Protein.Spotlight a Question of Perspective

Total Page:16

File Type:pdf, Size:1020Kb

Protein.Spotlight a Question of Perspective Issue 168, April 2015 www.proteinspotlight.org Issue 168 Protein.Spotlight e838 a question of perspective Vivienne Baillie Gerritsen Paradigms are meant to be broken. In the 1980s, biology students were taught “the one gene = one protein” dogma which has since stepped down from its pedestal, as we now know that one gene, by way of any number of post-translational modifications on the protein sequence, can actually give rise to more than one protein. Or what would be more correct: to more than one function. In the same way, structural biologists are beginning to realise that proteins are not always stable bu t that a significant amount exist in particularly unstable forms – which has given them the name “disordered proteins”. Until recently, proteins were thought to fold up into thermodynamically stable forms before getting on with what they had to do. Now we know that it is not necessarily the case. Eukaryotic translation initiation factor 4E- binding protein 2, for instance, is one such disordered protein whose lack of stability gives rise to a new kind of biological regulation. But it took a further 20 years for such a notion to become popular. This is because of the angle from which structural biologists have been observing proteins. It is not an easy task to predict the kinetics and thermodynamics underlying the conformational states of a protein – not to mention those driving its catalytic reactions and binding properties. So, as is the case in scientific research, biologists set a basis from which they can make powerful correlations. In this case, low energy states and a limited number of combinations of macromolecules which provided links between the 3D conformation of proteins and by Jodee Knowles their functions. However, it is becoming Courtesy of the artist increasingly apparent that proteins carry out their business at higher energy states. Which is beginning to push the initial dogma over the cliff. Strangely enough, until the early 1950s, scientists believed that proteins were particularly malleable This just goes to show how paradigms – though entities. Then along came the pioneering work on necessary – can impede scientific progress by the necessity for two fragments of a ribonuclease to keeping the understanding of some phenomena bind tightly for it to be effective, and scientists within certain limits until other parameters, which began to produce the first crystal structures of researchers cannot ignore anymore, emerge and the proteins. Ever since, a stable 3D conformation was paradigm is interrupted and takes a jump forward. considered to be the ideal state for a protein to The low energy paradigm gave huge insight – and function. However, in 1986 already, a handful of over a long period – into the biological function of scientists were beginning to realise that perhaps a proteins, but it slowed the understanding, or few proteins carried out their existence a little acceptance, of highly dynamic states. differently, and were somewhat unsure as to the stable conformation they wished to adopt. So didn’t Proteins that lead a life in highly dynamic states are really adopt any at all. what has been coined “intrinsically disordered”, because they do not adopt one sole three- dimensional conformation and stick to it, but rather page 1 of 2 (not for indexing) e838 Issue 168 Protein.Spotlight they embrace a series of different conformations – binds to eIF4E very tightly and translation initiation although, from a purely thermodynamic point of is suppressed. view,they embracethey remain a series stable. of different Contrary conformations to expectations, – binds to eIF4E very tightly and translation initiation disorderedalthough, fromproteins a purely are notthermodynamic a rare event; point current of is suppressed.This is the first time researchers have discovered predictionsview, they remainestimate stable. that Contrary15% of tothe expectations, proteome is, that translation initiation can actually be regulated quote,disordered fully disordered!proteins are Hownot ado rare we event;know, currentyou may Thisvia is thethe structuralfirst time polymorphismresearchers have of discovered a protein, itself ask?predictions Thanks estimateto the fieldthat 15%of computational of the proteome biology is, thatmediated translation by initiation phosphorylation can actually – bea novelregulat edmode of andquote, algorithms fully disordered! that are ableHow to do predict we know, disorder… you may via biologicalthe structural modulationpolymorphism ofled a protein,by intrinsicallyitself ask? Thanks to the field of computational biology mediateddisordered by phosphorylation proteins. Disorder – a novel to order mode (andof vice Itand is algorithmshardly surprising that are able that to predict disordered disorder… proteins biologicalversa) involvesmodulation large conformationalled by intrinsically changes in a represent a significant challenge to structural disorderedprotein –proteins. as opposed Disorder to those to orderwhich (and occur vice when the biologists.It is hardly To surprisingcomplicate that matters disordered further proteins they are versa)more involves “common” large conformational ligands bind changes to their in a target notrepresent to be a consideredsignificant challengeonly at tothe structurallevel of proteinproteins – as opposedfor instance. to those EIF4EBP2 which occur is thewhen first the protei n biologists. To complicate matters further they are more “common” ligands bind to their target monomers… Disordered proteins lack perhaps a to have been discovered which undergoes multiple not to be considered only at the level of proteins for instance. EIF4EBP2 is the first protein stablemonomers… tertiary Disorderedstructure but proteins they arelack able perhaps to carr a y to havephosphorylation been discovered bringing which undergoes about multiplean important outstable numerous tertiary biologicalstructure butfunctions, they are especially able to carr thosey phosphorylationconformational bringing change. about an important associatedout numerous with biological signalling, functions, transcription especially regulatio those n, conformational change. cellassociated division with and signalling, differentiation. transcription And, regulatio as for n,the Disordered proteins are shedding light on an entire morecell divisionpopular andstable differentiation. proteins, And,post-translational as for the Disorderednew domain proteins areof sheddingbiology light and on anconcomitantly entire modificationsmore popular (PTMs) stable ofproteins, disordered post-translational proteins are a newshattering domain a oflong-standing biology and dogma. concomitantly They are able to sourcemodifications of additional (PTMs) offunctions. disordered As proteins an example, are a shatteringcarry a outlong-standing multiple dogma. functions They areby able wayto of disorderedsource of proteinadditional Eukaryotic functions. translation As an example, initiatio n carryconformational out multiple plasticity, functions which by itselfway depends of on factordisordered 4E-binding protein protein Eukaryotic 2 (EIF4EBP2) translation isinitiatio involvedn conformationalthe proteins’ plasticity, state ofwhich phosphorylation. itself depends onWhat is infactor the 4E-bindingsuppression protein of cap-dependent2 (EIF4EBP2) is translationinvolved the more,proteins’ given state regions of phosphorylation. within a disordered What protein is are initiation,in the suppression which is ofbrought cap-dependent about bytranslation multiple more,– depending given regions on theirwithin conformation a disordered protein– able toare interact initiation, which is brought about by multiple – depending on their conformation – able to interact phosphorylation of EIF4EBP2. with different target proteins, thus lending the phosphorylation of EIF4EBP2. with different target proteins, thus lending the proteinprotein multispecificity. multispecificity. Biologists Biologists are alsoare also EIF4EBP2EIF4EBP2 isis thethe major neuralneural isoform isoform of of a afamily family beginningbeginning to realiseto realise that disorderedthat disordered proteins proteins are are ofof proteins proteins that that bindbind to aa translationtranslation initiation initiation factor factor probablyprobably at the at heartthe heart of evolution of evolution since theysince offer they offer eIF4EeIF4E – – so so longlong as another initiationinitiation factor factor known known rapidrapid regulatory regulatory complexity. complexity. This couldThis couldexplain explain the the asas eIF4GeIF4G hasn’thasn’t got therethere first!first! BindingBinding or or not not preponderancepreponderance of disordered of disordered proteins proteins in signalling in signalling bindingbinding toto eIF4EeIF4E all hashas toto dodo withwith thethe networksnetworks within within higher higher eukaryotes, eukaryotes, and scientists and scientists conformationconformation ofof EIF4EBP2 whichwhich depends depends on on its its expectexpect them them to be to involved be involved in various in various pathologies, pathologies, phosphorylation;phosphorylation; phosphorylation cancan occuroccur at at especiallyespecially those those characterized characterized by loss by of loss biologica of biological l multiplemultiple sites.sites. When EIF4EBP2EIF4EBP2 is is highlyhighly reactionreaction such such as cancer. as cancer. There There is still is much still tomuch learn to learn phosphorylated,phosphorylated, it is unable toto interact interact with with eIF4E eIF4E, , aboutabout disordered
Recommended publications
  • Analysis of Trans Esnps Infers Regulatory Network Architecture
    Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Anat Kreimer All rights reserved ABSTRACT Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality. This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation.
    [Show full text]
  • 4E-BP2 / EIF4EBP2 Antibody (Aa99-120) Rabbit Polyclonal Antibody Catalog # ALS12947
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 4E-BP2 / EIF4EBP2 Antibody (aa99-120) Rabbit Polyclonal Antibody Catalog # ALS12947 Specification 4E-BP2 / EIF4EBP2 Antibody (aa99-120) - Product Information Application IHC Primary Accession Q13542 Reactivity Human, Mouse, Rat, Pig, Bovine, Dog Host Rabbit Clonality Polyclonal Calculated MW 13kDa KDa 4E-BP2 / EIF4EBP2 Antibody (aa99-120) - Additional Information Anti-EIF4EBP2 / 4EBP2 antibody IHC of Gene ID 1979 human pancreas. Other Names Eukaryotic translation initiation factor 4E-BP2 / EIF4EBP2 Antibody (aa99-120) - 4E-binding protein 2, 4E-BP2, eIF4E-binding Background protein 2, EIF4EBP2 Regulates eIF4E activity by preventing its Target/Specificity assembly into the eIF4F complex. Mediates the Detects 17 and 20 kD proteins, regulation of protein translation by hormones, corresponding to the apparent molecular growth factors and other stimuli that signal mass of PHAS-II and its phosphorylated through the MAP kinase pathway. state on SDS-PAGE immunoblots. 4E-BP2 / EIF4EBP2 Antibody (aa99-120) - Reconstitution & Storage References Short term 4°C, long term aliquot and store at -20°C, avoid freeze thaw cycles. For Pause A.,et al.Nature 371:762-767(1994). maximum product recovery, after thawing, Kalnine N.,et al.Submitted (MAY-2003) to the centrifuge the product vial before removing cap. EMBL/GenBank/DDBJ databases. Dephoure N.,et al.Proc. Natl. Acad. Sci. U.S.A. Precautions 105:10762-10767(2008). 4E-BP2 / EIF4EBP2 Antibody (aa99-120) is Gauci S.,et al.Anal. Chem. for research use only and not for use in 81:4493-4501(2009). diagnostic or therapeutic procedures.
    [Show full text]
  • B Inhibition in a Mouse Model of Chronic Colitis1
    The Journal of Immunology Differential Expression of Inflammatory and Fibrogenic Genes and Their Regulation by NF-␬B Inhibition in a Mouse Model of Chronic Colitis1 Feng Wu and Shukti Chakravarti2 Fibrosis is a major complication of chronic inflammation, as seen in Crohn’s disease and ulcerative colitis, two forms of inflam- matory bowel diseases. To elucidate inflammatory signals that regulate fibrosis, we investigated gene expression changes under- lying chronic inflammation and fibrosis in trinitrobenzene sulfonic acid-induced murine colitis. Six weekly 2,4,6-trinitrobenzene sulfonic acid enemas were given to establish colitis and temporal gene expression patterns were obtained at 6-, 8-, 10-, and 12-wk time points. The 6-wk point, TNBS-w6, was the active, chronic inflammatory stage of the model marked by macrophage, neu- trophil, and CD3؉ and CD4؉ T cell infiltrates in the colon, consistent with the idea that this model is T cell immune response driven. Proinflammatory genes Cxcl1, Ccl2, Il1b, Lcn2, Pla2g2a, Saa3, S100a9, Nos2, Reg2, and Reg3g, and profibrogenic extra- cellular matrix genes Col1a1, Col1a2, Col3a1, and Lum (lumican), encoding a collagen-associated proteoglycan, were up-regulated at the active/chronic inflammatory stages. Rectal administration of the NF-␬B p65 antisense oligonucleotide reduced but did not abrogate inflammation and fibrosis completely. The antisense oligonucleotide treatment reduced total NF-␬B by 60% and down- regulated most proinflammatory genes. However, Ccl2, a proinflammatory chemokine known to promote fibrosis, was not down- regulated. Among extracellular matrix gene expressions Lum was suppressed while Col1a1 and Col3a1 were not. Thus, effective treatment of fibrosis in inflammatory bowel disease may require early and complete blockade of NF-␬B with particular attention to specific proinflammatory and profibrogenic genes that remain active at low levels of NF-␬B.
    [Show full text]
  • Copy Number Variants in Ebstein Anomaly
    RESEARCH ARTICLE Copy number variants in Ebstein anomaly Andreas Giannakou1, Robert J. Sicko2, Wei Zhang1, Paul Romitti3, Marilyn L. Browne4, Michele Caggana2, Lawrence C. Brody5, Laura Jelliffe-Pawlowski6, Gary M. Shaw7, Denise M. Kay2, James L. Mills1* 1 Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America, 2 Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America, 3 Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa, United States of America, 4 Department of Epidemiology and Biostatistics, University at Albany School of Public Health, Rensselaer, New York, United States of America, 5 Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America, 6 California University of California a1111111111 San Francisco School of Medicine, San Francisco, California, United States of America, 7 Department of a1111111111 Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America a1111111111 a1111111111 * [email protected] a1111111111 Abstract OPEN ACCESS Citation: Giannakou A, Sicko RJ, Zhang W, Romitti Background P, Browne ML, Caggana M, et al. (2017) Copy Ebstein anomaly (EA) is a rare congenital defect characterized by apical displacement of number variants in Ebstein anomaly. PLoS ONE 12 (12): e0188168. https://doi.org/10.1371/journal. the septal tricuspid leaflets and atrialization of the right ventricle. The etiology of EA is pone.0188168 unclear; however, recurrence in families and the association of EA with genetic syndromes Editor: Diego Fraidenraich, Rutgers University and copy number variants (CNVs) suggest a genetic component.
    [Show full text]
  • EIF4EBP2 (NM 004096) Human Untagged Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for SC117589 EIF4EBP2 (NM_004096) Human Untagged Clone Product data: Product Type: Expression Plasmids Product Name: EIF4EBP2 (NM_004096) Human Untagged Clone Tag: Tag Free Symbol: EIF4EBP2 Synonyms: 4EBP2; PHASII Vector: pCMV6-XL5 E. coli Selection: Ampicillin (100 ug/mL) Cell Selection: None Fully Sequenced ORF: >OriGene ORF sequence for NM_004096 edited ATGTCCTCGTCAGCCGGCAGCGGCCACCAGCCCAGCCAGAGCCGCGCCATCCCCACCCGC ACCGTGGCCATCAGCGACGCCGCGCAGCTACCTCATGACTATTGCACCACGCCCGGGGGG ACGCTCTTCTCCACCACACCGGGAGGAACTCGAATCATTTATGACAGAAAGTTTCTGTTG GATCGTCGCAATTCTCCCATGGCTCAGACCCCACCCTGCCACCTGCCCAATATCCCAGGA GTCACTAGCCCTGGCACCTTAATTGAAGACTCCAAAGTAGAAGTAAACAATTTGAACAAC TTGAACAATCACGACAGGAAACATGCAGTTGGGGATGATGCTCAGTTCGAGATGGACATC TGA 5' Read Nucleotide >OriGene 5' read for NM_004096 unedited Sequence: NGTAACGGTCAAACATTGTAAACCACTCACTAAAGGCGGCCGCGACATTCGCACGAGGCG GGACGAGGGAAACGGGAGAAGCGAGCGAGGAGCGCGCAGAGCGCGCTTTTCCGTCCGCCT GAGGAGCCGAAGCAGCCCCGGCCCCGCCGCCGCCGCCTGCCCGCCGGACAAAGCCGAGAG CCCGCGCCCACAGCCATGTCCTCGTCAGCCGGCAGCGGCCACCAGCCCAGCCAGAGCCGC GCCATCCCCACCCGCACCGTGGCCATCAGCGACGCCGCGCAGCTACCTCATGACTATTGC ACCACGCCCGGGGGGACGCTCTTCTCCACCACACCGGGAGGAACTCGAATCATTTATGAC AGAAAGTTTCTGTTGGATCGTCGCAATTCTCCCATGGCTCAGACCCCACCCTGCCACCTG CCCAATATCCCAGGAGTCACTAGCCCTGGCACCTTAATTGAAGACTCCAAAGTAGAAGTA AACAATTTGAACAACTTGAACAATCACGACAGGAAACATGCAGTTGGGGATGATGCTCAG TTCGAGATGGACATCTGACTCTCCTGCAAGGATTAGAAGAAAAGCAGCAACACTGATACT
    [Show full text]
  • 1 Novel Expression Signatures Identified by Transcriptional Analysis
    ARD Online First, published on October 7, 2009 as 10.1136/ard.2009.108043 Ann Rheum Dis: first published as 10.1136/ard.2009.108043 on 7 October 2009. Downloaded from Novel expression signatures identified by transcriptional analysis of separated leukocyte subsets in SLE and vasculitis 1Paul A Lyons, 1Eoin F McKinney, 1Tim F Rayner, 1Alexander Hatton, 1Hayley B Woffendin, 1Maria Koukoulaki, 2Thomas C Freeman, 1David RW Jayne, 1Afzal N Chaudhry, and 1Kenneth GC Smith. 1Cambridge Institute for Medical Research and Department of Medicine, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0XY, UK 2Roslin Institute, University of Edinburgh, Roslin, Midlothian, EH25 9PS, UK Correspondence should be addressed to Dr Paul Lyons or Prof Kenneth Smith, Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0XY, UK. Telephone: +44 1223 762642, Fax: +44 1223 762640, E-mail: [email protected] or [email protected] Key words: Gene expression, autoimmune disease, SLE, vasculitis Word count: 2,906 The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non-exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in Annals of the Rheumatic Diseases and any other BMJPGL products to exploit all subsidiary rights, as set out in their licence (http://ard.bmj.com/ifora/licence.pdf). http://ard.bmj.com/ on September 29, 2021 by guest. Protected copyright. 1 Copyright Article author (or their employer) 2009.
    [Show full text]
  • Rabbit Anti-Ei4ebp2/FITC Conjugated Antibody
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-eI4EBP2/FITC Conjugated antibody SL3839R-FITC Product Name: Anti-eI4EBP2/FITC Chinese Name: FITC标记的eIF4EBinding protein2抗体 Regulates eIF4E activity by preventing its assembly into the eIF4F complex. Mediates the regulation of protein translation by hormones, growth factors and other stimuli that Alias: signal through the MAP kinase pathway.Full=Eukaryotic translation initiation factor 4E-binding protein 2; 4E-BP2; eIF4E-binding protein 2; 4EBP2_HUMAN. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat,Cow, IF=1:50-200 Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 17/20kDa Form: Lyophilized or Liquid Concentration: 1mg/ml immunogen: KLH conjugated synthetic peptide derived from human 4E-BP2 Lsotype: IgG Storage Buffer: 0.01Mwww.sunlongbiotech.com TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Storage: 0 background: This gene encodes a member of the eukaryotic translation initiation factor 4E binding protein family. The gene products of this family bind eIF4E and inhibit translation initiation. However, insulin and other growth factors can release this inhibition via a phosphorylation-dependent disruption of their binding to eIF4E. Regulation of protein Product Detail: production through these gene products have been implicated in cell proliferation, cell differentiation and viral infection. [provided by RefSeq, Oct 2008] Function: Regulates eIF4E activity by preventing its assembly into the eIF4F complex. Mediates the regulation of protein translation by hormones, growth factors and other stimuli that signal through the MAP kinase pathway.
    [Show full text]
  • Supplementary Table 1 Double Treatment Vs Single Treatment
    Supplementary table 1 Double treatment vs single treatment Probe ID Symbol Gene name P value Fold change TC0500007292.hg.1 NIM1K NIM1 serine/threonine protein kinase 1.05E-04 5.02 HTA2-neg-47424007_st NA NA 3.44E-03 4.11 HTA2-pos-3475282_st NA NA 3.30E-03 3.24 TC0X00007013.hg.1 MPC1L mitochondrial pyruvate carrier 1-like 5.22E-03 3.21 TC0200010447.hg.1 CASP8 caspase 8, apoptosis-related cysteine peptidase 3.54E-03 2.46 TC0400008390.hg.1 LRIT3 leucine-rich repeat, immunoglobulin-like and transmembrane domains 3 1.86E-03 2.41 TC1700011905.hg.1 DNAH17 dynein, axonemal, heavy chain 17 1.81E-04 2.40 TC0600012064.hg.1 GCM1 glial cells missing homolog 1 (Drosophila) 2.81E-03 2.39 TC0100015789.hg.1 POGZ Transcript Identified by AceView, Entrez Gene ID(s) 23126 3.64E-04 2.38 TC1300010039.hg.1 NEK5 NIMA-related kinase 5 3.39E-03 2.36 TC0900008222.hg.1 STX17 syntaxin 17 1.08E-03 2.29 TC1700012355.hg.1 KRBA2 KRAB-A domain containing 2 5.98E-03 2.28 HTA2-neg-47424044_st NA NA 5.94E-03 2.24 HTA2-neg-47424360_st NA NA 2.12E-03 2.22 TC0800010802.hg.1 C8orf89 chromosome 8 open reading frame 89 6.51E-04 2.20 TC1500010745.hg.1 POLR2M polymerase (RNA) II (DNA directed) polypeptide M 5.19E-03 2.20 TC1500007409.hg.1 GCNT3 glucosaminyl (N-acetyl) transferase 3, mucin type 6.48E-03 2.17 TC2200007132.hg.1 RFPL3 ret finger protein-like 3 5.91E-05 2.17 HTA2-neg-47424024_st NA NA 2.45E-03 2.16 TC0200010474.hg.1 KIAA2012 KIAA2012 5.20E-03 2.16 TC1100007216.hg.1 PRRG4 proline rich Gla (G-carboxyglutamic acid) 4 (transmembrane) 7.43E-03 2.15 TC0400012977.hg.1 SH3D19
    [Show full text]
  • Eukaryotic Initiation Factor 4E Binding Protein Family of Proteins: Sentinels at a Translational Control Checkpoint in Lung Tumor Defense
    Published OnlineFirst October 20, 2009; DOI: 10.1158/0008-5472.CAN-09-1923 Molecular Biology, Pathobiology, and Genetics Eukaryotic Initiation Factor 4E Binding Protein Family of Proteins: Sentinels at a Translational Control Checkpoint in Lung Tumor Defense Yong Y. Kim,1 Linda Von Weymarn,2 Ola Larsson,6 Danhua Fan,3 Jon M. Underwood,4 Mark S. Peterson,1 Stephen S. Hecht,5 Vitaly A. Polunovsky,1 and Peter B. Bitterman1 Departments of 1Medicine, 2Biochemistry, Molecular Biology and Biophysics, 3Biostatistics and Informatics, 4Pharmacology, and 5Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota; and 6Department of Biochemistry, McGill University, Montreal, Quebec, Canada Abstract checkpoint would be the primary negative regulators of eIF4F, the The usurping of translational control by sustained activation eIF4E binding protein (4E-BP) family of proteins that negatively of translation initiation factors is oncogenic. Here, we show regulate translation initiation by sequestering the rate-limiting that the primary negative regulators of these oncogenic ini- component of the eIF4F complex, eIF4E. Under physiologic cir- tiation factors—the 4E-BP protein family—operate as guar- cumstances, a wide variety of regulatory cues govern 4E-BP activity dians of a translational control checkpoint in lung tumor by phosphorylation through the Ras/phosphoinositide 3-kinase defense. When challenged with the tobacco carcinogen 4- (PI3K)/AKT/mammalian target of rapamycin (mTOR) kinase cas- − − (methylnitrosamino)-I-(3-pyridyl)-1-butanone (NNK), 4ebp1 / / cade (11). Hyperphosphorylation decreases the affinity of 4E-BPs − − 4ebp2 / mice showed increased sensitivity to tumorigenesis for eIF4E, permitting eIF4E to participate in eIF4F assembly. How- compared with their wild-type counterparts.
    [Show full text]
  • Discovering Pharmacogenomic Variants and Pathways with the Epigenome and Spatial Genome
    The Pharmacoepigenomics Informatics Pipeline and H-GREEN Hi-C Compiler: Discovering Pharmacogenomic Variants and Pathways with the Epigenome and Spatial Genome by Ari Lawrence Allyn-Feuer A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Bioinformatics) in the University of Michigan 2018 Doctoral Committee: Professor Brian D. Athey, Chair Assistant Professor Alan P. Boyle Professor Ivo D. Dinov Research Professor Gerald A. Higgins Professor Wolfgang Sadee, The Ohio State University Ari Lawrence Allyn-Feuer [email protected] ORCID iD: 0000-0002-8379-2765 © Ari Allyn-Feuer 2018 Dedication In the epilogue of Altneuland, Theodor Herzl famously wrote: “Dreams are not so different from deeds as some may think. All the deeds of men are dreams at first, and become dreams in the end.” Medical advances undergo a similar progression, from invisible to visible and back. Before they are accomplished, advances in the physician’s art are illegible: no one differentiates from the rest the suffering and death which could be alleviated with methods which do not yet exist. Unavoidable ills have none of the moral force of avoidable ones. Then, for a brief period, beginning shortly before it is deployed in mainstream practice, and slowly concluding over the generation after it becomes widespread, an advance is visible. People see the improvements and celebrate them. Then, subsequently, for the rest of history, if we are lucky, such an advance is more invisible than it was before it was invented. No one tallies the children who do not get polio, the firm ground that used to be a malarial swamp, or the quiet fact of sanitation.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2003/0170678A1 Tanzi Et Al
    US 2003.017O678A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0170678A1 Tanzi et al. (43) Pub. Date: Sep. 11, 2003 (54) GENETIC MARKERS FOR ALZHEIMER'S Related U.S. Application Data DISEASE AND METHODS USING THE SAME (60) Provisional application No. 60/348,065, filed on Oct. (75) Inventors: Rudolph E. Tanzi, Hull, MA (US); 25, 2001. Provisional application No. 60/336,983, Kenneth David Becker, San Diego, CA filed on Nov. 2, 2001. (US); Gonul Velicelebi, San Diego, CA (US); Kathryn J. Elliott, San Diego, Publication Classification CA (US); Xin Wang, San Diego, CA (US); Lars Bertram, Brighton, MA (51) Int. C.7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - C12O 1/68 (US); Aleister J. Saunders, (52) U.S. Cl. .................................................................. 435/6 Philadelphia, PA (US); Deborah Lynne Blacker, Newton, MA (US) (57) ABSTRACT Correspondence Address: HELLER EHRMAN WHITE & MCAULIFFE LLP Genetic markers associated with Alzheimer's disease are 4350 LA JOLLAVILLAGE DRIVE provided. Also provided are methods of determining the 7TH FLOOR presence or absence in a Subject of one or more polymor SAN DIEGO, CA 92122-1246 (US) phisms associated with Alzheimer's disease and methods of determining the level of risk for Alzheimer's disease in a (73) Assignee: Neurogenetics, Inc. Subject. Further provided are nucleic acid compositions and kits for use in determining the presence or absence in a (21) Appl. No.: 10/281,456 Subject of one or more polymorphisms associated with Alzheimer's disease and kits for determining the level of (22) Filed: Oct. 25, 2002 risk for Alzheimer's disease in a Subject. Patent Application Publication Sep.
    [Show full text]
  • Translational Control of Nociception Via 4E-Binding Protein 1
    RESEARCH ARTICLE Translational control of nociception via 4E-binding protein 1 Arkady Khoutorsky1,2†, Robert P Bonin3†, Robert E Sorge4,5†, Christos G Gkogkas1,6, Sophie Anne Pawlowski5,7, Seyed Mehdi Jafarnejad1,2, Mark H Pitcher8, Tommy Alain1,2, Jimena Perez-Sanchez3, Eric W Salter3, Loren Martin4,5, Alfredo Ribeiro-da-Silva5,7, Yves De Koninck3,5,7,9, Fernando Cervero5,10, Jeffrey S Mogil4,5*, Nahum Sonenberg1,2* 1Department of Biochemistry, McGill University, Montre´al, Canada; 2Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montre´al, Canada; 3Unite´ de neurosciences cellulaires et mole´culaire, Institut universitaire en sante´ mentale de Que´bec, Que´bec, Canada; 4Department of Psychology, McGill University, Montre´al, Canada; 5Alan Edwards Centre for Research on Pain, McGill University, Montre´al, Canada; 6Centre for Integrative Physiology and The Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom; 7Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; 8National Center for Complementary and Alternative Medicine, National Institutes of Health, Porter Neuroscience Research Center, Maryland, United States; 9Department of Psychiatry and Neuroscience, Universite´ Laval, Que´bec, Canada; 10Anesthesia Research Unit, McGill University, Montreal, Canada *For correspondence: jeffrey. Abstract Activation of the mechanistic/mammalian target of rapamycin (mTOR) kinase in models [email protected] (JSM); nahum. of acute and chronic pain is strongly implicated in mediating enhanced translation and [email protected] (NS) hyperalgesia. However, the molecular mechanisms by which mTOR regulates nociception remain †These authors contributed unclear. Here we show that deletion of the eukaryotic initiation factor 4E-binding protein 1 (4E- equally to this work BP1), a major mTOR downstream effector, which represses eIF4E activity and cap-dependent translation, leads to mechanical, but not thermal pain hypersensitivity.
    [Show full text]