Soil Mobility of Allyl Isothiocyanate and Chloropicrin As Influenced By

Total Page:16

File Type:pdf, Size:1020Kb

Soil Mobility of Allyl Isothiocyanate and Chloropicrin As Influenced By HORTSCIENCE 54(4):706–714. 2019. https://doi.org/10.21273/HORTSCI13836-18 and some soil arthropods, but it provides little control of fungi and weeds, whereas Met-Na controls weeds, nematodes, and some fungi. CP Soil Mobility of Allyl Isothiocyanate controls insects and fungi, but it has less activity against nematodes and weeds (Ajwa and Trout, and Chloropicrin as Influenced by 2004). The most promising MeBr alternatives are chloropicrin and Met-Na (Gao et al., 2012; Surfactants and Soil Texture Jacoby, 2016; Klose et al., 2008; Yates et al., 2002); therefore, more than 7000 tons of chlo- Feras Almasri ropicrin were used in 2011 (Nelson et al., 2013) Department of Plant Sciences, University of California at Davis, Davis, CA in California. 95616 Although Met-Na is an effective fumigant (Nelson et al., 2002), the use of Met-Na is Husein A. Ajwa strongly regulated due to the excessive soil fu- Department of Plant Sciences, University of California at Davis, 1636 East migant release into the atmosphere (Goodhue et al., 2016; Saeed et al., 1997). Because of Alisal Street, Salinas, CA 93905 this excessive release into the atmosphere, Sanjai J. Parikh Met-Na, Met-K, and DMTT labels require wide buffer zones and specific measures to University of California at Davis, Department of Land, Air and Water protect people from off-target movement Resources, Davis, CA 95616 (Guthman and Brown, 2016). Furthermore, 1 Met-Na, Met-K, and DMTT degrade in soil Kassim Al-Khatib to MITC, which is classified as a toxicity I Department of Plant Sciences, University of California at Davis, Davis, CA category pesticide (Gao et al., 2012; Klose 95616 et al., 2008). Recently, the United States Environmen- Additional index words. methyl bromide alternatives, allyl isothiocyanate, chloropicrin, tal Protection Agency (EPA) approved the surfactant, drip fumigation, fumigant alternatives registration of synthetic AITC as a preplant Abstract. Methyl bromide (MeBr) was identified as a stratospheric ozone depletory; soil bio-fumigant (Isagro, 2016). AITC is a therefore, the use of MeBr was phased out in the United States in 2005. Chloropicrin (CP) natural product produced by Brassica plants and allyl isothiocyanate (AITC) are MeBr replacements. A mixture of CP and AITC is to defend against insects and diseases (Ahuja commonly applied to broaden the pest control spectrum. These two fumigants have low et al., 2010). Brassica plants naturally pro- soil mobility; however, their efficacy could be improved if their soil mobility were duce glucosinolate, which is converted to enhanced. This research was conducted to study the effects of surfactants applied at 5% AITC by the enzyme myrosinase when plants (v/v) for CP mobility and AITC mobility in soils. Mobility of the CP/AITC mixture are attacked or mechanically damaged. Sev- applied with a nonionic surfactant comprising oleic, linoleic, and palmitic acids eral reports showed that AITC performed as (nonionic-1) and mobility of the CP/AITC mixture applied with a nonionic surfactant well as MeBr and Met-Na when applied as a comprising C9 hydrocarbon aromatics and calcium alkylarylsuphonate (nonionic-2) preplant soil treatment (Bangarwa et al., 2011; were compared with mobility of the CP/AITC mixture applied without surfactants in Devkota and Norsworthy, 2014). Moreover, re- three soils (Elder sandy loam, Chualar loam, and Blanco clay loam) during a laboratory search showed that AITC is effective for con- study. Nonionic-1 surfactant increased the concentration of total leachate collected for trolling select weeds (Bangarwa et al., 2011; AITC by five and CP by 11 compared with CP/AITC applied alone. Surfactants may Devkota and Norsworthy, 2014), nematodes influence the fumigant mobility in soil by affecting the sorption/desorption equilibrium. (Wu et al., 2011), insects (Noble et al., 2002), Our research suggested that increased AITC mobility and CP mobility in soil with the and plant soil pathogens (Gilardi et al., 2000). addition of adding nonionic-1 surfactant may be due to the adsorption behavior of the Synthetic AITC is not considered a re- surfactant in the soil and the solubilizing capability of the surfactant with pesticides. stricted use pesticide; therefore, it differs from all other fumigant alternatives. AITC can be applied to all crops during the preplant During the past 55 years, methyl bromide and Rodriguez, 1996; Downing, 2016; Jacoby, period, has a maximum buffer zone of 7.5 m, (MeBr) has been the most effective soil 2016; Johnson et al., 2012). Although MeBr has no limit regarding the number of hectares fumigant for controlling soil pests in Califor- was used on many crops, California straw- that can be treated per day, and has no nia high-value crops (Johnson et al., 2012). berries were the most economically impacted restrictions regarding the type of covering MeBr is a highly effective biocide that has a by the phase-out, and this helped strawberry film used with it (Isagro, 2016). AITC is consistent and broad pest control spectrum farmers win a critical use exemption that considered generally regarded as safe (GRAS) and short plant-back periods (Jacoby, 2016). allowed small quantities of MeBr to be used by the Food and Drug Administration, and it is a food additive approved for direct human MeBr is a gas that has a low boiling point and until 2016 (Downing, 2016). consumption as a synthetic flavoring substance high vapor pressure; such properties allow Research showed that the soil fumigants and adjuvant (FDA, 2018). MeBr to move through soil unimpeded, that are alternatives to MeBr are generally It is difficult to find a chemical with resulting in high pest control efficacy. How- less effective pest control agents. These biological, chemical, and physical properties ever, in the early 1990s, MeBr was identified alternatives to MeBr include chloropicrin as a stratospheric ozone depletor (Butler and similar to those of MeBr that will pass (CP), 1,3-dichloropropene (1,3-D), methyl regulations and that is relatively easy to Rodriguez, 1996); therefore, the use of MeBr isothiocyanate (MITC) generators such as was phased out in the United States (Butler transport and apply. MeBr has a boiling point metam sodium (Met-Na), metam potassium of 4.5 °C and a vapor pressure of 218.6 kPa; (Met-K), and dimethylformocarbothialdine however, for MITC, CP, and AITC, the boil- (DMTT), and synthetic allyl isothiocyanate ing points are 119, 112, and 150 °C, respec- Received for publication 20 Dec. 2018. Accepted (AITC) (Gao et al., 2012; Klose et al., 2008). tively, and vapor pressures are 1.73, 2.44, and for publication 31 Jan. 2019. Additionally, research has shown that to We thank Isagro USA for partially funding the 0.49 kPa, respectively (Downing, 2016; Jacoby study. No conflicts of interest have been declared. obtain acceptable pest control levels, a com- 2016; Nelson et al., 2013). The high boiling 1Corresponding author. E-mail: kalkhatib@ucdavis. bination of more than one fumigant must be point and relatively low vapor pressure of edu. applied. For example, 1,3-D controls nematodes MeBr alternatives do not allow these fumigants 706 HORTSCIENCE VOL. 54(4) APRIL 2019 to exist in a gas phase in their original state. Multiple reports have shown that the how surfactants can be used to remediate soils Liquid fumigants need to convert to a volatile efficacy of isothiocyanate generators could by influencing the solubility of pesticide residue or semi-volatile state to control soil-borne be improved by increasing the residence time in soil. However, all reports agree that the ability pests; therefore, the dispersal rate and the of the fumigant in soil (Nelson et al., 2013). to enhance fumigant efficacy with surfactants ability of a fumigant to move in soil at high As a result, several researchers investigated depends on the type of surfactant (anionic, concentrations will determine the effectiveness different application methods that could pro- nonionic, or cationic) used and soil properties of the fumigant (Nelson et al., 2013). vide better fumigant soil distribution by because soil surfactant generally alters the In California, MeBr alternatives are usu- physical means such as multiple drip lines, bonding properties of soil–water interactions. ally applied to the soil through drip irrigation using totally impermeable film, and adjusting Although the effects of soil surfactants on (also known as chemigation); however, in water application rates and volumes (Nelson the pest control efficacy of Met-Na have many other places, shank applications are et al., 2013; Papiernik et al., 2004; Yates been well-studied, questions remain regard- still a common application method for fumi- et al., 2002). Such methods have indirectly ing whether the type of surfactant affects the gants. During drip irrigation, polyethylene led to improving molecular diffusion of pest control efficacy of other fumigants such plastic mulch is installed before the applica- fumigants and their persistence in soils as AITC and CP. Therefore, the objective of tion of the fumigants, and this application (Lopez-Fern andez et al., 2016). this study was to characterize and quantify method is gaining popularity with growers It has been reported that the efficacy of the effects of different surfactants on AITC due to limited worker exposure (Jacoby, Met-Na was improved when applied with the mobility and CP mobility and their distribu- 2016; Nelson et al., 2013). Although Met- soil surfactant Integrate (triblock co-polymer tions in different soils. Na and other isothiocyanate generators are and glucoethers) (Santos et al., 2013). Fur- popular and widely used as MeBr alternatives, thermore, Santos et al. (2013) observed a Materials and Methods previous research suggested that soil-borne significant reduction in the number of prop- pest control with Met-Na is inconsistent be- agules of purple nutsedge when a soil surfac- Soil preparation. Soils were collected cause application methods seldom achieve tant was added to Met-K compared with Met-K from strawberry fields in Watsonville and optimum distribution of Met-Na (Gilreath applied alone.
Recommended publications
  • Isothiocyanates; Sources, Physiological Functions and Food Applications
    1 Plant Archives Vol. 20, Supplement 2, 2020 pp. 2758-2763 e-ISSN:2581-6063 (online), ISSN:0972-5210 ISOTHIOCYANATES; SOURCES, PHYSIOLOGICAL FUNCTIONS AND FOOD APPLICATIONS Mudasir Yaqoob* 1,2 , Poonam Aggarwal 2, Mukul Kumar 1, Neha Purandare 1 1Department of Food Technology and Nutrition, Lovely professional University Phagwara India 2Department of Food Science &Technology Punjab agriculture University Ludhiana Email: [email protected] Abstract Foods are complex mixture of major and minor nutrients. They also contain some non-nutrient mixtures which exert beneficial effects to the human body known as phytochemicals. Phytochemicals are the chemical compounds that are synthesised by the plant cells to fight any kind of stress conditions. Isothiocyanates (ITCs) are the secondary metabolites produced by the plant from the enzymatic hydrolysis of glucosinolates by myrosinase during the plant tissue injury. They are present in Cruciferous vegetables, such as cabbage, broccoli and kale and are sulphur rich compounds. Isothiocyanates have been found to play an important role for the plant against microbial and pest infections. ITCs have been found to have beneficial activities like antibacterial, antifungal, bioherbicidal, and antioxidant, biopesticidal, anticarcinogenic and antimutagenic. Due to these activities they are having applications in food preservation like fruit juices and as an additive in Mayonnaise. Their recent application has been in the food packing’s and in MAP. The present review gives the insight of these phytochemicals, their physiological functions and food applications Keywords : Isothiocyanates, glucosionolate, sources, biocidal, food applications. Introduction in the vapour phase (Isshiki et al., 1992) and due to this characteristic property, it has been able to be used as food Isothiocyanates are the type of phytochemicals that are preservative in a number of foods stuffs.
    [Show full text]
  • Isothiocyanates from Cruciferous Vegetables
    Isothiocyanates from Cruciferous Vegetables: Kinetics, Biomarkers and Effects Martijn Vermeulen Promotoren Prof. dr. Peter J. van Bladeren Hoogleraar Toxicokinetiek en Biotransformatie, leerstoelgroep Toxicologie, Wageningen Universiteit Prof. dr. ir. Ivonne M.C.M. Rietjens Hoogleraar Toxicologie, Wageningen Universiteit Copromotor Dr. Wouter H.J. Vaes Productmanager Nutriënten en Biomarker analyse, TNO Kwaliteit van Leven, Zeist Promotiecommissie Prof. dr. Aalt Bast Universiteit Maastricht Prof. dr. ir. M.A.J.S. (Tiny) van Boekel Wageningen Universiteit Prof. dr. Renger Witkamp Wageningen Universiteit Prof. dr. Ruud A. Woutersen Wageningen Universiteit / TNO, Zeist Dit onderzoek is uitgevoerd binnen de onderzoeksschool VLAG (Voeding, Levensmiddelen- technologie, Agrobiotechnologie en Gezondheid) Isothiocyanates from Cruciferous Vegetables: Kinetics, Biomarkers and Effects Martijn Vermeulen Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, prof. dr. M.J. Kropff, in het openbaar te verdedigen op vrijdag 13 februari 2009 des namiddags te half twee in de Aula. Title Isothiocyanates from cruciferous vegetables: kinetics, biomarkers and effects Author Martijn Vermeulen Thesis Wageningen University, Wageningen, The Netherlands (2009) with abstract-with references-with summary in Dutch ISBN 978-90-8585-312-1 ABSTRACT Cruciferous vegetables like cabbages, broccoli, mustard and cress, have been reported to be beneficial for human health. They contain glucosinolates, which are hydrolysed into isothiocyanates that have shown anticarcinogenic properties in animal experiments. To study the bioavailability, kinetics and effects of isothiocyanates from cruciferous vegetables, biomarkers of exposure and for selected beneficial effects were developed and validated. As a biomarker for intake and bioavailability, isothiocyanate mercapturic acids were chemically synthesised as reference compounds and a method for their quantification in urine was developed.
    [Show full text]
  • Federal Register/Vol. 84, No. 230/Friday, November 29, 2019
    Federal Register / Vol. 84, No. 230 / Friday, November 29, 2019 / Proposed Rules 65739 are operated by a government LIBRARY OF CONGRESS 49966 (Sept. 24, 2019). The Office overseeing a population below 50,000. solicited public comments on a broad Of the impacts we estimate accruing U.S. Copyright Office range of subjects concerning the to grantees or eligible entities, all are administration of the new blanket voluntary and related mostly to an 37 CFR Part 210 compulsory license for digital uses of increase in the number of applications [Docket No. 2019–5] musical works that was created by the prepared and submitted annually for MMA, including regulations regarding competitive grant competitions. Music Modernization Act Implementing notices of license, notices of nonblanket Therefore, we do not believe that the Regulations for the Blanket License for activity, usage reports and adjustments, proposed priorities would significantly Digital Uses and Mechanical Licensing information to be included in the impact small entities beyond the Collective: Extension of Comment mechanical licensing collective’s potential for increasing the likelihood of Period database, database usability, their applying for, and receiving, interoperability, and usage restrictions, competitive grants from the Department. AGENCY: U.S. Copyright Office, Library and the handling of confidential of Congress. information. Paperwork Reduction Act ACTION: Notification of inquiry; To ensure that members of the public The proposed priorities do not extension of comment period. have sufficient time to respond, and to contain any information collection ensure that the Office has the benefit of SUMMARY: The U.S. Copyright Office is requirements. a complete record, the Office is extending the deadline for the extending the deadline for the Intergovernmental Review: This submission of written reply comments program is subject to Executive Order submission of written reply comments in response to its September 24, 2019 to no later than 5:00 p.m.
    [Show full text]
  • The Metabolism of Plant Glucosinolates by Gut Bacteria
    The metabolism of plant glucosinolates by gut bacteria Fatma Cebeci A thesis submitted for the degree of Doctor of Philosophy to the University of East Anglia Institute of Food Research April, 2017 © This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. PhD Thesis 2017 Fatma Cebeci Metabolism of Plant Glucosinolates by Gut Bacteria ABSTRACT Glucosinolates found in cruciferous vegetables are degraded by plant myrosinases into bioactive isothiocyanates (ITCs) which have been recognised as potent anticancer compounds. During cooking, plant myrosinases are heat inactivated so ITC production is dependent on the myrosinase-like enzymes produced by the gut bacteria. This study is focused on investigating glucosinolate metabolism by the human gut bacteria and identifying the enzymes that play a crucial role. Human gut bacteria that were previously reported to metabolise glucosinolates were investigated in this study. In addition, 98 more human gut strains were isolated using a glucoraphanin enrichment method. It was hypothesised that bacterial myrosinases are β- glucosidases with specificity for glucosinolates. To identify the first bacterial myrosinase from the human gut, four putative β-glucosidases from Enterococcus casseliflavus CP1 and Escherichia coli FI10944 were cloned and heterologously expressed in E. coli. An alternative approach using a combination of ion exchange chromatography and gel filtration was also carried out to identify the bacterial myrosinase of E.
    [Show full text]
  • Defining Potential Chemical Peaks and Management Options
    PROJECT NO. 4991 Defining Potential Chemical Peaks and Management Options Defining Potential Chemical Peaks and Management Options Prepared by: Jean Debroux Kennedy Jenks Consultants Megan H. Plumlee Orange County Water District Shane Trussell Trussell Technologies, Inc. Co-sponsored by: California State Water Resources Control Board 2021 The Water Research Foundation (WRF) is a nonprofit (501c3) organization which provides a unified source for One Water research and a strong presence in relationships with partner organizations, government and regulatory agencies, and Congress. The foundation conducts research in all areas of drinking water, wastewater, stormwater, and water reuse. The Water Research Foundation’s research portfolio is valued at over $700 million. WRF plays an important role in the translation and dissemination of applied research, technology demonstration, and education, through creation of research-based educational tools and technology exchange opportunities. WRF serves as a leader and model for collaboration across the water industry and its materials are used to inform policymakers and the public on the science, economic value, and environmental benefits of using and recovering resources found in water, as well as the feasibility of implementing new technologies. For more information, contact: The Water Research Foundation 1199 North Fairfax Street, Suite 900 6666 West Quincy Avenue Alexandria, VA 22314-1445 Denver, Colorado 80235-3098 www.waterrf.org P 571.384.2100 P 303.347.6100 [email protected] ©Copyright 2021 by The Water Research Foundation. All rights reserved. Permission to copy must be obtained from The Water Research Foundation. WRF ISBN: 978-1-60573-555-9 WRF Project Number: 4991 This report was prepared by the organization(s) named below as an account of work sponsored by The Water Research Foundation.
    [Show full text]
  • Degradation of Fumigant Pesticides: 1,3-Dichloropropene, Methyl Isothiocyanate, Chloropicrin, and Methyl Bromide
    Published August, 2003 Degradation of Fumigant Pesticides: 1,3-Dichloropropene, Methyl Isothiocyanate, Chloropicrin, and Methyl Bromide Robert S. Dungan* and Scott R. Yates ABSTRACT is effective against nematodes, it lacks herbicidal activ- Fumigant pesticides are frequently used in intensive agriculture ity, and is often formulated with CP (e.g., Telone C17 to control nematodes, fungi, and weeds. Currently, four registered and C35, which contain 17 and 35% CP, respectively) fumigants are available: 1,3-dichloropropene (1,3-D), methyl isothio- to provide control of some fungal pathogens. Methyl cyanate (MITC), chloropicrin (CP), and methyl bromide (MeBr). The isothiocyanate is effective against nematodes and a vari- use of 1,3-D, MITC, and CP can be expected to increase after MeBr ety of weeds and fungal pathogens. is completely phased out of production in the USA in 2005. In soil, the Application of the fumigants can be made using dif- degradation of 1,3-D, MITC, CP, and MeBr occurs through both ferent techniques that depend on the formulation type, chemical and biological mechanisms. Repeated applications of the pest to be controlled, and timing of the application (Lem- fumigants MITC and 1,3-D are known to enhance their biodegradation as a result of adapted microorganisms. Preliminary evidence suggests bright, 1990). Usually the fumigants are injected any- that the microorganisms responsible for enhanced degradation of where from 30 to 60 cm below the soil surface. Methyl MITC specifically target the isothiocyanate functional group. In the bromide is applied by shank injection as a liquid, but case of 1,3-D, a number of bacteria have been isolated that are capable with a high vapor pressure of about 189 kPa at 20ЊC, of degrading 1,3-D and also using it as a sole C and energy source.
    [Show full text]
  • Phytochemical Characterization and Sensory Evaluation of Macropiper Excelsum
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Allgemeine Lebensmitteltechnologie Phytochemical Characterization and Sensory Evaluation of Macropiper excelsum Katja Obst Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt (WZW) der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Peter Schieberle Prüfer der Dissertation: 1. Univ.-Prof. Dr. Karl-Heinz Engel 2. Univ.-Prof. Dr. Thomas Hofmann Die Dissertation wurde am 12.05.2014 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt (WZW) am 07.10.2014 angenommen. ACKNOWLEDGEMENTS First and foremost, I would like to thank Professor Dr. Karl-Heinz Engel for his valuable scientific advice, his enlightening comments, and his interest in the progress of my thesis. I would like to show my gratitude to Dr. Gerhard Krammer, Senior Vice President Research & Technology Flavor & Nutrition, for the provision of this fascinating research project and his great interest in my work. This thesis would not have been possible without the guidance and help of Dr. Jakob Ley, Director Ingredient Research. I sincerely appreciate his excellent supervision, his ideas and proposals, as well as his encouragement. Thank you also for your confidence in my work and the possibilities to present the results of my thesis to the scientific community in many talks and poster sessions at various meetings. I would like to convey my sincerest gratitude to Dr. Katharina Reichelt, Natural Product Chemistry/Functional Flavor Solutions, for her perpetual help in all phases of this work. I highly appreciate her outstanding enthusiasm and her motivation.
    [Show full text]
  • DIVISION of CHEMICAL TOXICOLOGY T. Spratt, Program Chair Location: Marriott Marquis Washington, DC Georgetown University Room, Except When Notified
    DIVISION OF CHEMICAL TOXICOLOGY T. Spratt, Program Chair Location: Marriott Marquis Washington, DC Georgetown University Room, except when notified SUNDAY MORNING 9:00 13. Replicative bypass and mutagenic properties of alkylphosphotriester lesions in Escherichia coli. J. Wu, P. Wang, Y. Chemical Research in Toxicology Young Investigators Award Wang H. Ai, Organizer, Presiding 9:20 14. Abasic and oxidized abasic lesion bypass by DNA S. S. Hecht, T. M. Penning, Presiding polymerase theta yields one- and two-nucleotide deletions. D.J. 8:00 Introductory Remarks. Laverty, M.M. Greenberg 8:10 1. Targeted quantitative proteomic approaches for interrogating 9:40 Intermission. the human kinome. W. Miao, Y. Xiao, L. Guo, Y. Wang 10:00 15. Characterization of the 2,6-diamino-4-hydroxy-N5- 8:55 2. Sequence-specific covalent capture for detection of disease- (methyl)-formamidopyrimidine DNA lesion. S. Bamberger, H. Pan, derived nucleic acid sequences. K.S. Gates, A. Gu, M. Imani Nejad, R. Bowen, C. Malik, T. Johnson-Salyard, C. Rizzo, M.P. Stone R. Shi, X. Zhang 10:20 16. Engineering a replicative DNA polymerase for specific 9:40 Intermission. damage bypass capability. T.A. Coulther, M.J. Ondrechen, P.J. Beuning 9:55 3. Dynamic visualization of signaling molecules in living cells. J. Zhang 10:40 17. Mechanism of ribonucleotide incorporation by human DNA polymerase Eta. Y. Su, M. Egli, F.P. Guengerich 10:40 Award Presentation. 11:00 18. Independent generation of 2'-deoxyadenosine-N6-yl radical 10:50 4. Seeing is believing: Fluorescent biosensors for redox and its reactivity in DNA. L. Zheng, M.
    [Show full text]
  • New Insights on the Role of Allyl Isothiocyanate in Controlling the Root Knot Nematode Meloidogyne Hapla
    plants Article New Insights on the Role of Allyl Isothiocyanate in Controlling the Root Knot Nematode Meloidogyne hapla Paul Dahlin 1,* and Johannes Hallmann 2,* 1 Agroscope, Research Division, Plant Protection, Phytopathology and Zoology in Fruit and Vegetable Production, 8820 Wädenswil, Switzerland 2 Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, 38104 Braunschweig, Germany * Correspondence: [email protected] (P.D.); [email protected] (J.H.); Tel.: +41-58-480-84-87 (P.D.) Received: 31 March 2020; Accepted: 5 May 2020; Published: 9 May 2020 Abstract: Biofumigation, although a well-known method, is still controversially debated as a management strategy for plant-parasitic nematodes (PPN). Its controlling effect is attributed to the production of isothiocyanates (ITCs) following the action of myrosinase on glucosinolates (GSLs). Different ITCs are formed from different GSLs, depending on the plant species. To better understand the potential of ITCs, eight cultivars from three Brassicaceae species were investigated as biofumigation crops to control the root knot nematode Meloidogyne hapla. Since results were inconsistent, the nematicidal effect of selected ITCs were further evaluated in vitro. Based on its nematicidal potential, allyl ITC (AITC) was specifically investigated under different soil:sand compositions. A significantly lower nematicidal activity was observed in soil compared to sand. AITC was also evaluated as an additive to the biofumigation in a greenhouse trial. Its supplementation to the biofumigation process with Brassica juncea cv. Terrafit controlled M. hapla, while no control was observed using Raphanus sativus cv. Defender. Thus, the success of biofumigation seems to be strongly dependent on the soil characteristics and the ITC produced during the biofumigation process.
    [Show full text]
  • Defence Mechanisms of Brassicaceae: Implications for Plant-Insect Interactions and Potential for Integrated Pest Management
    Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. A review Ishita Ahuja, Jens Rohloff, Atle Magnar Bones To cite this version: Ishita Ahuja, Jens Rohloff, Atle Magnar Bones. Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. A review. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA, 2010, 30 (2), 10.1051/agro/2009025. hal-00886509 HAL Id: hal-00886509 https://hal.archives-ouvertes.fr/hal-00886509 Submitted on 1 Jan 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Agron. Sustain. Dev. 30 (2010) 311–348 Available online at: c INRA, EDP Sciences, 2009 www.agronomy-journal.org DOI: 10.1051/agro/2009025 for Sustainable Development Review article Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. A review Ishita Ahuja,JensRohloff, Atle Magnar Bones* Department of Biology, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway (Accepted 5 July 2009) Abstract – Brassica crops are grown worldwide for oil, food and feed purposes, and constitute a significant economic value due to their nutritional, medicinal, bioindustrial, biocontrol and crop rotation properties.
    [Show full text]
  • Identification and Quantification of Glucosinolates in Korean Leaf Mustard Germplasm (Brassica Juncea Var
    Eur Food Res Technol (2016) 242:1479–1484 DOI 10.1007/s00217-016-2648-6 ORIGINAL PAPER Identification and quantification of glucosinolates in Korean leaf mustard germplasm (Brassica juncea var. integrifolia) by liquid chromatography–electrospray ionization/tandem mass spectrometry Heon Woong Kim1 · Ho Cheol Ko1 · Hyung Jin Baek1 · Soo Muk Cho1 · Hwan Hee Jang1 · Young Min Lee2 · Jung Bong Kim1 Received: 25 July 2015 / Revised: 11 January 2016 / Accepted: 29 January 2016 / Published online: 1 March 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com Abstract In the present investigation, glucosinolate con- Interestingly, sinigrin and gluconasturtiin were present tent was identified and quantified in 210 accessions of in higher content, and progoitrin was not detected signifi- Korean leaf mustard (Brassica juncea var. integrifolia) by cantly in the germplasm of Korean leaf mustard. In particu- a liquid chromatography (LC) with electrospray ioniza- lar, accession K046197 (purple) was found to show highest tion (ESI) coupled with a positive-mode ion trap tandem total DS-GSL content (23.2 mg/g DW). mass spectrometry (LC–ESI–MS/MS). Eleven individual GSLs including two new compounds were identified in Keywords Evaluation · Glucosinolates · Korean leaf the accessions using desulfo-glucosinolates (DS-GSLs) mustard germplasm · Brassica juncea var. integrifolia · LC–MS library, and they were elucidated by interpreting LC–ESI–MS/MS the fragmentation data ([M H-glucose]+) obtained. The + newly identified GSLs contained aliphatic and hydroxyl functional group in their back bone were named as 1-ethyl- Introduction 2-hydroxyethyl DS-GSLs (glucosisautricin) or 2-hydroxy- 2-methylpropyl DS-GSLs (glucoconringiin) and 3,4,5-tri- Generally, plants produce a variety of toxic and repellent methoxybenzyl DS-GSLs, respectively.
    [Show full text]
  • Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 15
    This PDF is available from The National Academies Press at http://www.nap.edu/catalog.php?record_id=18449 Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 15 ISBN Committee on Acute Exposure Guideline Levels; Committee on 978-0-309-29122-4 Toxicology; Board on Environmental Studies and Toxicology; Division on Earth and Life Studies; National Research Council 294 pages 6 x 9 PAPERBACK (2013) Visit the National Academies Press online and register for... Instant access to free PDF downloads of titles from the NATIONAL ACADEMY OF SCIENCES NATIONAL ACADEMY OF ENGINEERING INSTITUTE OF MEDICINE NATIONAL RESEARCH COUNCIL 10% off print titles Custom notification of new releases in your field of interest Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Request reprint permission for this book Copyright © National Academy of Sciences. All rights reserved. Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 15 Committee on Acute Exposure Guideline Levels Committee on Toxicology Board on Environmental Studies and Toxicology Division on Earth and Life Studies Copyright © National Academy of Sciences. All rights reserved. Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 15 THE NATIONAL ACADEMIES PRESS 500 FIFTH STREET, NW WASHINGTON, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Insti- tute of Medicine.
    [Show full text]