D:\Comp Backup\Important\Softwa

Total Page:16

File Type:pdf, Size:1020Kb

D:\Comp Backup\Important\Softwa Organic chemistry-Some basic principles and techniques CHAPTER ORGANIC CHEMISTRY-SOME BASIC PRINCIPLES AND TECHNIQUES 12 LEARNING OBJECTIVES (i) Understand reasons for tetravalence of carbon and shapes of organic molecules. In organic compounds can be described in terms of orbitals hybridisation concept, according to which carbon can have sp3, sp2 and sp hybridised orbitals. The sp3, sp2 and sp hybridised carbons are found in compounds like methane, ethene and ethyne respectively. The tetrahedral shape of methane, planar shape of ethene and linear shape of ethyne can be understood on the basis of this concept. (ii) Write structures of organic molecules in various ways. Organic compounds can be represented by various structural formulas. The three dimensional representation of organic compounds on paper can be drawn by wedge and dash formula. (iii) Classify the organic compounds. Organic compounds can be classified on the basis of their structure or the functional groups they contain. A functional group is an atom or group of atoms bonded together in a unique fashion and which determines the physical and chemical properties of the compounds. (iv) Name the compounds according to IUPAC system of nomenclature and also derive their structures from the given names. The naming of the organic compounds is carried out by following a set of rules laid down by the International Union of Pure and Applied Chemistry (IUPAC). In IUPAC nomenclature, the names are correlated with the structure in such a way that the reader can deduce the structure from the name. (v) Understand the concept of organic reaction mechanism. Organic reactions involve breaking and making of covalent bonds. A covalent bond may be cleaved in heterolytic or homolytic fashion. A heterolytic cleavage yields carbocations or carbanions, while a homolytic cleavage gives free radicals as reactive intermediate. Reactions proceeding through heterolytic cleavage involve the complimentary pairs of reactive species. These are electron pair donor known as nucleophile and an electron pair acceptor known as electrophile. (vi) Explain the influence of electronic displacements on structure and reactivity of organic compounds. The inductive, resonance, electromeric and hyperconjugation effects may help in the polarisation of a bond making certain carbon atom or other atom positions as places of low or high electron densities. (vii) Recognise the types of organic reactions. Organic reactions can be broadly classified into following types; substitution, addition, elimination and rearrangement reactions (viii) Learn the techniques of purification of organic compounds. Understand the principles involved in quantitative analysis of organic compounds. Purification, qualitative and quantitative analysis of organic compounds are carried out for determining their structures. The methods of purification namely : sublimation, distillation and differential extraction are based on the difference in one or more physical properties. Chromatography is a useful technique of separation, identification and purification of compounds. It is classified into two categories : adsorption and partition chromatography. Adsorption chromatography is based on differential adsorption of various components of a mixture on an adsorbent. Partition chromatography involves continuous partitioning of the components of a mixture between stationary and mobile phases. After getting the compound in a pure form, its qualitative analysis is carried out for detection of elements present in it. Nitrogen, sulphur, halogens and phosphorus are detected by Lassaigne’s test. Carbon and hydrogen are estimated by determining the amounts of carbon dioxide and water produced. Nitrogen is estimated by Dumas or Kjeldahl’s method and halogens by Carius method. Sulphur and phosphorus are estimated by oxidising them to sulphuric and phosphoric acids respectively. The percentage of oxygen is usually determined by difference between the total percentage (100) and the sum of percentages of all other elements present. INTRODUCTION Organic chemistry is the study of the preparation, properties, identification, and reactions of those compounds of carbon not classified as inorganic. The latter include the oxide of carbon, the bicarbonates and carbonates of metal ions, the metal cyanides, and a handful of other compounds. There are several million known carbon compounds, and all but a very few are organic. Virtually all plastics, synthetic and natural fibers, dyes and drugs, insecticides and herbicides, ingredients in perfumes and flavouring agents and all petroleum products are organic compounds. All the foods you eat consist chiefly of organic compounds in the families of the carbohydrates, fats and oils, proteins, and vitamins. The substances that make up furs and feathers, hides and skins, and all cell membranes are also organic. Originally, the distinction between inorganic and organic substances was based on whether or not they were produced by living systems. For example, until the early nineteenth century, it was believed that organic compounds had some sort of “life force” and could only be synthesized by living organisms. The view was dispelled in 1828 when German chemist Friedrich Wohler prepared urea from the inorganic salt ammonium cyanate by simple heating : Gyaan Sankalp 1 Organic chemistry-Some basic principles and techniques Heat NH4 OCN H 2 N C NH 2 Ammonium cyanate || O Urea Since urea is a component of urine, it is clearly an organic material, yet here was clear evidence that it could be produced in the laboratory as well as by living things. STRUCTURE AND SHAPES OF ORGANIC MOLECULES : 1. Tetracovalency of carbon : The atomic number of carbon is 6 and it has four electrons in its valence shell. In order to acquire stable inert gas configuration, it can share its electrons with the electrons of other to form four covalent bonds. Thus, carbon has a covalency of four or is tetracovalent. In 1874, Vant Hoff and Le Bel predicted that the four bonds of carbon in methane and other saturated compounds do not lie in a plane but are directed towards the four corners of a regular tetrahedral. 109º28' C C A Regular Space Model of The Normal Direction Tetrahedron Carbon Atom of Valencies with 4similar Faces Figure : Tetrahedral representation of carbon valencies 2. Formation of organic molecules : We know that organic compounds are carbon compounds and carbon atom does not take part as such in bond formation but its 2s and 2p orbital (s) mixed together to form new orbitals known as hybrid orbitals and the process in turn is known as hybridization. The types of hybridizations encountered in organic compounds are sp3 (involved in saturated organic compounds containing only single covalent bonds, eg. methane), sp2 (involved in organic compounds having carbon linked by double bonds, e.g. ethylene) and sp (involved in organic compounds having carbon linked by a triple bond, e.g acetylenes). The bond angles and geometry associated with the three types of hybridization are summarized below : Hybridisation sp3 sp 2 sp Angle 109º28' 120º 180º Geometry Tetrahedral Trigonal Linear Example Alkane, Cycloalkane Alkenes Alkynes and all other and in saturated part and other compounds compounds containing of all organic molecules containing C=C, C=O, C C and C N triple bonds, C=N and C=S double bonds Bond Four- Three- Two- One- Two- s% 25 33.3 50 p% 75 66.7 50 Electronegativity 2.48 2.75 3.25 2 Gyaan Sankalp Organic chemistry-Some basic principles and techniques 3. Types of bonds : Organic compounds normally contain only two types of carbon–carbon bonds, i.e, –(sigma) and –(pi) (i) Sigma bond : (a) A carbon–carbon, –bond can be formed by overlap of two sp3, sp2 or sp–hybridized orbitals of carbon atoms. Alkanes and cycloalkanes contain only sp3–sp3 C—C, –bonds, alkenes contains sp2–sp2, C—C –bonds while alkynes contain sp—sp, C—C, –bonds. (b) In a similar way, carbon can form sigma bonds with hydrogen atoms, while alkanes contain only sp3–s, C – H, –bonds, alkenes contain sp2–s, C–H, –bonds and alkynes contain sp–s, C–H, –bonds. (ii) –bond : (a) A pi–bond is formed by sideways or lateral overlap of two p–orbitals, Thus, alkenes contain one sp2 — sp2, C – C, –bond and one –bond. (b) In alkynes, the carbon atoms are sp–hybridized. Therefore, alkynes contain one sp–sp, C – C, –bond and two –bonds which are mutually perpendicular to each other. (c) The two carbon atoms and two hydrogen atoms of acetylene molecule lie along a line with C – C bond angle of 180º. Thus, acetylene is a linear molecule. 4. Effect of hybridization on bond length and bond strengths : The bond length and bond strength of any bond depends upon the size of the hybrid orbitals involved. (i) Bond lengths : Since a p–orbital is much bigger in size than a s–orbital of the same shell, therefore, as we go from sp3 sp2 sp, the percentage of p–character decreases from 75 66.7 50%. Accordingly, the size of the orbital decreases in the same order : sp3 > sp2 > sp. Since a bigger orbital forms a longer bond, therefore, C–C single bond lengths decrease in the order: C(sp3) – C(sp3) > C (sp2) – C(sp2) > C(sp) – C(sp) 1.54 Å 1.34Å 1.20 Å (ii) Bond strengths : Shorter the bond, greater is its strength. Thus, the -bond formed by sp–hybridized carbon is the strongest (i.e. maximum bond energy) while that formed by sp³–hybridized carbon is the weakest (i.e. minimum bond dissociation energy). For example, C(sp) – H > C(sp2)–H > C(sp3)–H 121 kcal mol–1 106 kcal mol–1 98.6 kcal mol–1 C(sp) – C(sp) > C(sp2) – C(sp2) > C(sp3) – C(sp3) 200 kcal mol–1 142 kcal mol–1 80-85 kcal mol–1 Since the extent of overlap in sideways overlap is low, a carbon–carbon –bond is always weaker than a carbon–carbon –bond. A carbon–carbon double bond is, however, stronger than a carbon–carbon single bond since it consists –bond and a weak – bond.
Recommended publications
  • Organic Chemistry
    Wisebridge Learning Systems Organic Chemistry Reaction Mechanisms Pocket-Book WLS www.wisebridgelearning.com © 2006 J S Wetzel LEARNING STRATEGIES CONTENTS ● The key to building intuition is to develop the habit ALKANES of asking how each particular mechanism reflects Thermal Cracking - Pyrolysis . 1 general principles. Look for the concepts behind Combustion . 1 the chemistry to make organic chemistry more co- Free Radical Halogenation. 2 herent and rewarding. ALKENES Electrophilic Addition of HX to Alkenes . 3 ● Acid Catalyzed Hydration of Alkenes . 4 Exothermic reactions tend to follow pathways Electrophilic Addition of Halogens to Alkenes . 5 where like charges can separate or where un- Halohydrin Formation . 6 like charges can come together. When reading Free Radical Addition of HX to Alkenes . 7 organic chemistry mechanisms, keep the elec- Catalytic Hydrogenation of Alkenes. 8 tronegativities of the elements and their valence Oxidation of Alkenes to Vicinal Diols. 9 electron configurations always in your mind. Try Oxidative Cleavage of Alkenes . 10 to nterpret electron movement in terms of energy Ozonolysis of Alkenes . 10 Allylic Halogenation . 11 to make the reactions easier to understand and Oxymercuration-Demercuration . 13 remember. Hydroboration of Alkenes . 14 ALKYNES ● For MCAT preparation, pay special attention to Electrophilic Addition of HX to Alkynes . 15 Hydration of Alkynes. 15 reactions where the product hinges on regio- Free Radical Addition of HX to Alkynes . 16 and stereo-selectivity and reactions involving Electrophilic Halogenation of Alkynes. 16 resonant intermediates, which are special favor- Hydroboration of Alkynes . 17 ites of the test-writers. Catalytic Hydrogenation of Alkynes. 17 Reduction of Alkynes with Alkali Metal/Ammonia . 18 Formation and Use of Acetylide Anion Nucleophiles .
    [Show full text]
  • Stereochemistry CHAPTER3
    28 Stereochemistry CHAPTER3 Stereochemistry Stereochemistry : It involves the study of the relative spatial arrangement of atoms within the molecules. Dynamic stereochemistry: Dynamic stereochemistry is the study of the effect of stereochemistry on the rate of a chemical reaction. First Stereochemist – Louis Pasteur (1849): Significance of stereochemistry: One of the most infamous demonstration of the significance of stere- ochemistry was the Thalidomide disaster. Thalidomide is a drug was first prepared in 1957 in Germany, prescribed for treating morning Sickness in pregnant women. It was discovered that one optical isomer i.e. R- Isomer of the drug was safe whereas the S-isomer had teratogenic effect, causing serious genetic damage to early embryonic growth and development. O O H O O H N N 1 2 N 3 O N O H H 4 O R-isomer O S-isomer Drug for morning sickness in pregnant women. Teratogenic effect [Remark: In human body, Thalidomide undergoes racemization: even if only one of the two stereoisomers is ingested, the other one is produced.] Now we have another example - Propanolol. H H N N O O H OH OH H R-Propanolol (contraceptive) S-Propanolol (antihypertensive) Stereochemistry 29 SOME TERMINOLOGY Optical activity: The term optical activity derived from the interaction of chiral materials with polarized light. Scalemic: Any non-racemic chiral substance is called Scalemic. • A chiral substance is enantio pure or homochiral when only one of two possible enantiomer is present. • A chiral substance is enantio enriched or heterochiral when an excess of one enantiomer is present but not the exclusion of the other.
    [Show full text]
  • Organic Chemistry Frontiers
    ORGANIC CHEMISTRY FRONTIERS View Article Online REVIEW View Journal | View Issue Progress in the synthesis of perylene bisimide dyes Cite this: Org. Chem. Front., 2019, 6, Agnieszka Nowak-Król and Frank Würthner * 1272 With their versatile absorption, fluorescence, n-type semiconducting and (photo-)stability properties, per- ylene bisimides have evolved as the most investigated compounds among polycyclic aromatic hydro- carbons during the last decade. In this review we collect the results from about 200 original publications, reporting a plethora of new perylene bisimide derivatives whose properties widely enrich the possibility for the application of these dyes beyond traditional fields. While some applications are highlighted, different from other recent reviews, our focus here is on the advances in the synthetic methodologies Received 17th December 2018, that have afforded new bay functionalizations, recently addressed functionalizations at the ortho-positions Accepted 17th February 2019 to the carbonyl groups, and annulation of carbo- and heterocyclic units. An impressive number of DOI: 10.1039/c8qo01368c perylene bisimide oligomers are highlighted as well which are connected by single bonds or spiro linkage rsc.li/frontiers-organic or in a fused manner, leading to arrays with fascinating optical and electronic properties. Creative Commons Attribution 3.0 Unported Licence. Introduction are the leading examples of the class of tetrapyrrole dyes, PBIs are the most important compounds of the family of polycyclic About a hundred years after their discovery, perylene-3,4:9,10- aromatic hydrocarbons. This outstanding role of PBIs has bis(dicarboximide)s, commonly abbreviated as PDIs or PBIs, evolved not only due to their properties, but also due to the have emerged as one of the most important classes of func- incredible development of the synthetic chemistry of this class tional dyes.
    [Show full text]
  • Stereochemistry, Alkyl Halide Substitution (SN1 & SN2)
    Chem 261 Assignment & Lecture Outline 3: Stereochemistry, Alkyl Halide Substitution (SN1 & SN2) Read Organic Chemistry, Solomons, Fryle & Snyder 12th Edition (Electronic) • Functional Group List – Learn to recognize – Please see Green Handout – also p 76 of text • Periodic Table – Inside Front Cover - know 1st 10 elements (up through Neon) • Relative Strength of Acids and Bases – Inside Front cover (reference only) • Chapter 5 – Stereochemistry • Chapter 6 –Ionic Reactions: Nucleophilic Substitution of Alkyl Halides Problems: Do Not turn in, answers available in "Study Guide Student Solutions Manual " Solomons, Fryle, Snyder • Chapter 5: 5.1 to 5.15; 5.18 to 5.21; 5.26; 5.28; 5.33a-d; 5.46 • Chapter 6: 6.1 to 6.5; 6.7 to 6.10; 6.13; 6.20; 6.26; 6.27 Lecture Outline # 3 I. Comparison of 2 Structures: Same Molecular Formula ? -> If Yes, Possibly Isomers or Identical Same Arrangement (Sequence) of Groups ? If No -> Structural Isomers If Yes -> Superposable? If Yes -> Identical Structures If No -> Stereoisomers Non-Superposable Mirror Images ? If NO -> Diastereomers If Yes -> Enantiomers II. Chirality and Stereoisomers A. The Concept of Chirality 1. Identification of chiral objects a) achiral = not chiral b) planes of symmetry within a molecule 2. Types of stereoisomers – enantiomers and diastereomers B. Location of stereogenic (chiral) centres – 4 different groups on tetrahedral atom 1. Enantiomers & diastereomers 2. Meso compounds - chiral centers with plane of symmetry within molecule 3. Molecules with more than one chiral centre 4. Recognition of chiral centers in complex molecules - cholesterol - 8 chiral centres Drawing the enantiomer of cholesterol and its potential 255 stereoisomers 5.
    [Show full text]
  • Copyrighted Material
    Index Abbreviations receptor sites 202, 211 weak 122 amino acids, Table 500–1 muscarinic 413 weak, pH calculation 147–8 nucleic acids 551 nicotinic 413 Acid–base nucleotides, Table 551 as quaternary ammonium salt 202 catalysis, enzymes 516 peptides and proteins 504 Acetylcholinesterase equilibria 121 phosphates and diphosphates 277 enzyme mechanism 519–21 interactions, predicting 155–7 structural, Table 14 hydrolysis of acetylcholine 279 Acidic reagents, Table 157 ACE (angiotensin-converting enzyme) inhibitors 279 Acidity enzyme action 532 Acetyl-CoA carboxylase, in fatty acid acidity constant 122 inhibitors 532 biosynthesis 595 bond energy effects 125 Acetal Acetyl-CoA (acetyl coenzyme A) definition 121 in etoposide 233 as acylating agent 262 electronegativity effects 125 formation 229 carboxylation to malonyl-CoA 595, hybridization effects 128 polysaccharides as polyacetals 232 609 inductive effects 125–7 as protecting group 230 Claisen reaction 381 influence of electronic and structural Acetal and ketal enolate anions 373 features 125–34 cyclic, as protecting groups 481 in Krebs cycle 585 and leaving groups, Table 189 groups in sucrose 231 from β-oxidation of fatty acids 388 pKa values 122–5 Acetaldehyde, basicity 139 as thioester 262, 373 resonance / delocalization effects 129–34 Acetamide, basicity 139 Acetylene, bonding molecular orbitals 31 Acidity (compounds) Acetaminophen, see paracetamol Acetylenes, acidity 128 acetone 130 Acetoacetyl-CoA, biosynthesis from N-Acetylgalactosamine, in blood group acetonitrile 365 acetyl-CoA 392
    [Show full text]
  • Amide Activation: an Emerging Tool for Chemoselective Synthesis
    Featuring work from the research group of Professor As featured in: Nuno Maulide, University of Vienna, Vienna, Austria Amide activation: an emerging tool for chemoselective synthesis Let them stand out of the crowd – Amide activation enables the chemoselective modification of a large variety of molecules while leaving many other functional groups untouched, making it attractive for the synthesis of sophisticated targets. This issue features a review on this emerging field and its application in total synthesis. See Nuno Maulide et al., Chem. Soc. Rev., 2018, 47, 7899. rsc.li/chem-soc-rev Registered charity number: 207890 Chem Soc Rev View Article Online REVIEW ARTICLE View Journal | View Issue Amide activation: an emerging tool for chemoselective synthesis Cite this: Chem. Soc. Rev., 2018, 47,7899 Daniel Kaiser, Adriano Bauer, Miran Lemmerer and Nuno Maulide * It is textbook knowledge that carboxamides benefit from increased stabilisation of the electrophilic carbonyl carbon when compared to other carbonyl and carboxyl derivatives. This results in a considerably reduced reactivity towards nucleophiles. Accordingly, a perception has been developed of amides as significantly less useful functional handles than their ester and acid chloride counterparts. Received 27th April 2018 However, a significant body of research on the selective activation of amides to achieve powerful DOI: 10.1039/c8cs00335a transformations under mild conditions has emerged over the past decades. This review article aims at placing electrophilic amide activation in both a historical context and in that of natural product rsc.li/chem-soc-rev synthesis, highlighting the synthetic applications and the potential of this approach. Creative Commons Attribution 3.0 Unported Licence.
    [Show full text]
  • Journal of Applicable Chemistry, 2012, 1 (2):250-256 (International Peer Reviewed Journal)
    Available online at www.joac.info ISSN: 2278-1862 Journal of Applicable Chemistry, 2012, 1 (2):250-256 (International Peer Reviewed Journal) Synthesis & Characterization of Novel Aniline—Formaldehyde-- α - Napthol Terpolymers M. N. Narule*K. Chawhan1 K. M. Wasnik2 P. K. Rahangdale *Dept. of Chemistry, Vidya vikas Art, Commerce & Science College, Samudrapur, Wardha-, India. 1Sai Polytechnic, Chandrapur. 2R. S. Bidkar College, Higanghat E-mail: [email protected], kavi_2605 @rediffmail.com ____________________________________________________________________________ ABSTRACT The present manuscript reported the synthesis of organic terpolymers of aniline, formaldehyde & α-naphthol. The reaction is catalyzed by strong acids, weak acids, organic acids and also by Lewis acids. The composition of terpolymers has been determined by elemental analysis and spectral studies such as UV, IR and NMR have been carried out to elucidate the structure of the terpolymers. The polymer exhibit high temperature resistance better thermal properties as evident from the TGA data. The polymer undergo degradation under inert atmosphere at increasing temperature provides good for nature. Spectroscopic data revels that long chain polymer hold together not only by C-C bond, but also the electrons are delocalized in conjugation showing coloured aniline- formaldehyde-α-naphthol terpolymers. Keywords: Terpolymerization, aniline, formaldehyde, α-naphthol. ______________________________________________________________________________ INTRODUCTION Polymer science[1-9]has
    [Show full text]
  • Organic Stereoisomerism
    Organic : Stereoisomerism Stereoisomerism Introduction: When two compounds have same structure(hence same name) but still they are not identical and some of their properties are different then it means they are stereoisomers. They are not superimposable with each other. They differ in the spatial relationship between their atoms or groups. See this example. CH3 CH3 CH3 H CC CC H H H CH3 cis(Z)-but-2-ene trans(E)-but-2-ene Both are but-2-ene, but they are not identical. Their melting points and boiling points are different. They evolve different heat energy when hydrogenated. So what is the difference between them ? Is it structure- wise ? The answer is NO, as their structures are same i.e but-2-ene. They differ with respect the relationship between some atoms or groups in space. In cis-but-2-ene, the –CH3 groups are on the same side of the double bond and so also the H atoms. However, in trans-but-2-ene, the –CH3 groups lie on opposite sides of the double bond and so also the H atoms. For that reason, the two are not superimposable with each other. If you carry the model of cis-but-2-ene and try to overlap with trans-but-2-ene for the purpose of matching of groups and atoms, what do you find ? Are the two superimposable ? When one –CH3 group matches, the other not. When one –H atom matches, the other not. Thus the structures are non-superimposble. This kind of stereoisomerism is called Geometrical Isomerism(now-a-days called E-Z isomersm), because the geometrical relationsip between groups are different.
    [Show full text]
  • The Use of Spirocyclic Scaffolds in Drug Discovery ⇑ Yajun Zheng , Colin M
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Bioorganic & Medicinal Chemistry Letters 24 (2014) 3673–3682 Contents lists available at ScienceDirect Bioorganic & Medicinal Chemistry Letters journal homepage: www.elsevier.com/locate/bmcl BMCL Digest The use of spirocyclic scaffolds in drug discovery ⇑ Yajun Zheng , Colin M. Tice, Suresh B. Singh Vitae Pharmaceuticals Inc., 502 West Office Center Drive, Fort Washington, PA 19034, United States article info abstract Article history: Owing to their inherent three-dimensionality and structural novelty, spiro scaffolds have been increas- Received 15 April 2014 ingly utilized in drug discovery. In this brief review, we highlight selected examples from the primary Revised 17 June 2014 medicinal chemistry literature during the last three years to demonstrate the versatility of spiro scaffolds. Accepted 27 June 2014 With recent progress in synthetic methods providing access to spiro building blocks, spiro scaffolds are Available online 5 July 2014 likely to be used more frequently in drug discovery. Ó 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND Keywords: license (http://creativecommons.org/licenses/by-nc-nd/3.0/). Spirocyclic Scaffold Drug discovery One widely used strategy in drug design is to rigidify the ligand present in a number of bioactive natural products such as mito- conformation by introducing a ring.1 The resulting cyclic analog mycins, it is generally difficult to construct such aziridines from will suffer a reduced conformational entropy penalty upon binding unfunctionalized olefins. A recent report of a facile synthetic route to a protein target.
    [Show full text]
  • Robert Wilhelm Bunsen Und Sein Heidelberger Laboratorium Heidelberg, 12
    Historische Stätten der Chemie Robert Wilhelm Bunsen und sein Heidelberger Laboratorium Heidelberg, 12. Oktober 2011 Gesellschaft Deutscher Chemiker 1 Mit dem Programm „Historische Stätten der Chemie“ würdigt Robert Wilhelm Bunsen – die Gesellschaft Deutscher Chemiker (GDCh) Leistungen von geschichtlichem Rang in der Chemie. Als Orte der Erinnerung eine biographische Skizze werden Wirkungsstätten beteiligter Wissenschaftlerinnen und Wissenschaftler in einem feierlichen Akt ausgezeichnet. Eine Broschüre bringt einer breiten Öffentlichkeit deren wissenschaft- Bunsen war einer der Wegbereiter der Physikalischen Chemie liches Werk näher und stellt die Tragweite ihrer Arbeiten im und ein bedeutender Vertreter der anorganisch-analytischen aktuellen Kontext dar. Ziel dieses Programms ist es, die Erinne- Richtung. Seine wissenschaftliche Bedeutung liegt in der Ent- rung an das kulturelle Erbe der Chemie wach zu halten und die wicklung und Perfektionierung von Methoden und Instrumen- Chemie mit ihren historischen Wurzeln stärker in das Blickfeld ten. Diese Arbeitsschwerpunkte hat Bunsen von Beginn seiner der Öffentlichkeit zu rücken. Karriere an verfolgt und systematisch ausgebaut. Am 12. Oktober 2011 gedenken die GDCh, die Deutsche 1811 als jüngster von vier Söhnen einer bürgerlichen protestan- Bunsen-Gesellschaft für Physikalische Chemie (DBG), die Che- tischen Familie in Göttingen geboren, begann Bunsen dort 1828 mische Gesellschaft zu Heidelberg (ChGzH) und die Ruprecht- das Studium der Naturwissenschaften. Seine wichtigsten Lehrer Karls-Universität
    [Show full text]
  • Arenechromium Tricarbonyl Complexes: Conformational
    η6 – ARENECHROMIUM TRICARBONYL COMPLEXES: CONFORMATIONAL ANALYSIS, STEREOCONTROL IN NUCLEOPHILIC ADDITION AND APPLICATIONS IN ORGANIC SYNTHESIS by HARINANDINI PARAMAHAMSAN Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Thesis Advisor: Prof. Anthony J. Pearson Department of Chemistry CASE WESTERN RESERVE UNIVERSITY May 2005 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of Harinandini Paramahamsan candidate for the Ph.D. degree*. (signed) Prof. Philip P. Garner (Chair of the Committee, Department of Chemistry, CWRU) Prof. Anthony J. Pearson (Department of Chemistry, CWRU) Prof. Fred L. Urbach (Department of Chemistry, CWRU) Dr. Zwong-Wu Guo (Department of Chemistry, CWRU) Dr. Stuart J. Rowan (Department of Macromolecular Science and Engineering, CWRU) Date: 14th January 2005 *We also certify that written approval has been obtained for any propriety material contained therein. To Amma, Naina & all my Teachers Table of Contents List of Tables………………………………………………………………………..……iv List of Figures…………………………………………………………………….…........vi List of Schemes…………………………………………………………………….….….ix List of Equations………………………………………………………...……….……….xi Acknowledgements………………………………………………………….…..……….xii List of Abbreviations……………………………………………………………………xiv Abstract………………………………………………………………………………….xvi CHAPTER I........................................................................................................................ 1 I.1 Structure and Bonding ...........................................................................................
    [Show full text]
  • Transcription 11.12.07
    Lab 17A • 12/07/11 [lab quiz] Nomenclature of alkenes The first molecule that I want to look at is this one, where we have the two methyl groups on one side, two hydrogens on the other side. Would it be appropriate to use cis or trans, or E or Z, or both, or neither? One carbon of the double bond versus the other, those are the two different sides of the double, then the top versus the bottom are the two faces of the double bond. If we notice, on both the top face and the bottom face, we have a methyl group that is pointed the same way as a hydrogen. There is a steric factor as far as what alkene would prefer to form thermodynamically, so there is an importance that there’s some interaction there. That methyl group with one hydrogen is exactly the same interaction as you’d have the methyl group and the other hydrogen pointed the opposite way – meaning that if you were to switch the two hydrogens, you’d end up with exactly the same molecule again. The only reason that we use the term cis or trans or E or Z is to describe that it is one configuration versus another, but since there’s only one configuration possible, there’s therefore no term that should be used. It would, in fact, be wrong to call this cis, trans, E, or Z. When an alkene has two of the same substituent on the same side, there is only one unique configuration of that alkene, and so it cannot be called cis, trans, E, or Z.
    [Show full text]