Ann. Chem. Pharm. 1866, 139, 354-364; 1867, 144, 148-156

Total Page:16

File Type:pdf, Size:1020Kb

Ann. Chem. Pharm. 1866, 139, 354-364; 1867, 144, 148-156 Dave and the Dead Russians Early Contributions by Russian Organic Chemists to the Development of the Discipline Nikolai Nikolaevich Zinin (1812-1880) kandidat Kazan' 1836 Dr. Chem. St. Petersburg 1841 Study abroad in western Europe 1838-1841 • included a year with Liebig in Giessen • meant to be learning technology, not "new" chemistry Kazan' University • Professor of Chemical Technology 1841-1848 Medical-Surgical Academy, University of St. Petersburg • Professor of Chemistry 1848-1878 N. N. Zinin (1812-1880) O CHO KCN OH Ann. Chem. Pharm. 1840, 34, 186-192. NO2 NH2 NH3/H2S Bull. Sci. Acad. St. Petersburg 1842, 18. Bull. Phys.-Math. Acad. St. Petersburg 1852, 348. Ann. Chem. Pharm. 1842, 44, 283-287; 1844, 52, 361-362; 1853, 85, 328-329. Aleksandr Mikhailovich Butlerov (1828-1886) kandidat Kazan' 1849 (entomology) M. Chem. Kazan' 1851 Dr. Chem. Moscow 1854 Study abroad in western Europe 1857-1858; 1867-1868. • met Erlenmeyer and Kekulé • spent six months with Wurtz in Paris • not supposed to be a research trip Kazan' University • Professor of Chemical Technology 1851-1858 • Rector twice. University of St. Petersburg • Professor of Chemistry 1869-1880 A. M. Butlerov (Butlerow) (1828-1886) Structural Theory Ann. Chem. Pharm. 1859, 111, 5146. Textbook Introduction to the Study of Organic Chemistry (Kazan', 1861).Lehrbuch der organischen Chemie zur Einführung in das specielle Studien derselben (Leipzig, 1867) H C H3C ∆ 3 (CH3)2Zn/ C O H3C COH Cl H3C Jahresb. 1863, 475; 1864, 496. Ann. Chem. Pharm. 1867, 144, 132. Aleksandr Mikhailovich Zaitsev (1841-1910) diplom Kazan' 1862 (economics) kandidat Kazan' 1865 Ph.D. Leipzig 1866 M. Chem. Kazan' 1868 Dr. Chem. Kazan' 1870 Study abroad in western Europe 1862-1865. • studied with Kolbe at Marburg 1862-1864 • studied with Wurtz in Paris 1864-1865 Kazan' University • unpaid laboratory assistant 1865 • Assistant in Agronomy 1866-1868 • Extraordinary Professor of Chemistry 1869-1871 • Professor of Chemistry 1871-1910 • served two terms as President of the Russian Physical- Chemical Society A. M. Zaitsev (Saytzeff) (1841-1910) Zaitsev's Rule: Ann. Chem. Pharm. 1875, 179, 296-301. R R HNO /H O S 3 2 S O R R Ann. Chem. Pharm. 1866, 139, 354-364; 1867, 144, 148-156. Cl Na/Hg/Et2O C ROH RO HOAc Z. Chem., N.F. 1869, 5, 551-552; 1870, 6, 105-108 .J. prakt. Chem., N.F. 1871, 3, 76-88, 427. Cl R' Cl R' R Zn R'I/Zn/Et O C O 2 R' OH C O 2 R' OH R R R R Ann. Chem. Pharm. 1875, 175, 351-374, 374-378; 1877, 185, 148-150, 151-169, 175-183. J. prakt. Chem. 1885, 31, 319-320. Vladimir Vasil’evich Markovnikov (1838-1904) kandidat Kazan' 1860 (economic science) M. Chem. Kazan' 1865 Dr. Chem. Kazan' 1869 Study abroad in Germany 1865-1867. • studied with Kolbe at Leipzig • studied with Erlenmeyer at Heidelberg Kazan' University • Docent in Chemistry 1867 • Extraordinary Professor of Chemistry 1868 • Professor of Chemistry 1869-1871. Odessa University • Professor of Chemistry 1871-1873 Moscow University • Professor of Chemistry 1873-1893 V. V. Markovnikov (Markownikoff) (1838-1904) Markovnikov's Rule Ann. Chem. Pharm. 1870, 133, 228-259. Compt. rend. 1875, 82, 668-671, 728-730, 776-779. Synthesis of HO2C CO2H Ann. Chem. Pharm. 1881, 208, 333-349. Synthesis of Compt. rend. 1892, 110, 466-468; 115, 462-464. Sergei Nikolaevich Reformatskii (1860-1934) graduated Kostroma Spiritual Seminary 1878 kandidat Kazan' 1882 M. Chem. Kazan' 1889 Dr. Chem. Warsaw 1890 Study abroad in western Europe 1889-1890. • studied with Viktor Meyer at Heidelberg and Göttingen • studied with Wilhelm Ostwald at Leipzig Kazan' University • curator of museum 1882-1889 Kiev University (St. Vladimir) • Professor of Chemistry 1891-1934 Corresponding member, USSR Academy of Science 1928 S. N. Reformatskii (1860-1934) Zn/Me CO 2 CO Et Br CO Et 2 2 OH Zn/Me2CHCHO CO2Et Br CO 2Et OH Ber. Deut. chem. Ges. 1887, 20, 1210-1211; 1895, 28, 2838- 2841, 2842-2846, 3262-3265. Textbook: A Beginner's Course of Organic Chemistry (Kiev, 1891) Egor Egorevich Vagner (1849-1903) kandidat Kazan' 1874 (juridicial science) M. Chem. St. Petersburg 1885 Dr. Chem. Warsaw 1888 St. Petersburg University • Assistant in Chemistry 1876-1882 (under Menshutkin) Novo-Aleksandriya Institute of Agriculture and Forestry • Professor of Chemistry 1882-1886 University of Warsaw • Professor of Chemistry 1886-1903 E. E. Vagner (Wagner) (1849-1903) Et Zn OH CHO 2 Ann. Chem. Pharm. 1875, 175, 351-374; 1875, 179, 302-313, 313-325. OH KMnO4 HO H2O Ber. Deut. chem. Ges. 1888, 21, 1230-1240, 3343-3346, 3347-3355, 3356-3360. H + OH OH Ber. Deut. chem. Ges. 1899, 32, 2302-2325; 1900, 33, 2121-2125. Aleksandr Erminingel’dovich Arbuzov (1877-1968) diplom Kazan' 1900 M. Chem. Kazan' 1905 Dr. Chem. Kazan' 1914 Novo-Aleksandriya Institute of Agriculture and Forestry • Assistant in Chemistry 1901-1905 • Professor of Chemistry 1906-1911 Kazan' University • Professor of Chemistry 1911-1930 • Deputy Dean, Physics-Mathematics Faculty 1922-1930 Kazan' Technical Institute, USSR Academy of Sciences • Professor and Director 1930 A.E. Arbuzov (1877-1968) PhO PhO MeI PhO P: O P Me PhO PhO +PhOH+HI J. Russ. Phys. Chem. Soc. 1910, 42, 395-420, 549-561. Chem. Zentr. 1910, 11, 453-454. Nikolai Yakovlevich Demyanov (1861-1938) kandidat Moscow 1886 M. Chem. Moscow 1895 Dr. Chem. Moscow 1899 Petrine Forestry and Agricultural Academy, Moscow • Assistant 1887-1893 • Adjunct Professor 1894-1898 • Professor 1898-1938 Institute of Organic Chemistry, USSR Academy of Science • Director 1935-1938 N. Ya. Demyanov (N. J. Demjanov) (1861-1938) NH2 OH HONO + OH OH HONO NH2 OH + J. Russ. Phys. Chem. Soc. 1903, 35, 26; 1904 36, 186. Chem. Zentr. 1903, I, 828; 1904, I, 1214. Ber. Deut. chem. Ges. 1907, 40, 4393, 4961; 1908, 41, 43. Textbook • Organic Chemistry (3rd edition printed 1944) Nikolai Matveyevich Kizhner (1867-1935) kandidat Moscow 1890 M. Chem. St. Petersburg 1895 Dr. Chem. Moscow 1900 Tomsk Technoological Institute • Professor of Chemistry 1901-1913 Shanyavskii Popular University, Moscow • Professor of Chemistry 1914-1917 Aniline Trust Research Institute • Director 1918-1934 Corresponding Member, USSR Academy of Sciences 1929-1934 N. M. Kizhner (Kishner) (1867-1935) R R R NH NH KOH/∆ H O 2 2 NNH 2 H R R R J. Russ. Phys. Chem. Soc. 1911, 43, 582. (c.f. Chem. Abstr. 1912, 6, 347). Aleksei Evgenievich Chichibabin (1871-1945) kandidat Moscow 1892 M. Chem. Moscow 1904 Dr. Chem. St. Petersburg 1912 Moscow University • Docent 1901, 1906-1908 University of Warsaw • Adjunct Professor 1905-1906 Moscow Higher Technical School • Professor 1908-1929 • Dean, Chemistry Faculty (intermittent) 1909-1929 Left Russia 1930 • worked with Tiffeneau at Hôtel Dieu • worked at Collège de France • Director, Scientific Department, Kuhlman Co. 1930-45 • technical advisor, Schering & Roosevelt Co. 1930-1945 A. E. Chichibabin (1871-1945) NaNH2 N NNH2 J. Russ. Phys. Chem. Soc. 1914, 46, 1216. RR NH3 R CHO ∆ R N J. Russ. Phys. Chem. Soc. 1906, 37, 1229. J. prakt. Chem. 1924, 107, 122. OEt OEt RMgX H O EtO R 3 R CHO OEt OEt Ber. Deut. chem. Ges. 1904, 37, 186; 850. Nikolai Dmitrievich Zelinskii (1861-1953) kandidat Odessa 1884 M. Chem. Odessa 1889 Dr. Chem. Odessa 1891 Studied abroad 1885-1887 • studied with Wislicenus at Leipzig and V. Meyer at Göttingen Moscow University • Professor of Chemistry 1893-1953 St. Petersburg Polytechnical Institute • Professor of Chemistry 1911-1917 USSR Academy of Sciences • Corresponding Member 1926 • Academician 1929 • Head, N.D. Zelinskii Institute 1934 N. D. Zelinskii (Zelinsky) (1861-1953) CN R R CHO +NH4Cl + KCN NH2 J. Russ. Phys. Chem. Soc. 1906, 38, 722; 1908, 40, 790. Br 1) Br /P R 2 R 2) H O CO2H 2 CO2H Ber. Deut. chem. Ges. 1887, 20, 2026. Lev Aleksandrovich Chugaev (1873-1922) M. Chem. Moscow 1903 Dr. Chem. Moscow 1906 Moscow University • Adjunct in Bacteriological Institute 1904-1908 St. Petersburg University • Professor of Inorganic Chemistry 1908-1922 L A. Chugaev (Tschugaeff) (1873-1922) 1) NaOH/CS R 2 R OH 2) MeI 3) ∆ Ber. Deut. chem. Ges. 1899, 32, 3332. Development of α-dioximes as reagents for Group VIIIB metals (e.g. dimethylglyoxime for nickel) Z. anorg. allgem. Chem. 1905, 46, 144. Nikolai Aleksandrovich Menshutkin (1842-1907) kandidat St. Petersburg 1862 M. Chem. St. Petersburg 1866 Dr. Chem. St. Petersburg 1869 Study abroad in western Europe 1863-1866 • studied with Strecker in Tübingen, Wurtz in Paris, Kolbe in Leipzig St. Petersburg University • Professor of Chemical Technology 1841-1848 Medical-Surgical Academy, University of St. Petersburg • Professor of Chemistry 1848-1878 N. A. Menshutkin (Menschutkin) (1842-1907) Reaction rate studies in alcohols and amines: R1 R1 R2 N + RX R2 NR4 X R3 R3 Z. Phys. Chem. 1890, 5, 589; 1891, 6, 41. Aleksandr Porfir’evich Borodin (1834-1887) kandidat St. Petersburg Medical-Surgical Academy 1855 M.D. St. Petersburg Medical-Surgical Academy 1858 Study in western Europe 1859-1862 • frequently travelled with Mendeleev • delegate to Karlsruhe conference 1860 St. Petersburg Medical-Surgical Academy • Extraordinary Professor of Organic Chemistry 1862-1864 • Professor of Organic Chemistry 1864-1887 A. P. Borodin (Borodine) (1834-1887) Br2 RCO2Ag R Br Z. Chem. 1861, 4, 5; 1869, 12, 342. Ann. Chem. Pharm. 1861, 119, 121. R R CHO NaOH R CHO OH Ber. Deut. chem. Ges. 1873, 6, 982. KHF COCl 2 COF Compt. rend. 1862, 55, 553. Z. Chem. 1862, 5, 576. Nuov. Cim. 1862, 15, 305. Ann. Chem. Pharm. 1863, 126, 58. Aleksei Evgrafovich Favorskii (1860-1945) kandidat St. Petersburg 1883 M. Chem. St. Petersburg 1891 Dr. Chem. St. Petersburg 1895 St. Petersburg Technical Institute • Professor of Chemistry 1896-1907 USSR Academy of Sciences • Associate Member 1921 • Academician 1929 A.
Recommended publications
  • Journal of Applicable Chemistry, 2012, 1 (2):250-256 (International Peer Reviewed Journal)
    Available online at www.joac.info ISSN: 2278-1862 Journal of Applicable Chemistry, 2012, 1 (2):250-256 (International Peer Reviewed Journal) Synthesis & Characterization of Novel Aniline—Formaldehyde-- α - Napthol Terpolymers M. N. Narule*K. Chawhan1 K. M. Wasnik2 P. K. Rahangdale *Dept. of Chemistry, Vidya vikas Art, Commerce & Science College, Samudrapur, Wardha-, India. 1Sai Polytechnic, Chandrapur. 2R. S. Bidkar College, Higanghat E-mail: [email protected], kavi_2605 @rediffmail.com ____________________________________________________________________________ ABSTRACT The present manuscript reported the synthesis of organic terpolymers of aniline, formaldehyde & α-naphthol. The reaction is catalyzed by strong acids, weak acids, organic acids and also by Lewis acids. The composition of terpolymers has been determined by elemental analysis and spectral studies such as UV, IR and NMR have been carried out to elucidate the structure of the terpolymers. The polymer exhibit high temperature resistance better thermal properties as evident from the TGA data. The polymer undergo degradation under inert atmosphere at increasing temperature provides good for nature. Spectroscopic data revels that long chain polymer hold together not only by C-C bond, but also the electrons are delocalized in conjugation showing coloured aniline- formaldehyde-α-naphthol terpolymers. Keywords: Terpolymerization, aniline, formaldehyde, α-naphthol. ______________________________________________________________________________ INTRODUCTION Polymer science[1-9]has
    [Show full text]
  • Robert Wilhelm Bunsen Und Sein Heidelberger Laboratorium Heidelberg, 12
    Historische Stätten der Chemie Robert Wilhelm Bunsen und sein Heidelberger Laboratorium Heidelberg, 12. Oktober 2011 Gesellschaft Deutscher Chemiker 1 Mit dem Programm „Historische Stätten der Chemie“ würdigt Robert Wilhelm Bunsen – die Gesellschaft Deutscher Chemiker (GDCh) Leistungen von geschichtlichem Rang in der Chemie. Als Orte der Erinnerung eine biographische Skizze werden Wirkungsstätten beteiligter Wissenschaftlerinnen und Wissenschaftler in einem feierlichen Akt ausgezeichnet. Eine Broschüre bringt einer breiten Öffentlichkeit deren wissenschaft- Bunsen war einer der Wegbereiter der Physikalischen Chemie liches Werk näher und stellt die Tragweite ihrer Arbeiten im und ein bedeutender Vertreter der anorganisch-analytischen aktuellen Kontext dar. Ziel dieses Programms ist es, die Erinne- Richtung. Seine wissenschaftliche Bedeutung liegt in der Ent- rung an das kulturelle Erbe der Chemie wach zu halten und die wicklung und Perfektionierung von Methoden und Instrumen- Chemie mit ihren historischen Wurzeln stärker in das Blickfeld ten. Diese Arbeitsschwerpunkte hat Bunsen von Beginn seiner der Öffentlichkeit zu rücken. Karriere an verfolgt und systematisch ausgebaut. Am 12. Oktober 2011 gedenken die GDCh, die Deutsche 1811 als jüngster von vier Söhnen einer bürgerlichen protestan- Bunsen-Gesellschaft für Physikalische Chemie (DBG), die Che- tischen Familie in Göttingen geboren, begann Bunsen dort 1828 mische Gesellschaft zu Heidelberg (ChGzH) und die Ruprecht- das Studium der Naturwissenschaften. Seine wichtigsten Lehrer Karls-Universität
    [Show full text]
  • Unesco – Eolss Sample Chapters
    ORGANIC AND BIOMOLECULAR CHEMISTRY – Vol. I - Stereochemistry - Franco Cozzi STEREOCHEMISTRY Franco Cozzi Dipartimento di Chimica Organica e Industriale, Universita' degli Studi di Milano, Italy Keywords: Symmetry, chirality, chirotopicity, stereogenicity, stereoisomerism, conformation, configuration, stereochemical descriptors, enantiomeric composition, optical activity, stereoselectivity, stereoselective synthesis. Contents 1. Introduction 2. Symmetry 3. Chirality 4. Stereogenicity 5. Conformation and configuration 6. Configuration descriptors 7. Dependence of the properties of chiral molecules on the enantiomeric composition 8. How to obtain stereoisomerically pure compounds Glossary Bibliography Biographical Sketch Summary The aim of this chapter is to provide the reader with the basic concepts necessary to deal with the stereochemical aspects of organic chemistry. As in any other interpretation of stereochemistry that aspires to be rational, also in this one a detailed knowledge of the symmetry properties of a molecule and of the relationship between symmetry properties and molecular behavior at all levels is considered of fundamental importance. Another central point is the strict distinction between chirality and stereogenicity that underlines all the discussion both as an inspiring principle and guidance to the use of a correct stereochemical language. In addition to classic topics such as isomer classification, stereochemicalUNESCO descriptors, and conseque nces– ofEOLSS enantiomeric composition, a short presentation of the principal methods for obtaining enantiomerically pure compounds is included. 1. IntroductionSAMPLE CHAPTERS According to the Merriam-Webster Online Dictionary, stereochemistry is: "a branch of chemistry that deals with the spatial arrangement of atoms and groups in molecules". The Oxford Dictionary of English defines stereochemistry: "the branch of chemistry dealing with composition of matter as affected by relations of atoms in space".
    [Show full text]
  • Nobel Lecture, December 12, 1945
    L EOPOLD Multimembered rings, higher terpene compounds and male sex hormones Nobel Lecture, December 12, 1945 This lecture should have been delivered in December 1939*, but owing to a postponement of 6 years forced by the intervention of war, I have been able to use some results obtained in the meantime to round off the overall picture. Consequently I can now report on the results of 25 years of laboratory work in two fields of the chemistry of alicyclic compounds: multimembered rings and higher terpene compounds (polyterpenes), to which the third group named in the title, the male sex hormones, is closely related. Alicyclic compounds scarcely differ in their chemical properties from their aliphatic analogues. Many investigations, especially during the past twenty- five years, have shown, however, that in spite of this close chemical similarity aliphatic compounds and their alicyclic analogues can exhibit entirely different physiological properties. We see that certain well-defined physiological prop- erties may appear or disappear in the transition from an aliphatic to an alicyclic compound or vice versa. As a result of the accumulation of such observations, alicyclic compounds to which only scant biochemical importance was at- tached as little as 20-25 years ago, have now advanced to the forefront of interest. Multimembered rings After Kekulé, in 1865, first introduced the carbon ring into structural chem- istry in his formula for benzene, the 6-membered ring maintained its unique position in the taxonomy of organic chemistry for several decades. Indeed, a heterocyclic 5-membered ring containing nitrogen became known in 1870 as a result of Adolf von Baeyer’s work on indigo; but this did not imme- * Data available at that time formed the subject of a number of lectures which I de- livered between December 1939 and April 1940 in Zurich, Zagreb, Utrecht, Amster- dam, Delft, Liége, Brussels and Paris.
    [Show full text]
  • Isatin Derivatives As a New Class of Aldose Reductase Inhibitors with Antioxidant Activity
    Isatin Derivatives as a New Class of Aldose Reductase Inhibitors With Antioxidant Activity Wenchao Liu Beijing Institute of Technology Huan Chen Beijing Institute of Technology Xiaonan Zhang Beijing Institute of Technology Xin Zhang Beijing Institute of Technology Long Xu Beijing Institute of Technology Yanqi Lei Beijing Institute of Technology Changjin Zhu Beijing Institute of Technology Bing Ma ( [email protected] ) Beijing Institute of Technology Research Article Keywords: Aldose reductase inhibitors, Isatin derivatives, Antioxidant activity, Diabetic complications Posted Date: May 10th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-489101/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Isatin derivatives as a new class of aldose reductase inhibitors with antioxidant activity Wenchao Liu, Huan Chen, Xiaonan Zhang, Xin Zhang, Long Xu, Yanqi Lei, Changjin Zhu and Bing Ma* ✉ Bing Ma [email protected] School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, Beijing, China Abstract: In this work, isatin was employed as the scaffold to design aldose reductase inhibitors with antioxidant activity. Most of the isatin derivatives were proved to be excellent in the inhibition of aldose reductase (ALR2) with IC50 values at submicromolar level, and (E)-2-(5-(4-methoxystyryl)-2,3-dioxoindolin-1-yl) acetic acid (9g) was identified as the most effective with an IC50 value of 0.015 μM. Moreover, compounds 9a-h with styryl side chains at the C5 position of isatin showed potent antioxidant activity. Particularly, the phenolic compound 9h demonstrated similar antioxidant activity with the well-known antioxidant Trolox.
    [Show full text]
  • Design and Synthesis of Modular Reagents for Chemical Biology
    DESIGN AND SYNTHESIS OF MODULAR REAGENTS FOR CHEMICAL BIOLOGY by BereketAb T. Mehari ____________________________ Copyright © Bereketab T. Mehari 2018 A Dissertation Submitted to the Faculty of the DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY WITH A MAJOR IN CHEMISTRY In the Graduate College THE UNIVERSITY OF ARIZONA 2018 1 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of the requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that an accurate acknowledgement of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: BereketAb T. Mehari 3 ACKNOWLEDGEMENTS I would like to first extend my gratitude to my research advisor, Dr. John Jewett, for his guidance throughout my graduate career. It has been a great experience working under his mentorship. I would also like to thank my committee members for their advice in preparing for this work. I would like to thank my lab mates for both their chemistry input and moral support. I have made many friends in the department who have assisted me in becoming a better scientist.
    [Show full text]
  • Facts on File DICTIONARY of ORGANIC CHEMISTRY Iranchembook.Ir/Edu Iranchembook.Ir/Edu
    iranchembook.ir/edu iranchembook.ir/edu The Facts On File DICTIONARY of ORGANIC CHEMISTRY iranchembook.ir/edu iranchembook.ir/edu The Facts On File DICTIONARY of ORGANIC CHEMISTRY Edited by John Daintith ® iranchembook.ir/edu The Facts On File Dictionary of Organic Chemistry Copyright © 2004 by Market House Books Ltd All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval systems, without permission in writing from the publisher. For information contact: Facts On File, Inc. 132 West 31st Street New York NY 10001 Library of Congress Cataloging-in-Publication Data The Facts on File dictionary of organic chemistry / edited by John Daintith. p. cm. Includes bibliographical references. ISBN 0-8160-4928-9 (alk. paper). 1. Chemistry—Dictionaries. I. Title: Dictionary of organic chemistry. II. Daintith, John. XXXXXXXXX XXXXXXXXX XXXXXXXXXX Facts On File books are available at special discounts when purchased in bulk quantities for businesses, associations, institutions, or sales promotions. Please call our Special Sales Department in New York at (212) 967-8800 or (800) 322-8755. You can find Facts On File on the World Wide Web at http://www.factsonfile.com Compiled and typeset by Market House Books Ltd, Aylesbury, UK Printed in the United States of America MP 10987654321 This book is printed on acid-free paper iranchembook.ir/edu CONTENTS Preface vii Entries A to Z 1 Appendixes I. Carboxylic Acids 233 II. Amino Acids 235 III. Sugars 238 IV. Nitrogenous Bases and Nucleosides 239 V.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Nitroacetylenes Harnessed by Cobalt Permalink https://escholarship.org/uc/item/1kt888tn Author Windler, Gary Kenneth Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Nitroacetylenes Harnessed by Cobalt By Gary Kenneth Windler, Jr. A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor K. Peter C. Vollhardt, chair Dr. Philip F. Pagoria (LLNL) Professor Robert G. Bergman Professor Clayton J. Radke Fall 2011 Nitroacetylenes Harnessed by Cobalt © 2011 by Gary Kenneth Windler, Jr. 1 Abstract Nitroacetylenes Harnessed by Cobalt by Gary Kenneth Windler, Jr. Doctor of Philosophy in Chemistry University of California, Berkeley Professor K. Peter C. Vollhardt, Chair The syntheses and characterization of nitroacetylenes have been studied with respect to their large-scale production, purification, and NMR spectra, respectively. The 13 C NMR spectrum of 1-nitro-2-(trimethylsilyl)ethyne ( 18 ) evidenced 13 C–14 N coupling between the alkynyl carbon and the attached nitrogen, in agreement with the previously reported spectrum of 1-nitroethyne ( 16 ). The multi-gram preparation of high purity 18 is described. A history of previous work with nitroacetylenes is reviewed. The stabilization of nitroacetylenes as hexacarbonyl dicobalt alkyne complexes was investigated. In conjunction with appropriate oxidizers, such complexes were shown to be long-term storage media for free nitroalkynes. The syntheses and complete characterization of the first two nitroalkyne transition metal complexes, [µ-1-nitro-2- (trimethylsilyl)ethyne-1,2-diyl]bis(tricarbonylcobalt)( Co –Co ) ( 25 ) and [µ-1-nitroethyne- 1,2-diyl]bis(tricarbonylcobalt)( Co –Co ) ( 26 ), are described.
    [Show full text]
  • D:\Comp Backup\Important\Softwa
    Organic chemistry-Some basic principles and techniques CHAPTER ORGANIC CHEMISTRY-SOME BASIC PRINCIPLES AND TECHNIQUES 12 LEARNING OBJECTIVES (i) Understand reasons for tetravalence of carbon and shapes of organic molecules. In organic compounds can be described in terms of orbitals hybridisation concept, according to which carbon can have sp3, sp2 and sp hybridised orbitals. The sp3, sp2 and sp hybridised carbons are found in compounds like methane, ethene and ethyne respectively. The tetrahedral shape of methane, planar shape of ethene and linear shape of ethyne can be understood on the basis of this concept. (ii) Write structures of organic molecules in various ways. Organic compounds can be represented by various structural formulas. The three dimensional representation of organic compounds on paper can be drawn by wedge and dash formula. (iii) Classify the organic compounds. Organic compounds can be classified on the basis of their structure or the functional groups they contain. A functional group is an atom or group of atoms bonded together in a unique fashion and which determines the physical and chemical properties of the compounds. (iv) Name the compounds according to IUPAC system of nomenclature and also derive their structures from the given names. The naming of the organic compounds is carried out by following a set of rules laid down by the International Union of Pure and Applied Chemistry (IUPAC). In IUPAC nomenclature, the names are correlated with the structure in such a way that the reader can deduce the structure from the name. (v) Understand the concept of organic reaction mechanism. Organic reactions involve breaking and making of covalent bonds.
    [Show full text]
  • Ludwig Gattermann (1860-1920) “Hero of Science”, a Phrase That Led to Endless Ribbing by His Colleagues
    perchloride” had the formula NCl3. A British newspaper that picked up the story described him as a Ludwig Gattermann (1860-1920) “hero of science”, a phrase that led to endless ribbing by his colleagues. In 1889 Bunsen in Heidelberg retired and Meyer was appointed to succeed him. Gattermann moved About a year ago, the human rights lawyer Philippe Sands organised a remarkable event in the also. By this time he was also well known as an enthusiastic and cheerful teacher of students in the Royal Festival Hall in London: a complete reading of Primo Levi’s If this is a man (Se questo e’ un laboratory. He decided to commit what he knew to a book “to draw every single student’s attention uomo), a memoir of Levi’s imprisonment at the Nazi extermination camp at Auschwitz. The readers to the many little tricks which are required in organic synthesis”. He was not a formal, showy writer included actors, playwrights, novelists and jurists as well as several survivors of genocide from but instead wrote a simple and direct account of the basic techniques – filtration, reflux, distillation Auschwitz to the Balkans. In the tenth chapter, “The Chemistry Exam” read that afternoon by the etc. – that every student must master, and followed them with some sixty syntheses and analyses to chemist Martyn Poliakoff, Levi is summoned to a clinically tidy office outside the fence of the put these methods in practice. Published in 1894, Gattermann’s volume became known as his camp to be quizzed about chemistry by the director of the Buna-rubber factory, Dr Pannwitz.
    [Show full text]
  • 150 Years of Chemistry at the University of Zurich
    175th ANNIVERSARY OF THE UNIVERSITY OF ZURICH 75 doi:10.2533/chimia.2008.75 CHIMIA 2008, 62, No. 3 Chimia 62 (2008) 75–102 © Schweizerische Chemische Gesellschaft ISSN 0009–4293 150 Years of Chemistry at the University of Zurich# Conrad Hans Eugster* Abstract: This article was published in Chimia 1983, 37, to commemorate the 150-year anniversary of Chemistry at the University of Zurich. This excellent historical account displays a depth of information and research that makes it very worthwhile reproducing here. It presents an account of Chemistry at the University of Zurich up to 1983 and has not been changed or updated in any way except translation into English from the original German. Keywords: Chemical Institutes UZH · Karrer, P. · Werner, A. 1. Introduction Laws passed in 28th September 1832, creat- cist, but had been awarded his doctorate in ed and promoted by liberal political forces, chemistry in 1825 with Gmelin in Heidel- Medicine and the sciences were important long years of planning for the establishment berg. He subsequently assisted Mitscherlich subjects in the town of Zurich long before of a University finally came to fruition. On in Berlin and then completed his habilita- the University was founded. Names like 29th April 1833 the University was cer- tion at the University of Heidelberg in 1830 Konrad Gessner, Josias Simmler, Johan- emoniously inaugurated with 159 matricu- with his work on bromine which gained nes von Muralt, Johann Jakob Scheuchzer, lated students. The first vice-chancellor was wide attention.[2] In Zurich he quickly at- Johannes Gessner or Salomon Schinz were Lorenz Oken, Professor for ‘General Natu- tracted many students.
    [Show full text]
  • Charles Friedel
    para quitarle el polvo Charles Friedel Jaime Wisniak1 ABSTRACT Charles Friedel (1832-1899) was one of the most famous French chemists of the second-half of the nineteenth century. He conducted important research in mineralogy, in the chemistry of silicon, and in pyroelectricity. Together with James Mason Crafts he discovered the reaction that carries their names and that constitutes a powerful and versatile tool for the synthesis of an enormous number of chemicals of significant industrial value. KEYWORDS: Friedel-Crafts reaction, mineralogy, pyroelectricity, silicon chemistry, organic synthesis, secondary alcohols Resumen through teaching and publication. This institution was highly Charles Friedel (1832-1899) fue uno de los más famosos quí- regarded in the educational circle; it had resisted several at- micos franceses de la segunda mitad del siglo diecinueve. Rea- tempts by the Ministry of Instruction to integrate it into the lizó importantes investigaciones en mineralogía, en química official Lycée program, particularly after the anti clerical at- de los compuestos del silicio y en el fenómeno de la piroelec- mosphere that was prevalent after the Revolution. The Gym- tricidad. Junto con James Mason Crafts descubrió la reac- nasium was linked to the Protestant Faculty, which from the ción que lleva sus nombres y que constituye una poderosa y previous century had developed a cosmopolitan tradition by versátil herramienta para sintetizar una enorme variedad de attracting European students and professors and whose cur- compuestos de importante valor industrial. riculum integrated music, physical education, languages, and science. Like the majority of the Alsatian bourgeoisie, by en- Life and career rolling in the Gymnasium, Friedel benefited from a bilingual Charles Friedel was born at Strasbourg on March 12, 1832, education, which provided access to both French and Ger- the son of Charles Friedel, a banker, extremely interested in man cultures (Wisniak, 2005).
    [Show full text]