Regional Overview of Fisheries and Aquaculture in Asia and the Pacific 2012

Total Page:16

File Type:pdf, Size:1020Kb

Regional Overview of Fisheries and Aquaculture in Asia and the Pacific 2012 ASIA-PACIFIC FISHERY COMMISSION Regional overview of fisheries and aquaculture in Asia and the Pacific 2012 RAP PUBLICATION 2012/26 100 000 80 000 60 000 40 000 20 000 0 1950 1955 1960 1965 Rest of the world China 1970 1975 memberAPFIC 1980 1985 1990 1995 2000 viii RAP PUBLICATION 2012/26 Asia-Pacific Fishery Commission (APFIC) Regional overview of fisheries and aquaculture in Asia and the Pacific 2012 Simon Funge-Smith, Matthew Briggs, Weimin Miao Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific Bangkok, 2012 i The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-107474-9 © FAO 2013 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way. All requests for translation and adaptation rights, and for resale and other commercial use rights should be addressed to www.fao.org/contact-us/licence-request or to [email protected]. FAO information products are available on the FAO website (www.fao.org/publications) and can be purchased through [email protected]. For copies please write to: The Secretary Asia-Pacific Fishery Commission FAO Regional Office for Asia and the Pacific Maliwan Mansion, 39 Phra Athit Road Bangkok 10200 THAILAND Tel: (+66) 2 697 4000 Fax: (+66) 2 697 4445 E-mail: [email protected] ii Foreword The Asia-Pacific Fishery Commission (APFIC) is committed to acting as a regional consultative forum, providing member countries, regional organizations and fisheries professionals in the region with the opportunity to review and discuss the challenges facing the region’s fisheries sector and helping them decide on the most appropriate actions to take. As part of this function, APFIC prepares a biennial status report to inform member countries and other stakeholders of trends in fisheries and aquaculture in the region and of emerging issues and other information tracking related to fisheries governance. The report is prepared for and provided to member countries and other stakeholders to assist in their deliberations during the biennial APFIC regional consultative forum meeting and the regular session of the Commission. The present report Regional overview of fisheries and aquaculture in Asia and the Pacific 2012 provides information on trends in fisheries and aquaculture in the region as well as short reviews of some current issues facing fisheries and aquaculture in the region that are likely to challenge the sector as it adapts to the continuously changing production and market environments. The marine capture fisheries section of the report has been organized to reflect the three large ecosystems of interest to the region, namely the South China Sea and the Bay of Bengal and the Sulu-Sulawesi/Timor-Arafura Seas subregions. The aquaculture review is organized around different commodity groups and their respective characteristics. As a regional sourcebook of trends in fisheries and aquaculture, the information contained in this review will support regional dialogue on the status of these marine fishery subregions and the commodity trends in aquaculture. Hiroyuki Konuma Assistant Director-General and Regional Representative FAO Regional Office for Asia and the Pacific iii iv Preparation of this document This document was prepared for the Thirty-second Session of the Asia-Pacific Fishery Commission (APFIC), which was held in Da Nang, Viet Nam from 20 to 22 September 2012. APFIC has continued to implement its new role as a regional consultative forum and is endeavouring to respond effectively to the changing requirements in the fisheries and aquaculture sector in the region. APFIC is committed to improving the quality of information on the status and trends of fisheries and aquaculture in the region and to reviewing and analyzing this information regularly. The purpose of this document is to inform APFIC member countries of the current status and potential of fisheries and aquaculture in Asia and the Pacific region and of the emerging issues facing the sector. This review would not have been possible without access to the national statistical information of APFIC member countries, FAO colleagues, the work of regional organizations such as Southeast Asian Fisheries Development Center (SEAFDEC), Bay of Bengal Programme International Governmental Organization (BOBP-IGO) and the many others that collate and analyze information relevant to the fishery and aquaculture subsectors of the region. In particular, we would like to acknowledge the dedicated contributions by country correspondents: – Mohamed Ahusan, Senior Research Officer, Marine Research Centre, H. White Waves Moonlight Hingun, Male 20025, Republic of Maldives – Ahmad Abu Talib, SEAFDEC-MFRDMD, Department of Fisheries Malaysia, Fisheries Garden, Chendering, 21080 Kuala Terengganu, Malaysia – Rattanawalee Phoonsawat, Fisheries Biologist, Marine Fisheries Research and Development Bureau, Department of Fisheries Thailand, 49 Soi Prarachaveriyaporn 16, Bang Pheung, Phra Pradeang, Samut Prakan 10130, Thailand – Duto Nugroho, Researcher, Research Institute for Marine Fisheries (RIMF), Jalan Muara Baru Ujung, Komplek Pelabuhan Perikanan Samudra, Jakarta 14430, Indonesia – Noel Barut, Bureau of Fisheries and Aquatic Resources, Department of Agriculture, Arcadia Building, Quezon Avenue, Quezon City, Philippines – E. Vivekanandan, Principal Scientist, Central Marine Fisheries Research Institute, Post Box No. 1603, Cochin 682018, Kerala, India – Champa Amarasiri, Former Director, National Aquatic Resources Research and Development Agency (NARA), Crow Island, Mattakkuliya, Colombo 15, Sri Lanka – Myint Pe, Assistant Director, Department of Fisheries, Sinmin Road, Ahlone Township, Yangon, Myanmar – Yongsong Qiu, Chief of Fishery Resources Division, South China Sea Fisheries Research Institute, 231 Xingang Road West, Guangzhou 510300, China – M. Jalilur Rahman, Senior Scientific Officer, Bangladesh Fisheries Research Institute, Marine Fisheries and Technology Station, Cox’s Bazar 4700, Bangladesh Bibliographic reference Funge-Smith, S., Briggs, M. & Miao, W. 2012. Regional overview of fisheries and aquaculture in Asia and the Pacific 2012. Asia-Pacific Fishery Commission, FAO Regional Office for Asia and the Pacific. RAP Publication 2012/26. 139 pp. v vi Table of contents Page Foreword ........................................................................................................................................... iii Preparation of this document ......................................................................................................... v Introduction....................................................................................................................................... 1 Geographical scope of this review: states, entities and areas .................................................. 1 Marine capture fisheries ............................................................................................................ 1 Inland fisheries ........................................................................................................................... 2 Aquaculture ................................................................................................................................2 General trends in marine capture fisheries and in the APFIC region ....................................... 2 Issues of ‘nei’ reporting species composition in national statistics ........................................ 3 Classifications of APFIC region national fishery management areas ...................................... 4 Fisheries classifications ................................................................................................................. 6 Subregional overviews of marine capture fisheries.................................................................... 8 Trends in marine capture fishery production in the South China Sea subregion .................. 10 Changes in species composition in the South China Sea and Gulf of Thailand subregion .... 12 Fishery/stock assessments........................................................................................................ 15 Trends in CPUE/catch rates ...................................................................................................... 19 Low-value/trash fish production................................................................................................. 21 Fishmeal production..................................................................................................................
Recommended publications
  • Cipangopaludina Chinensis: Effects of Temperatures and Parasite Prevalence
    Cipangopaludina chinensis: Effects of temperatures and parasite prevalence BIOS 35502-01: Practicum in Environmental Field Biology Jennifer Lam Advisor: Sara Benevente 2016 Lam 2 Abstract Comparison of parasite prevalence between native snail species, Lymnaea stagnalis, and invasive snail species, Cipangopaludina chinensis, was conducted by euthanizing snails one day after capture from Brown Lake. Looking at if parasitism is a main factor in intraspecific competition of C. chinensis at different temperatures, snails were captured, measured for height and width, housed under different temperature settings (20◦C, 25◦C, and 34◦C), and competed against other for a week-long trial. After the week-long trial or when the last snail died, snails were re-measured for growth and checked for parasites. Result from parasite prevalence between two snails species was significant, C. chinensis rarely had infections compared to L. stagnalis. From the result, native parasites were predicted to be highly specialized for L. stagnalis and lack mechanisms to penetrate C. chinensis. Result from the intraspecific competition suggested that parasite prevalence was not important as survival (in weeks) in the change in growth. Since parasite prevalence was low, and sample size was small, conclusion on parasite prevalence not being a factor in growth was not robust. Further studies on impact of C. chinensis on freshwater systems and native snail species are needed. Introduction Climate change is a concerning factor for freshwater ecosystems. Climate change increases the average temperature of water in some aquatic systems. With warmer water temperatures, more exotic species can establish as native species disappear (Rahel and Olden 2008). As native species disappear from the ecosystem, other species dependent on a specific native species may not be able to sustain the loss, leading to a decrease in biodiversity.
    [Show full text]
  • Tangguh LNG Project in Indonesia
    Summary Environmental Impact Assessment Tangguh LNG Project in Indonesia June 2005 CURRENCY EQUIVALENTS (as of 1 April 2005) Currency Unit – rupiah (Rp) Rp1.00 = $0.000105 $1.00 = Rp9,488 ABBREVIATIONS ADB – Asian Development Bank AMDAL – analisis mengenai dampak lingkungan (environmental impact analysis system) ANDAL – analisis dampak lingkungan (environmental impact analysis ) BOD – biochemical oxygen demand CI – Conservation International COD – chemical oxygen demand DAV – directly affected village DGS – diversified growth strategy EPC – engineering, procurement, and construction GDA – global development alliance GHG – green house gas HDD – horizontal directional drilling JNCC – Joint Nature Conservation Committee KJP – A consortium of Kellogg Brown and Root–JGC–Pertafinikki LARAP – land acquisition and resettlement action plan (ADB terminology for equivalent document is involuntary resettlement plan) LNG – liquefied natural gas MARPOL – International Convention for the Prevention of Pollution from Convention Ships (1973) MBAS – methylene blue active substances MODU – mobile offshore drilling unit MOE – Ministry of Environment NGO non government organization PSC – production-sharing contract RKL – rencana pengelolaan lingkungan (environmental management plan) RPL – rencana pemantauan lingkungan (environmental monitoring plan) SEIA – summary environmental impact assessment TMRC – Tanah Merah resettlement committee TNC – The Nature Conservancy TSS – total suspended solid UNDP – United Nations Development Programme USAID – United State
    [Show full text]
  • Fecundity of the Chinese Mystery Snail in a Nebraska Reservoir
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Nebraska Cooperative Fish & Wildlife Research Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications Unit 2013 Fecundity of the Chinese mystery snail in a Nebraska reservoir Bruce J. Stephen University of Nebraska-Lincoln, [email protected] Craig R. Allen University of Nebraska-Lincoln, [email protected] Noelle M. Chaine University of Nebraska-Lincoln, [email protected] Kent A. Fricke University of Nebraska-Lincoln Danielle M. Haak University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/ncfwrustaff Part of the Aquaculture and Fisheries Commons, Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, Natural Resource Economics Commons, Natural Resources and Conservation Commons, and the Water Resource Management Commons Stephen, Bruce J.; Allen, Craig R.; Chaine, Noelle M.; Fricke, Kent A.; Haak, Danielle M.; Hellman, Michelle L.; Kill, Robert A.; Nemec, Kristine T.; Pope, Kevin L.; Smeenk, Nicholas A.; Uden, Daniel R.; Unstad, Kody M.; VanderHam, Ashley E.; and Wong, Alec, "Fecundity of the Chinese mystery snail in a Nebraska reservoir" (2013). Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications. 121. https://digitalcommons.unl.edu/ncfwrustaff/121 This Article is brought to you for free and open access by the Nebraska Cooperative Fish & Wildlife Research Unit at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Bruce J. Stephen, Craig R. Allen, Noelle M. Chaine, Kent A.
    [Show full text]
  • Red Sea Bream Iridovirus Infection in Marble Goby (Bleeker, Oxyeleotris Marmoratus) in Taiwan
    Vol. 7(12), pp. 1009-1014, 19 March, 2013 DOI: 10.5897/AJMR12.682 ISSN 1996-0808 © 2013 Academic Journals African Journal of Microbiology Research http://www.academicjournals.org/AJMR Full Length Research Paper Red sea bream iridovirus infection in marble goby (Bleeker, Oxyeleotris marmoratus) in Taiwan Ming-Hui Chen1,5, Shao-Wen Hung2,6, Chen-Hsuan Chang1, Po-Yang Chen1, Cheng-Chung Lin3, Tien-Huan Hsu1, Chin-Fu Cheng1, Shiun-Long Lin1, Ching-Yu Tu4, Chau-Loong Tsang1, Yu-Hsing Lin6 and Way-Shyan Wang1* 1Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan. 2Institute of Brain Science, College of Medicine, National Yang-Ming University, Taipei 112, Taiwan. 3Graduate Institute of Veterinary Pathology, College of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan. 4Residue Control Division, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Executive Yuan, Taiwan. 5The Livestock Disease Control Center of Taichung City, Taichung 402, Taiwan. 6Nursing Department of Yuanpei University, Hsinchu 300, Taiwan. Accepted 15 February, 2013 An outbreak of infectious disease in 30,000 marble gobies (Bleeker, Oxyeleotris marmoratus) cultured at a density of 5,000 to 8,000 fish per pond at a fish farm in the central Taiwan was reported to the Nantou County Animal Disease Center and the Central Taiwan Aquatic Disease Center. The mortality rate was approximately 40% (12,000/30,000). In May 2010, clinical signs of sluggish behavior, atypical swimming behavior at the edge of the pond and sudden death were noted among the marble gobies, which ranged from fry (12.7 cm) to juveniles (550 g).
    [Show full text]
  • Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China
    KOREAN JOURNAL OF ICHTHYOLOGY, Vol. 21 Supplement, 63-72, July 2009 Received : April 17, 2009 ISSN: 1225-8598 Revised : June 15, 2009 Accepted : July 13, 2009 Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China By Han-Lin Wu, Jun-Sheng Zhong1,* and I-Shiung Chen2 Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 1Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 2Institute of Marine Biology, National Taiwan Ocean University, Keelung 202, Taiwan ABSTRACT The taxonomic research based on extensive investigations and specimen collections throughout all varieties of freshwater and marine habitats of Chinese waters, including mainland China, Hong Kong and Taiwan, which involved accounting the vast number of collected specimens, data and literature (both within and outside China) were carried out over the last 40 years. There are totally 361 recorded species of gobioid fishes belonging to 113 genera, 5 subfamilies, and 9 families. This gobioid fauna of China comprises 16.2% of 2211 known living gobioid species of the world. This report repre- sents a summary of previous researches on the suborder Gobioidei. A recently diagnosed subfamily, Polyspondylogobiinae, were assigned from the type genus and type species: Polyspondylogobius sinen- sis Kimura & Wu, 1994 which collected around the Pearl River Delta with high extremity of vertebral count up to 52-54. The undated comprehensive checklist of gobioid fishes in China will be provided in this paper. Key words : Gobioid fish, fish taxonomy, species checklist, China, Hong Kong, Taiwan INTRODUCTION benthic perciforms: gobioid fishes to evolve and active- ly radiate. The fishes of suborder Gobioidei belong to the largest The gobioid fishes in China have long received little group of those in present living Perciformes.
    [Show full text]
  • And Type the TITLE of YOUR WORK in All Caps
    POTENTIAL THREATS OF THE EXOTIC APPLE SNAIL POMACEA INSULARUM TO AQUATIC ECOSYSTEMS IN GEORGIA AND FLORIDA by SHELLEY MARIE ROBERTSON (Under the Direction of Susan Bennett Wilde) ABSTRACT The Island apple snail, Pomacea insularum is a freshwater gastropod in the family Ampullaridae. It was introduced into the United States via the aquarium trade approximately 30 years ago and now has established reproducing populations in at least seven southeastern states. It is a highly invasive species with high rates of reproduction and consumption of native aquatic vegetation. A survey of reported Georgia populations confirmed that there are at least ten individual occurrences of exotic apple snails in the state, and that they have not reached their equilibrium distribution. We also investigated the ability of P. insularum to harbor a cyanotoxin that may be detrimental to its avian predator in Florida, the endangered Florida snail kite (Rostrhamus sociabilis). The invasive P. insularum transferred the undescribed cyanotoxin associated with Avian Vacuolar Myelinopathy to domestic chickens in a laboratory feeding study. INDEX WORDS: apple snail, Pomacea insularum, invasive species, Avian Vacuolar Myelinopathy, AVM, Florida snail kite, Rostrhamus sociabilis, Hydrilla verticillata POTENTIAL THREATS OF THE EXOTIC APPLE SNAIL POMACEA INSULARUM TO AQUATIC ECOSYSTEMS IN GEORGIA AND FLORIDA by SHELLEY MARIE ROBERTSON BS, University of Georgia, 2006 AB, University of Georgia, 2007 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2012 © 2012 Shelley Marie Robertson All Rights Reserved POTENTIAL THREATS OF THE EXOTIC APPLE SNAIL POMACEA INSULARUM TO AQUATIC ECOSYSTEMS IN GEORGIA AND FLORIDA by SHELLEY MARIE ROBERTSON Major Professor: Susan B.
    [Show full text]
  • Occurrence of the Chinese Mystery Snail, Cipangopaludina Chinensis
    BioInvasions Records (2016) Volume 5, Issue 3: 149–154 Open Access DOI: http://dx.doi.org/10.3391/bir.2016.5.3.05 © 2016 The Author(s). Journal compilation © 2016 REABIC Rapid Communication Occurrence of the Chinese mystery snail, Cipangopaludina chinensis (Gray, 1834) (Mollusca: Viviparidae) in the Saint John River system, New Brunswick, with review of status in Atlantic Canada Donald F. McAlpine1,*, Dwayne A. W. Lepitzki2, Frederick W. Schueler3, Fenning J.T. McAlpine1, Andrew Hebda4, Robert G. Forsyth1, Annegret Nicolai5, John E. Maunder6 and Ron G. Noseworthy7 1New Brunswick Museum, 277 Douglas Avenue, Saint John, New Brunswick, E2K 1E5 Canada 2Wildlife Systems Research, P.O. Box 1311, Banff, Alberta, T1L 1B3 Canada 3RR # 2, Bishops Mills, Ontario, K0G 1T0 Canada 4Nova Scotia Museum of Natural History, 1747 Summer Street, Halifax, Nova Scotia, B3H 3A6 Canada 5UMR-CNRS 6553 EcoBio, Campus Beaulieu, Université Rennes 1, 35042 Rennes cedex, France 6P.O. Box 250, Pouch Cove, Newfoundland and Labrador, A0A 3L0 Canada 7School of Marine Biomedical Science, Jeju National University, Jeju 690-756, Republic of Korea *Corresponding author E-mail: [email protected] Received: 27 February 2016 / Accepted: 1 July 2016 / Published online: 20 July 2016 Handling editor: Carles Alcaraz Abstract The Chinese mystery snail, Cipangopaludina [=Bellamya] chinensis, is documented for the first time in the Saint John River, New Brunswick, a watercourse which drains the largest watershed in Atlantic Canada. This is the first non-native mollusc known to be established in the Saint John River system. Although significant ecosystem effects of the species seem unlikely, possible introduction of C.
    [Show full text]
  • Aquatic Conservation: Marine and Freshwater Ecosystems, 14, Ately in the Study Areas Because Fishing Represents the Most Impor- 237–246
    Received: 21 May 2019 Revised: 20 October 2019 Accepted: 28 January 2020 DOI: 10.1002/aqc.3317 RESEARCH ARTICLE Fishers, dams, and the potential survival of the world's rarest turtle, Rafetus swinhoei, in two river basins in northern Vietnam Olivier Le Duc1 | Thong Pham Van1 | Benjamin Leprince1 | Cedric Bordes1 | Anh Nguyen Tuan2 | John Sebit Benansio3 | Nic Pacini4,5 | Vinh Quang Luu6 | Luca Luiselli7,8,9 1Turtle Sanctuary and Conservation Center, Paris, France Abstract 2Biodiversity Conservation, Thanh Hoa 1. Next to cetaceans and megafishes, freshwater turtles are the most iconic endan- Provincial Forest Protection, Thanh Hoa City, gered freshwater species. Thanh Hoa Province, Vietnam 3Alliance for Environment and Rural 2. A detailed questionnaire survey conducted with more than 100 individuals from Development (AERD), Juba, South Sudan fishing communities in northern Vietnam was used to investigate the current sta- 4 Department of Environmental and Chemical tus of Southeast Asian turtles and provides new hope concerning the survival of Engineering, University of Calabria, Arcavacata di Rende, Cosenza, Italy Rafetus swinhoei, for which recent official records in the wild are limited to a single 5Department of Geography, University of individual in Vietnam. Leicester, Leicester, UK 3. The survey included the entire Vietnamese portion of the Da River in Hoa Binh 6Vietnam National University of Forestry, Hanoi, Vietnam and Son La provinces, as well as the Chu and Ma river system in Thanh Hoa 7Institute for Development, Ecology, Province, as they are the last sites where the world's rarest and largest Asian soft- Conservation and Cooperation, Rome, Italy shell turtle has been seen.
    [Show full text]
  • Presence on Native Snail and Bivalve Populations
    Ellman 1 Impacts of Chinese mystery snail (Cipangopaludina chinensis) presence on native snail and bivalve populations BIOS 35502-01: Practicum in Field Biology Michael Ellman Mentor: Shannon Jones 2019 Ellman 2 Abstract The Chinese mystery snail (Cipangopaludina chinensis, or CMS), a species native to East Asia, has become widely established in the United States and may be negatively impacting native snail populations, while its effects on native freshwater bivalves are unknown. My study examined the influence of CMS on survivorship of native snails and bivalves with exclusion cages on two creeks in the Upper Peninsula of Michigan. There were no significant differences in native snail or bivalve populations between cages with snail populations left intact and populations with CMS removed, indicating either a flaw in experimental design or that CMS have no effect on these animals. In addition, there was no significant difference in native snail and CMS populations between different mesh sizes used to attempt to exclusively restrict movement of CMS. However, bivalve populations were found to be significantly higher in Tenderfoot Creek than in Brown Creek, perhaps due to the open vegetation and substrate composition in the part of Tenderfoot Creek tested. Native snail and bivalve populations were found to be higher in exclusion cages than in similar unfenced areas, possibly due to lower water flow rate in the cages. As the effect of CMS on native snails and bivalves could not be determined, conservation efforts should not be altered from current practices for now. Further studies could focus on mesocosm experiments involving CMS impact on native snail and bivalve communities and examine bivalve populations across habitat types.
    [Show full text]
  • Shrimp Fisheries in Selected Countries 155
    PART 2 SHRIMP FISHERIES IN SELECTED COUNTRIES 155 Shrimp fishing in Australia AN OVERVIEW Australia is greatly involved in shrimp21 fishing and its associated activities. Shrimp fishing occurs in the tropical, subtropical and temperate waters of the country, and ranges in scale from recreational fisheries to large-scale operations using vessels of up to 40 m in length. Australia also produces shrimp from aquaculture and is involved in both the export and import of shrimp in various forms. Many Australian shrimp fisheries are considered to be extremely well managed and a model for other countries to emulate. Moreover, the availability of recent information on Australian shrimp fishing and management issues is excellent. DEVELOPMENT AND STRUCTURE The main Australian shrimp fisheries can be roughly divided by area and management responsibility.22 Ten major shrimp fisheries are recognized in the national fisheries statistics (ABARE, 2005). Summary details on these fisheries are given in Table 20. The nomenclature of the main species of Australian shrimp is given in Table 21. Some of the more significant or interesting Australian shrimp fisheries are described below. TABLE 20 Main shrimp fisheries in Australia Fishery Species listed Main method Fishing units Commonwealth Northern Prawn Banana, tiger, endeavour and king Otter trawling 96 vessels prawns Commonwealth Torres Strait Prawn Prawns Otter trawling 70 vessels New South Wales Ocean Prawn Trawl Eastern king prawns Trawling 304 licence holders Queensland East Coast Otter Trawl Tiger, banana,
    [Show full text]
  • Transplantation of Icefish (Salangidae) in China: Glory Or
    Reviews in Aquaculture (2015) 7, 13–27 doi: 10.1111/raq.12047 Transplantation of Icefish (Salangidae) in China: Glory or Disaster? Bin Kang1, Junming Deng2, Zhongming Wang3 and Jie Zhang4 1 Fisheries College, Jimei University, Xiamen, China 2 College Animal Science & Technology, Yunnan Agriculture University, Kunming, China 3 Marine Fisheries Research Institute of Zhejiang, Zhoushan, China 4 Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China Correspondence Abstract Bin Kang, Fisheries College, Jimei University, No. 43, Yindou Road, Jimei District, Xiamen China has a long history of aquaculture, and it contributes the largest aquaculture 361021, China. Email: [email protected] production worldwide. Aside from expanding aquaculture area and maximizing unit yield, introducing new potential species is greatly encouraged. Icefish (Salan- Jie Zhang, Institute of Zoology, Chinese gidae) from Taihu Lake have been introduced into other lakes and reservoirs Academy of Sciences, No. 1, Beichen West throughout the country since 1979. Neosalanx tangkahkeii was introduced into Road, Chaoyang District, Beijing 100101, the southern part of China, and Protosalanx chinensis was introduced into the China. Email: [email protected] northern part of China, and both species have been introduced into a small part Received 28 April 2013; accepted 7 August of central China and Yunnan Province in southwest China. Only one-third of the 2013. transplantation was successful, and most of their yields experienced a burst-down course. Intrinsic traits of icefish including annual life cycle, higher fecundity, lower trophic level, together with sufficient environment capacity supported the population forming and burst, while overfishing, pollution and short of food could result in the failure of the transplantation.
    [Show full text]
  • Genetic Variations of Lansium Domesticum Corr
    BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 6, November 2018 E-ISSN: 2085-4722 Pages: 2252-2274 DOI: 10.13057/biodiv/d190634 Ichthyofauna checklist (Chordata: Actinopterygii) for indicating water quality in Kampar River catchment, Malaysia CASEY KEAT-CHUAN NG♥, PETER AUN-CHUAN OOI, WEY-LIM WONG, GIDEON KHOO♥♥ Faculty of Science, Universiti Tunku Abdul Rahman. Jl. Universiti Bandar Barat, 31900 Kampar, Perak, Malaysia. Tel.: +605-4688888, Fax.: +605-4661313. ♥email: [email protected], ♥♥ [email protected] Manuscript received: 18 August 2018. Revision accepted: 12 November 2018. Abstract. Ng CKC, Ooi PAC, Wong WL, Khoo G. 2018. Ichthyofauna checklist (Chordata: Actinopterygii) for indicating water quality in Kampar River catchment, Malaysia. Biodiversitas 19: 2252-2274. The limnological habitats are receptors of pollution, thus local fish species richness is a plausible biological indicator to reflect the quality of a particular water body. However, database on species occurrence that corresponds with the water physico-chemistry constituents is often not available. The problem is compounded by the lack of species identification description to assist those working on river and freshwater resource conservation projects. This paper attempts to fill the gaps in the context of Kampar River drainage. Based on sampling exercises conducted from October 2015 to March 2017, an annotated list with visual data for 56 species belonging to 44 genera and 23 families is presented. The water physico-chemistry data is also summarized with the corresponding visual data of limnological zones studied. The species diversity results are further compared with other local drainages and the correlation between area size and their relationship is expressed by y = 17.627e0.0601x.
    [Show full text]