypopigmented and visual phenotypes are seen in addition to other systems involvement [2]. Our Albinism Sequencing Panel includes sequence analysis of all 20 genes listed below. Our Albinism Deletion/Duplication Panel includes sequence analysis of all 20 genes listed below. Albinism Sequencing Panel Chediak- Griscelli Oculocutaneous Ocular Hermansky Pudlak syndrome Higashi syndrome Albinism Albinism syndrome TYR SLC45A2 GPR143 HPS1 HPS4 DTNBP1 LYST MYO5A OCA2 SLC24A5 AP3B1 HPS5 BLOC1S3 RAB27A TYRP1 C10ORF11 HPS3 HPS6 BLOC1S6 MLPH Oculocutaneous Albinism Oculocutaneous albinism (OCA) is a genetically heterogeneous congenital disorder characterized by decreased or absent pigmentation in the hair, skin, and eyes. Clinical features can include varying degrees of congenital nystagmus, hypopigmentation and translucency, reduced pigmentation of the retinal pigment epithelium and foveal hypoplasia. Vision acuity is typically reduced and refractive errors, color vision impairment and photophobia also occur [3]. Gene Clinical Features Details TYR Albinism, OCA1 is caused by mutations in the tyrosinase gene, TYR. Mutations completely oculocutaneous, abolishing tyrosinase activity result in OCA1A, while mutations rendering some type I enzyme activity result in OCA1B allowing some accumulation of melanin pigment production throughout life.
    [Show full text]
  • Cellular and Molecular Defects in a Patient with Hermansky-Pudlak Syndrome Type 5
    RESEARCH ARTICLE Cellular and molecular defects in a patient with Hermansky-Pudlak syndrome type 5 Joshi Stephen1☯, Tadafumi Yokoyama1☯, Nathanial J. Tolman2☯, Kevin J. O'Brien1, Elena- Raluca Nicoli2, Brian P. Brooks3, Laryssa Huryn3, Steven A. Titus4, David R. Adams2,5, Dong Chen6, William A. Gahl1,2,5, Bernadette R. Gochuico1³*, May Christine V. Malicdan2,5³ 1 Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America, 2 NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America, a1111111111 3 Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, a1111111111 Bethesda, Maryland, United States of America, 4 Division of Pre-clinical Innovation, National Center for a1111111111 Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America, 5 Office of the Clinical Director, National Human Genome Research Institute, National Institutes of a1111111111 Health, Bethesda, Maryland, United States of America, 6 Division of Hematopathology, Mayo Clinic, a1111111111 Rochester, Minnesota, United States of America ☯ These authors contributed equally to this work. ³ These authors also contributed equally to this work. * [email protected] OPEN ACCESS Citation: Stephen J, Yokoyama T, Tolman NJ, O'Brien KJ, Nicoli E-R, Brooks BP, et al. (2017) Abstract Cellular and molecular defects in a patient with Hermansky-Pudlak syndrome type 5. PLoS ONE 12 Hermansky-Pudlak syndrome (HPS) is a heterogeneous group of genetic disorders typically (3): e0173682. https://doi.org/10.1371/journal. manifesting with tyrosinase-positive oculocutaneous albinism, bleeding diathesis, and pul- pone.0173682 monary fibrosis, in some subtypes.
    [Show full text]