Semantic Web and Exam Preparation

Total Page:16

File Type:pdf, Size:1020Kb

Semantic Web and Exam Preparation Intelligent Systems Semantic Web and Exam Preparation © Copyright @2009 Dieter Fensel and Mick Kerrigan 1 Where are we? # Title 1 Introduction 2 Propositional Logic 3 Predicate Logic 4 Theorem Proving, Description Logics and Logic Programming 5 Search Methods 6 CommonKADS 7 Problem Solving Methods 8 Planning 9 Agents 10 Rule Learning 11 Inductive Logic Programming 12 Formal Concept Analysis 13 Neural Networks 14 Semantic Web and Exam Preparation 2 Agenda • Semantic Web - Data • Motivation • Technical Solution: URI, RDF, RDFS, OWL, SPARQL • Illustration by Larger Examples: KIM Browser Plugin, Disco Hyperdata Browser • Extensions: Linked Open Data • Semantic Web – Processes • Motivation • Technical Solution: Semantic Web Services, WSMO, WSML, SEE, WSMX • Illustration by Larger Examples: SWS Challenge, Virtual Travel Agency • Extensions: WSMX at work • Conclusions 3 3 SEMANTIC WEB - DATA 4 4 MOTIVATION 5 5 Motivation • If the Web is about the global networking of data through URL, HTML, and HTTP… • … the Semantic Web is about the global networking of knowledge through URI, RDF, and SPARQL • This knowledge can be an annotation of Web data (this picture depicts Innsbruck) or just for knowledge‘s sake (Innsbruck is a city in Austria) • Structured data: – is a key towards Artificial Intelligence – is background knowledge – enables formal reasoning 6 6 TECHNICAL SOLUTIONS 7 7 Uniform Resource Identifier Taken from http://www.w3.org/TR/webarch/ 8 RDF • URIs are used to identify resources, not just things that exists on the Web, e.g. Dieter Fensel, University of Innsbruck • RDF is used to make statements about resources in the form of triples <entity, property, value> ex:father-of ex:john ex:bill ex:father-of ex:bill ex:tom • Results in the creation of a labeled directed graph 9 9 RDFS • RDFS is a language for defining RDF types • Define Classes – #Student is a class • Relationships between classes – #Student is a sub-class of #Person • Properties of classes – #Person has a property hasName – hasName has a domain of Person and a range of a string literal – Can define relationship between properties with rdfs:subPropertyOf rdf:type ex:john ex:student ex:hasName “John Smith” 10 10 RDFS Example 11 11 OWL • The limitation of RDFS is that it only allows binary relations • OWL provides an ontology language, that is a more expressive Vocabulary Definition Language for use with RDF – Class membership – Equivalance of classes – Consistency – Classification • OWL is layered into languages of different expressiveness – OWL Lite: Classification Hierarchies, Simple Constraints – OWL DL: Maximal expressiveness while maintaining tractability – OWL Full: Very high expressiveness, loses tractability, all syntactic freedom of RDF • More expressive means harder to reason with 12 12 SPARQL • SPARQL is an RDF Query Language • Uses a SQL-like syntax • Example: Find the names of all the Students PREFIX ex <http://www.example.org/> PREFIX rdfs <http://www.w3.org/1999/02/22-rdf-syntax-ns#> SELECT ?name ?name FROM <http://www.uibk.ac.at/students> WHERE{ ?x rdfs:type ex:student. John Smith ?x ex:hasName ?name. } Tom Johnson Bill Thompson 13 13 ILLUSTRATION BY LARGER EXAMPLES 14 14 Illustration 1 – KIM Browser Plugin • KIM Browser Plugin Web content is annotated using ontologies Content can be searched and browsed intelligently Select one or more concepts from the ontology… … send the currently loaded web page to the Annotation Server Annotated Content 15 15 Illustration 2 – Disco Hyperdata Browser Dereferencable Disco Hyperdata Browser URI navigating the Semantic Web as an unbound set of data sources 16 16 EXTENSIONS 17 17 Extensions: Linked Open Data • Linked Data is a method for exposing and sharing connected data via dereferenceable URI’s on the Web – Use URIs to identify things that you expose to the Web as resources – Use HTTP URIs so that people can locate and look up (dereference) these things – Provide useful information about the resource when its URI is dereferenced – Include links to other, related URIs in the exposed data as a means of improving information discovery on the Web • Linked Open Data is an initiative to interlink open data sources – Open: Publicly available data sets that are accessible to everyone – Interlinked: Datasets have references to one another allowing them to be used together 18 18 Extensions: Linked Open Data 19 19 Extensions: Linked Open Data - FOAF • Friend Of A Friend (FOAF) provides a way to create machine-readable pages about: – People – The links between them – The things they do and create • Anyone can publish a FOAF file on the web about themselves and this data becomes part of the Web of Data <foaf:Person> <foaf:name>Dieter Fensel</foaf:name> <foaf:homepage rdf:resource="http://www.fensel.com"/> </foaf:Person> • FOAF is connected to many other data sets, including – Data sets describing music and musicians (Audio Scrobbler, MusicBrainz) – Data sets describing photographs and who took them (Flickr) – Data sets describing places and their relationship (GeoNames) 20 20 Extensions: Linked Open Data - GeoNames • The GeoNames Ontology makes it possible to add geospatial semantic information to the Web of Data • We can utilize GeoNames location within the FOAF profile <foaf:Person> <foaf:name>Dieter Fensel</foaf:name> <foaf:homepage rdf:resource="http://www.fensel.com"/> <foaf:based_near ” http://ws.geonames.org/rdf?geonameId=2775220"/> </foaf:Person> • GeoNames is also linked to more datasets – US Census Data – Movie Database (Linked MDB) – Extracted data from Wikipedia (DBpedia) 21 21 Extensions: Linked Open Data - DBpedia • DBpedia is a community effort to extract structured information from Wikipedia and to make this information available on the Web • As our FOAF profile has been linked to GeoNames, and GeoNames is linked to DBpedia, we can ask some interesting queries over the Web of Data – What is the population of the city in which Dieter Fensel lives? => 117916 people – At which elevation does Dieter Fensel live? => 574m – Who is the mayor of the city in which Dieter Fensel lives => Hilde Zach 22 22 SEMANTIC WEB - PROCESSES 23 23 MOTIVATION 24 24 Motivation • The Web is moving from static data to dynamic functionality – Web services: a piece of software available over the Internet, using standardized XML messaging systems over the SOAP protocol – Mashups: The compounding of two or more pieces of web functionality to create powerful web applications – Significant growth of Web APIs • 1.100 Web APIs on ProgrammableWeb.com (including SOAP and REST APIs) • 3.700 Mashups on ProgrammableWeb.com (combining Web APIs from one or more sources • Examples: – Amazon Web Services – iGoogle – Yahoo Pipes – RSS Feeds 25 25 25 Motivation 26 26 Motivation • Web services and mashups are limited by their syntactic nature • As the amount of services on the Web increases it will be harder to find Web services in order to use them in mashups • The current amount of human effort required to build applications is not sustainable at a Web scale 27 27 TECHNICAL SOLUTIONS 28 28 Semantic Web Services • Brings the benefits of Semantics to the executable part of the Web – Ontologies as data model – Unambiguous definition of service functionality and external interface • Reduce human effort in integrating services in SOA – Many tasks in the process of using Web services can be automated • Improve dynamism – New services available for use as they appear – Service Producers and Consumers don’t need to know of each others existence • Improve stability – Service interfaces are not tightly integrated so even less impact from changes – Services can be easily replaced if they are no longer available – Failover possibilities are limited only by the number of available services 29 29 Semantic Web Services • Semantic Web Services are a layer on top of existing Web service technologies and do not aim to replace them • Provide a formal description of services, while still being compliant with existing and emerging technologies • Distinguish between a Web service (computational entity) and a service (value provided by invocation) • Make Web services easier to: – Find – Compare – Compose – Invoke 30 30 Technical Overview Conceptual Model for SWS Formal Language for WSMO Execution Environment Ontology & Rule Language For SWS for the Semantic Web 31 31 WSMO – Design Principles Web Service versus Service Strict Decoupling Ontology-Based of Modeling Elements WSMO Centrality of Ontological Role Mediation Separation Description versus Implementation 32 32 WSMO – Conceptual Model Objectives that a client wants to achieve by using Web Services Formally specified Semantic description terminology used of Web Services by all other • Capability (functional)‏ components • Interfaces (usage) Connectors between components with mediation facilities for handling heterogeneities 33 33 WSML – Language Family WSML - Full WSML - Rule with WSML - DL f without Expressivity WSML - Flight WSML - Core 34 34 Semantic Execution Environment Seman(c Execuon Environment verScal broker Discovery Ranking Selecon Composion Data MediaSon Process MediaSon Process Liing & Monitoring Execuon Lowering base Reasoning Storage 35 35 Semantic Execution Environment - WSMX 36 36 ILLUSTRATION BY LARGER EXAMPLES 37 37 Receives a customer id Illustration 1: SWS Challenge and returns a full customer description id Purchase Order cid openOrder Purchase Order Confirmation addItem* closeOrder Blue Company can only send POs and • Blue companyreceive has PO discovered Moon company on the Web Confirmations
Recommended publications
  • Semantic Web and Services
    Where are we? Artificial Intelligence # Title 1 Introduction 2 Propositional Logic 3 Predicate Logic 4 Reasoning 5 Search Methods Semantic Web and 6 CommonKADS 7 Problem-Solving Methods 8 Planning Services 9 Software Agents 10 Rule Learning 11 Inductive Logic Programming 12 Formal Concept Analysis 13 Neural Networks 14 Semantic Web and Services © Copyright 2010 Dieter Fensel, Mick Kerrigan and Ioan Toma 1 2 Agenda • Semantic Web - Data • Motivation • Development of the Web • Internet • Web 1.0 • Web 2.0 • Limitations of the current Web • Technical Solution: URI, RDF, RDFS, OWL, SPARQL • Illustration by Larger Examples: KIM Browser Plugin, Disco Hyperdata Browser • Extensions: Linked Open Data • Semantic Web – Processes • Motivation • Technical Solution: Semantic Web Services, WSMO, WSML, SEE, WSMX SEMANTIC WEB - DATA • Illustration by Larger Examples: SWS Challenge, Virtual Travel Agency, WSMX at work • Extensions: Mobile Services, Intelligent Cars, Intelligent Electricity Meters • Summary • References 3 3 4 4 1 MOTIVATION DEVELOPMENT OF THE WEB 5 5 6 Development of the Web 1. Internet 2. Web 1.0 3. Web 2.0 INTERNET 7 8 2 Internet A brief summary of Internet evolution Age of eCommerce Mosaic Begins WWW • “The Internet is a global system of interconnected Internet Created 1995 Created 1993 Named 1989 computer networks that use the standard Internet and Goes Protocol Suite (TCP/IP) to serve billions of users TCP/IP TCP/IP Created 1984 ARPANET 1972 worldwide. It is a network of networks that consists of 1969 Hypertext millions of private
    [Show full text]
  • Linked Data - the Story So Far
    Linked Data - The Story So Far Christian Bizer, Freie Universität Berlin, Germany Tom Heath, Talis Information Ltd, United Kingdom Tim Berners-Lee, Massachusetts Institute of Technology, USA This is a preprint of a paper to appear in: Heath, T., Hepp, M., and Bizer, C. (eds.). Special Issue on Linked Data, International Journal on Semantic Web and Information Systems (IJSWIS). http://linkeddata.org/docs/ijswis-special-issue Abstract The term Linked Data refers to a set of best practices for publishing and connecting structured data on the Web. These best practices have been adopted by an increasing number of data providers over the last three years, leading to the creation of a global data space containing billions of assertions - the Web of Data. In this article we present the concept and technical principles of Linked Data, and situate these within the broader context of related technological developments. We describe progress to date in publishing Linked Data on the Web, review applications that have been developed to exploit the Web of Data, and map out a research agenda for the Linked Data community as it moves forward. Keywords: Linked Data, Web of Data, Semantic Web, Data Sharing, Data Exploration 1. Introduction The World Wide Web has radically altered the way we share knowledge by lowering the barrier to publishing and accessing documents as part of a global information space. Hypertext links allow users to traverse this information space using Web browsers, while search engines index the documents and analyse the structure of links between them to infer potential relevance to users' search queries (Brin & Page, 1998).
    [Show full text]
  • The Point of View Axis: Varying the Levels of Explanation Within a Generic RDF Data Browsing Environment
    The Point of View Axis: Varying the Levels of Explanation Within a Generic RDF Data Browsing Environment Oshani Seneviratne [email protected] Tim Berners-Lee [email protected] Decentralized Information Group, MIT Computer Science and Artificial Intelligence Laboratory 1. Introduction 3. Panes in Tabulator RDF is at the heart of the Semantic Web as it is the primary Tabulator is capable of generic data browsing, but goes means by which applications can share data and interoper- one step further by allowing users to exploit the RDF data ate. Tabulator is a generic data browser and editor for linked browsing and editing capabilities to build custom applica- RDF data on the web. It was developed with the motiva- tions through a ’Pane’. tion of providing a natural and a seamless experience for browsing and editing data (Tim Berners-Lee, 2008). This paper describes how Tabulator can be used to develop cus- tom applications which consume RDF data, in addition to providing a generic data browsing and editing environment. The goal is to make sure that the end-user has the ability to view the RDF data in a visualization that is most suitable given the nature of the data. The paper is structured as follows. We begin by describ- ing some related work in Section 2. Section 3 gives an overview of the Pane System in Tabulator, and then in Sec- tion 4, we give an example where Tabulator can be used to provide varying levels of explanations through The Justi- fication User Interface. We then give a short overview of our future work in Section 5, and conclude the paper with a discussion of our results in Section 6.
    [Show full text]
  • Second Year Report
    UNIVERSITY OF SOUTHAMPTON Web and Internet Science Research Group Electronics and Computer Science A mini-thesis submitted for transfer from MPhil toPhD Supervised by: Prof. Dame Wendy Hall Prof. Vladimiro Sassone Dr. Corina Cîrstea Examined by: Dr. Nicholas Gibbins Dr. Enrico Marchioni Co-Operating Systems by Henry J. Story 1st April 2019 UNIVERSITY OF SOUTHAMPTON ABSTRACT WEB AND INTERNET SCIENCE RESEARCH GROUP ELECTRONICS AND COMPUTER SCIENCE A mini-thesis submitted for transfer from MPhil toPhD by Henry J. Story The Internet and the World Wide Web are global engineering projects that emerged from questions around information, meaning and logic that grew out of telecommunication research. It borrowed answers provided by philosophy, mathematics, engineering, security, and other areas. As a global engineering project that needs to grow in a multi-polar world of competing and cooperating powers, such a system must be built to a number of geopolitical constraints, of which the most important is a peer-to-peer architecture, i.e. one which does not require a central power to function, and that allows open as well as secret communication. After elaborating a set of geopolitical constraints on any global information system, we show that these are more or less satisfied at the raw-information transmission side of the Internet, as well as the document Web, but fails at the Application web, which currently is fragmented in a growing number of large systems with panopticon like architectures. In order to overcome this fragmentation, it is argued that the web needs to move to generalise the concepts from HyperText applications known as browsers to every data consuming application.
    [Show full text]
  • Hyperdata: Update Apis for RDF Data Sources (Vision Paper)⋆
    Hyperdata: Update APIs for RDF Data Sources (Vision Paper)? Jacek Kopeck´y Knowledge Media Institute, The Open University, UK [email protected] Abstract. The Linked Data effort has been focusing on how to publish open data sets on the Web, and it has had great results. However, mech- anisms for updating linked data sources have been neglected in research. We propose a structure for Linked Data resources in named graphs, con- nected through hyperlinks and self-described with light metadata, that is a natural match for using standard HTTP methods to implement application-specific (high-level) public update APIs. 1 Vision A major function of Web APIs is to give users a way to contribute to data sources (whether they be social networks, photo sharing sites, or anything else) through rich scripted web sites, rather than through simple web forms, and also through external (even 3rd-party) tools. Facebook API, Flickr API and so on, support interactive Web interfaces as well as mobile apps or desktop tools. Some of the data in these apps then gets published as Linked Data, a machine- friendly representation suitable for combining with other data. Commonly, there is a technologies disconnect, though, between the Linked Data read-only view on the data source (which employs RDF and URIs), and the update APIs (with JSON or XML, and non-URI identifiers). In this paper, we describe a vision of hyperdata1 | data that is not only hyperlinked and self-describing in terms of its schema, but also self-describing on how it can be updated.
    [Show full text]
  • The Web of Linked Data
    WebDB 2010 June 6th, 2010, Indianapolis, USA The Web of Linked Data A global public dataspace on the Web Christian Bizer Freie Universität Berlin Christian Bizer: The Web of Linked Data (6/6/2010) Outline 1. Foundations of Dataspaces and Linked Data Where do they overlap? 2. The Web of Linked Data What data is out there? 3. Linked Data Applications What i s b ei ng d one with the da ta? 4. Remarks on Identity Self-descriptive Data Pay-as-you-go Integration Christian Bizer: The Web of Linked Data (6/6/2010) The Dataspace Vision Alternative to classic data integration systems in order to cope with growing number of data sources. PtifdtProperties of dataspaces may contain any kind of data (structured, semi-structured, unstructured) require no upfront investment into a global schema provide for data-coexistence give best-effort answers to queries rely on pay-as-you-go data integration Franklin, M ., Halevy , A ., and Maier , D .: From Databases to Dataspaces A new Abstraction for Information Management, SIGMOD Rec. 2005. Christian Bizer: The Web of Linked Data (6/6/2010) Dataspace Architecture Source: Franklin et al: From Databases to Dataspaces,Christian Bizer: The SIGMOD Web of Linked Rec. Data (6/6/2010)2005. Linked Data Principles Set of best practices for publishing structured data on the Web in accordance with the general architecture of the Web. 1. Use URIs as names for things. 2. Use HTTP URIs so that people can look up those names. 3. When someone looks up a URI, provide useful RDF information. 4.
    [Show full text]
  • Interacting with Semantic Web Data Through an Automatic Information Architecture Josep Maria Brunetti Fernández
    Nom/Logotip de la Universitat on s’ha llegit la tesi Interacting with Semantic Web Data through an Automatic Information Architecture Josep Maria Brunetti Fernández Dipòsit Legal: L.313-2014 http://hdl.handle.net/10803/131223 Interacting with semantic web data throught an automatic information architecture està subjecte a una llicència de Reconeixement-NoComercial-CompartirIgual 3.0 No adaptada de Creative Commons (c) 2013, Josep Maria Brunetti Fernández Universitat de Lleida Escola Polit`ecnicaSuperior Interacting with Semantic Web Data through an Automatic Information Architecture by Josep Maria Brunetti Fern´andez Thesis submitted to the University of Lleida in fulfillment of the requirements for the degree of Doctor in Computer Science Under supervision of PhD Roberto Garc´ıaGonz´alez Lleida, December 2013 Acknowledgments Voldria mostrar el meu agra¨ıment a totes aquelles persones que han col laborat d’una · manera o altra amb aquesta tesis. I despr´es d’escriure tantes p`agines en angl`es, voldria fer-ho en catal`a. Al cap i a la fi, si en aquesta mem`oria hi ha una petita part on puc expressar lliurement all`oque sento, ´es aqu´ı; i no tinc millor manera de fer-ho que en catal`a, perqu`e´es la meva llengua materna i ´es amb la que millor m’expresso. Tot i que alguns es capfiquin en canviar-li el nom o intentin reduir-ne el seu ´us, som moltes persones les que parlem en catal`a i seguirem fent-ho. Nom´es demanem que es respecti com qualsevol altra llengua. En primer lloc, el meu m´es sincer agra¨ıment al Roberto Garc´ıa, director d’aquesta tesis.
    [Show full text]
  • Introduction to Semantic Web Technologies & Linked Data
    IntroductionIntroduction toto SemanticSemantic WebWeb TechnologiesTechnologies && LinkedLinked DataData OktieOktie HassanzadehHassanzadeh UniversityUniversity ofof TorontoToronto March 2011 CS 443: Database Management Systems - Winter 2011 Outline 2 Introduction Semantic Web Technologies Resource Description Framework (RDF) Querying RDF data (SPARQL) Linked Data Linked Data Principles Linking Open Data Community Project Example Data Sources Example Applications 3 Introduction Web of Documents vs. Web of Data Web of Documents 4 Untyped Untyped Untyped Links Links Links API/ HTML HTML HTML XML A B C D Primary objects: documents Links between documents (or parts of them) Degree of structure in data: fairly low Implicit semantics of contents Designed for: human consumption Based on presentations by Chris Bizer, Richard Cyganiak, Tom Heath, available at http://linkeddata.org/guides-and-tutorials Web of Documents: Problem 5 ? thing thing Are two documents talking about the same ? ? “thing”? ? ? ? Untyped Untyped Untyped Links Links Links API/ HTML HTML HTML XML A B C D Based on presentations by Chris Bizer, Richard Cyganiak, Tom Heath, available at http://linkeddata.org/guides-and-tutorials Example Query 6 Elvis Presley 1935 - 1977 Will there ever be someone like him again? Based on presentation by Lauw, Schenkel, Suchanek, Theobald and Weikum, available at http://www.mpi-inf.mpg.de/yago-naga/CIKM10-tutorial/ Example Query 7 Another Elvis Elvis Presley: The Early Years Elvis spent more weeks at the top of the charts than any other artist. www.fiftiesweb.com/elvis.htm Based on presentation by Lauw, Schenkel, Suchanek, Theobald and Weikum, available at http://www.mpi-inf.mpg.de/yago-naga/CIKM10-tutorial/ Example Query 8 Another singer called Elvis, young Personal relationships of Elvis Presley – Wikipedia ...when Elvis was a young teen...
    [Show full text]
  • Approaches to Visualising Linked Data: a Survey
    Semantic Web 1 (2011) 1–2 1 IOS Press Approaches to Visualising Linked Data: A Survey Editor(s): Krzysztof Janowicz, Pennsylvania State University, USA Solicited review(s): Anthony Robinson, Pennsylvania State University, USA; Sarven Capadisli, National University of Ireland, Ireland Aba-Sah Dadzie a,∗ and Matthew Rowe b a OAK Group, Department of Computer Science, Regent Court, University of Sheffield, Sheffield, United Kingdom E-mail: [email protected] b Knowledge Media Institute, The Open University, Milton Keynes, United Kingdom E-mail: [email protected] Abstract. The uptake and consumption of Linked Data is currently restricted almost entirely to the Semantic Web community. While the utility of Linked Data to non-tech savvy web users is evident, the lack of technical knowledge and an understanding of the intricacies of the semantic technology stack limit such users in their ability to interpret and make use of the Web of Data. A key solution in overcoming this hurdle is to visualise Linked Data in a coherent and legible manner, allowing non-domain and non-technical audiences to obtain a good understanding of its structure, and therefore implicitly compose queries, identify links between resources and intuitively discover new pieces of information. In this paper we describe key requirements which the visualisation of Linked Data must fulfil in order to lower the technical barrier and make the Web of Data accessible for all. We provide an extensive survey of current efforts in the Semantic Web community with respect to our requirements, and identify the potential for visual support to lead to more effective, intuitive interaction of the end user with Linked Data.
    [Show full text]
  • Exposing the Seadatanet Metadata Catalogues Via SPARQL Endpoints
    Exposing the SeaDataNet metadata catalogues via SPARQL endpoints CHRIS WOOD1,2, ALEXANDRA KOKKINAKI1, ADAM LEADBETTER3, ROB THOMAS3 1: BRITISH OCEANOGRAPHIC DATA CENTRE, UK 2: (NOW AT) EPCC, UNIVERSITY OF EDINBURGH, UK 3:MARINE INSTITUTE, IRELAND Why? In general terms, your research data should be 'FAIR', that is Findable, Accessible, Interoperable and Re-usable. • “H2020 Programme Guidelines on FAIR Data Management in Horizon 2020” Wilkinson, Mark D., Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg et al. "The FAIR Guiding Principles for scientific data management and stewardship." Scientific Data 3 (2016). IMDIS 2018 - Barcelona, 5-7 November Why? IMDIS 2018 - Barcelona, 5-7 November Why? Why? SPARQL is to Linked Data (graph data) what SQL is to relational databases • W3C standard query language for Resource Description Framework (RDF) data • sparql endpoints are publicly available-accessible • can all be queried in one standard language, SPARQL IMDIS 2018 - Barcelona, 5-7 November Background World wide web is evolving from hypertext links (link documents) to hyperdata links (linking data) “The Semantic Web isn't just about putting data on the web. It is about making links, so that a person or machine can explore the web of data. With Linked Data, when you have some of it, you can find other, related, data.” • Sir Tim Berners-Lee, 2006 IMDIS 2018 - Barcelona, 5-7 November Background 1. Use URIs as names for things 2. Use HTTP URIs so that people can look up those names 3. When someone looks up a URI, provide useful information using the standards (RDF, SPARQL) 4.
    [Show full text]
  • An Entity Retrieval Model
    Searching Web Data: an Entity Retrieval Model Renaud Delbru Supervisor: Dr. Giovanni Tummarello Internal Examiner: Prof. Stefan Decker External Examiner: Dr. J´er^omeEuzenat External Examiner: Dr. Fabrizio Silvestri Dissertation submitted in pursuance of the degree of Doctor of Philosophy Digital Enterprise Research Institute Galway National University of Ireland, Galway / Ollscoil na hEireann,´ Gaillimh December 14, 2011 Abstract More and more (semi) structured information is becoming available on the Web in the form of documents embedding metadata (e.g., RDF, RDFa, Microformats and others). There are already hundreds of millions of such documents accessible and their number is growing rapidly. This calls for large scale systems providing effective means of searching and retrieving this semi-structured information with the ultimate goal of making it exploitable by humans and machines alike. This dissertation examines the shift from the traditional web doc- ument model to a web data object (entity) model and studies the challenges and issues faced in implementing a scalable and high per- formance system for searching semi-structured data objects on a large heterogeneous and decentralised infrastructure. Towards this goal, we define an entity retrieval model, develop novel methodologies for sup- porting this model, and design a web-scale retrieval system around this model. In particular, this dissertation focuses on the following four main aspects of the system: reasoning, ranking, indexing and querying. We introduce a distributed reasoning framework which is tolerant against low data quality. We present a link analysis approach for computing the popularity score of data objects among decentralised data sources. We propose an indexing methodology for semi-structured data which offers a good compromise between query expressiveness, query processing and index maintenance compared to other approaches.
    [Show full text]
  • How to Publish Linked Data on the Web
    How to Publish Linked Data on the Web Tom Heath, Michael Hausenblas, Chris Bizer, Richard Cyganiak, Olaf Hartig Half-day Tutorial at ISWC2008 27th October 2008, Karlsruhe, Germany Objectives Introduce the concept of Linked Data Highlight why you would want to publish Linked Data on the Web Introduce the principles and best practices of publishing Linked Data on the Web Provide an in-depth understanding of the technical design decisions required when publishing Linked Data Demonstrate the consumption of Linked Data from the Web Look ahead to the future Answer your burning Linked Data publishing questions Tutorial Schedule 09:00 – 09:10 Opening 09:10 – 09:40 Introduction: What and Why 09:40 – 10:30 Publishing Linked Data on the Web: How 10:30 – 11:00 Coffee Break 11:00 – 11:40 Publishing Linked Data on the Web: How 11:40 – 12:00 Consuming Linked Data from the Web 12:00 – 12:10 Conclusions and Outlook 12:10 – 12:30 Discussion and Linked Data Clinic ISWC 2008, Tutorial on How to Publish Linked Data on the Web Introduction: What and Why Christian Bizer Freie Universität Berlin Karlsruhe. October 27, 2008 Christian Bizer: How to Publish Linked Data on the Web - Introduction (10/27/2008) Overview 1. From a Web of Documents to a Web of Data Web APIs, Microformats, and Linked Data 2. Linked Data Deployment on the Web What data is out there? 3. Applications What is being done with the data? Christian Bizer: How to Publish Linked Data on the Web - Introduction (10/27/2008) The Classic Web Single global information space Web Search 2.
    [Show full text]