The Metabolism of Plant Glucosinolates by Gut Bacteria

Total Page:16

File Type:pdf, Size:1020Kb

The Metabolism of Plant Glucosinolates by Gut Bacteria The metabolism of plant glucosinolates by gut bacteria Fatma Cebeci A thesis submitted for the degree of Doctor of Philosophy to the University of East Anglia Institute of Food Research April, 2017 © This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. PhD Thesis 2017 Fatma Cebeci Metabolism of Plant Glucosinolates by Gut Bacteria ABSTRACT Glucosinolates found in cruciferous vegetables are degraded by plant myrosinases into bioactive isothiocyanates (ITCs) which have been recognised as potent anticancer compounds. During cooking, plant myrosinases are heat inactivated so ITC production is dependent on the myrosinase-like enzymes produced by the gut bacteria. This study is focused on investigating glucosinolate metabolism by the human gut bacteria and identifying the enzymes that play a crucial role. Human gut bacteria that were previously reported to metabolise glucosinolates were investigated in this study. In addition, 98 more human gut strains were isolated using a glucoraphanin enrichment method. It was hypothesised that bacterial myrosinases are β- glucosidases with specificity for glucosinolates. To identify the first bacterial myrosinase from the human gut, four putative β-glucosidases from Enterococcus casseliflavus CP1 and Escherichia coli FI10944 were cloned and heterologously expressed in E. coli. An alternative approach using a combination of ion exchange chromatography and gel filtration was also carried out to identify the bacterial myrosinase of E. coli FI109444. It has been reported that some gut bacteria require a reduction step to metabolise methylsulfinylalkyl glucosinolates (such as glucoraphanin) that converts them into methylthioalkyl glucosinolates (such as glucoerucin) to produce ITCs. To identify the responsible reductase, candidate reductase genes were cloned and expressed in E. coli. Methionine sulfoxide reductase B (MsrB) from Escherichia coli VL8 and Lactobacillus agilis R16 was found to reduce glucoraphanin to glucoerucin under the conditions tested. A bacterial myrosinase of Citrobacter WYE1 of soil origin was previously identified and myrosinase activity of this enzyme was characterised using cell-free extracts. In this study the myrosinase gene was heterologously expressed in E. coli to allow purification and characterisation. The recombinant enzyme showed activity against several glucosinolate substrates and protein was produced for crystallographic studies. ii TABLE OF CONTENTS ABSTRACT ....................................................................................................................... ii TABLE OF CONTENTS ...................................................................................................... iii LIST OF FIGURES ........................................................................................................... viii LIST OF TABLES ............................................................................................................. xii OUTPUTS FROM THIS PROJECT ..................................................................................... xiv ABBREVIATIONS............................................................................................................ xv ACKNOWLEDGEMENTS .............................................................................................. xviii 1 GENERAL INTRODUCTION ............................................................................................ 1 1.1 GLUCOSINOLATES ................................................................................................ 2 1.1.1 General Structure and Biological Importance of Glucosinolates ......................... 2 1.1.2 Glucosinolate Biosynthesis ................................................................................... 7 1.2 GLUCOSINOLATE HYDROLYSIS AND DEGRADATION PRODUCTS ........................... 11 1.2.1 ITC Formation ..................................................................................................... 13 1.2.2 Nitrile and Epithionitrile Formation.................................................................... 14 1.2.3 Thiocyanate Formation ....................................................................................... 14 1.2.4 Other Products.................................................................................................... 15 1.3 THE IMPORTANCE OF GLUCOSINOLATES AND THEIR DEGRADATION PRODUCTS .. 15 1.3.1 Chemopreventative effects of Glucosinolates and ITCs ..................................... 15 1.3.2 Protective Effects of Glucosinolates and ITCs against Diseases ......................... 17 1.3.3 Toxicity of Glucosinolates and Their Degradation Products .............................. 18 1.4 BIOAVAILABILITY OF GLUCOSINOLATES AND THEIR DEGRADATION PRODUCTS ... 19 1.5 MYROSINASES .................................................................................................... 23 1.6 METHIONINE SULPHOXIDE REDUCTASES ............................................................. 27 1.7 GUT MICROBIOTA .............................................................................................. 30 1.8 THE ROLE OF GUT MICROBIOTA IN BIOTRANSFORMATION OF DIETARY COMPOUNDS ................................................................................................................ 36 iii 1.9 GLUCOSINOLATE METABOLISM BY GUT BACTERIA .............................................. 37 1.10 SCOPE OF THE THESIS ......................................................................................... 41 2 GENERAL MATERIALS AND METHODS ........................................................................ 43 2.1 MICROBIOLOGY METHODS ................................................................................. 44 2.1.1 Culture Media ..................................................................................................... 44 2.1.2 Preparation of Antibiotic Stock Solutions ........................................................... 45 2.1.3 Isolation of Glucosinolate Degrading Bacteria by Glucoraphanin Enrichment .. 45 2.1.4 Bacterial Strains and Culture Conditions ............................................................ 46 2.1.5 Bacterial Growth Analysis ................................................................................... 46 2.1.6 Scanning Electron Microscopy (SEM) ................................................................. 47 2.2 MOLECULAR BIOLOGY ........................................................................................ 47 2.2.1 Polymerase Chain Reaction (PCR) ...................................................................... 47 2.2.2 Gel Electrophoresis ............................................................................................. 48 2.2.3 Plasmid Preparation ........................................................................................... 48 2.2.4 Enzyme Restrictions ............................................................................................ 49 2.2.5 Dephosphorylation of Digested Plasmids ........................................................... 49 2.2.6 Primer Design ..................................................................................................... 49 2.2.7 PCR Product Purification ..................................................................................... 50 2.2.8 DNA Ligation ....................................................................................................... 50 2.2.9 Preparation of Chemically Competent Cells ....................................................... 50 2.2.10 Transformation of E. coli..................................................................................... 51 2.2.11 Selection of the Positive Transformants ............................................................. 52 2.2.12 16S rDNA Sequencing ......................................................................................... 52 2.2.13 Genomic DNA Extraction, Sequencing, Assembly and Annotation .................... 53 2.2.14 Preparation of Phylogenetic Tree ....................................................................... 54 2.3 PROTEIN BIOCHEMISTRY .................................................................................... 54 2.3.1 Induction of Protein Expression and Cell-Free Extract Preparation ................... 54 2.3.2 Protein Quantification ........................................................................................ 55 2.3.3 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) ........ 56 2.3.4 Western Blotting ................................................................................................. 57 2.3.5 Ni-NTA Purification ............................................................................................. 59 iv 2.3.6 Measurement of Myrosinase Activity by God-Perid Assay ................................ 59 2.4 CHROMATOGRAPHY METHODS .......................................................................... 61 2.4.1 High Performance Liquid Chromatography (HPLC) ............................................ 61 2.4.1.1 Preparation of sulfatase .................................................................................. 61 2.4.1.2 Desulfation of glucosinolates .........................................................................
Recommended publications
  • Bioavailability of Sulforaphane from Two Broccoli Sprout Beverages: Results of a Short-Term, Cross-Over Clinical Trial in Qidong, China
    Cancer Prevention Research Article Research Bioavailability of Sulforaphane from Two Broccoli Sprout Beverages: Results of a Short-term, Cross-over Clinical Trial in Qidong, China Patricia A. Egner1, Jian Guo Chen2, Jin Bing Wang2, Yan Wu2, Yan Sun2, Jian Hua Lu2, Jian Zhu2, Yong Hui Zhang2, Yong Sheng Chen2, Marlin D. Friesen1, Lisa P. Jacobson3, Alvaro Muñoz3, Derek Ng3, Geng Sun Qian2, Yuan Rong Zhu2, Tao Yang Chen2, Nigel P. Botting4, Qingzhi Zhang4, Jed W. Fahey5, Paul Talalay5, John D Groopman1, and Thomas W. Kensler1,5,6 Abstract One of several challenges in design of clinical chemoprevention trials is the selection of the dose, formulation, and dose schedule of the intervention agent. Therefore, a cross-over clinical trial was undertaken to compare the bioavailability and tolerability of sulforaphane from two of broccoli sprout–derived beverages: one glucoraphanin-rich (GRR) and the other sulforaphane-rich (SFR). Sulfor- aphane was generated from glucoraphanin contained in GRR by gut microflora or formed by treatment of GRR with myrosinase from daikon (Raphanus sativus) sprouts to provide SFR. Fifty healthy, eligible participants were requested to refrain from crucifer consumption and randomized into two treatment arms. The study design was as follows: 5-day run-in period, 7-day administration of beverages, 5-day washout period, and 7-day administration of the opposite intervention. Isotope dilution mass spectrometry was used to measure levels of glucoraphanin, sulforaphane, and sulforaphane thiol conjugates in urine samples collected daily throughout the study. Bioavailability, as measured by urinary excretion of sulforaphane and its metabolites (in approximately 12-hour collections after dosing), was substantially greater with the SFR (mean ¼ 70%) than with GRR (mean ¼ 5%) beverages.
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Glucoraphanin (potassium salt) Item No. 10009445 Formal Name: 1-thio-1-[5-(methylsulfinyl)-N- O (sulfooxy)pentanimidate]-β-D- OH O- glucopyranose, potassium salt O S MF: C H NO S • XK O 12 22 10 3 OH FW: 436.5 O N Purity: ≥95% UV/Vis.: λmax: 225 nm OH S S Supplied as: A crystalline solid OH O Storage: -20°C • XK+ Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Glucoraphanin (potassium salt) is supplied as a crystalline solid. A stock solution may be made by dissolving the glucoraphanin (potassium salt) in the solvent of choice. Glucoraphanin (potassium salt) is soluble in the organic solvent DMSO, which should be purged with an inert gas, at a concentration of approximately 1 mg/ml. Further dilutions of the stock solution into aqueous buffers or isotonic saline should be made prior to performing biological experiments. Ensure that the residual amount of organic solvent is insignificant, since organic solvents may have physiological effects at low concentrations. Organic solvent-free aqueous solutions of glucoraphanin (potassium salt) can be prepared by directly dissolving the crystalline solid in aqueous buffers. The solubility of glucoraphanin (potassium salt) in PBS, pH 7.2, is approximately 10 mg/ml. We do not recommend storing the aqueous solution for more than one day. Description Glucoraphanin is a natural glycoinsolate found in cruciferous vegetables, including broccoli.1 It is converted to the isothiocyanate sulforaphane by the enzyme myrosinase.1 Sulforaphane has powerful antioxidant, anti-inflammatory, and anti-carcinogenic effects.1,2 It acts by activating nuclear factor erythroid 2-related factor 2 (Nrf2), which induces the expression of phase II detoxification enzymes.3,4 References 1.
    [Show full text]
  • Critical Evaluation of Gene Expression Changes in Human Tissues In
    Review Critical Evaluation of Gene Expression Changes in Human Tissues in Response to Supplementation with Dietary Bioactive Compounds: Moving Towards Better-Quality Studies Biljana Pokimica 1 and María-Teresa García-Conesa 2,* 1 Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade 11000, Serbia; [email protected] 2 Research Group on Quality, Safety and Bioactivity of Plant Foods, Campus de Espinardo, Centro de Edafologia y Biologia Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), P.O. Box 164, 30100 Murcia, Spain * Correspondence: [email protected]; Tel.: +34-968-396276 Received: 4 June 2018; Accepted: 19 June 2018; Published: 22 June 2018 Abstract: Pre-clinical cell and animal nutrigenomic studies have long suggested the modulation of the transcription of multiple gene targets in cells and tissues as a potential molecular mechanism of action underlying the beneficial effects attributed to plant-derived bioactive compounds. To try to demonstrate these molecular effects in humans, a considerable number of clinical trials have now explored the changes in the expression levels of selected genes in various human cell and tissue samples following intervention with different dietary sources of bioactive compounds. In this review, we have compiled a total of 75 human studies exploring gene expression changes using quantitative reverse transcription PCR (RT-qPCR). We have critically appraised the study design and methodology used as well as the gene expression results reported. We herein pinpoint some of the main drawbacks and gaps in the experimental strategies applied, as well as the high interindividual variability of the results and the limited evidence supporting some of the investigated genes as potential responsive targets.
    [Show full text]
  • MINI-REVIEW Cruciferous Vegetables: Dietary Phytochemicals for Cancer Prevention
    DOI:http://dx.doi.org/10.7314/APJCP.2013.14.3.1565 Glucosinolates from Cruciferous Vegetables for Cancer Chemoprevention MINI-REVIEW Cruciferous Vegetables: Dietary Phytochemicals for Cancer Prevention Ahmad Faizal Abdull Razis1*, Noramaliza Mohd Noor2 Abstract Relationships between diet and health have attracted attention for centuries; but links between diet and cancer have been a focus only in recent decades. The consumption of diet-containing carcinogens, including polycyclic aromatic hydrocarbons and heterocyclic amines is most closely correlated with increasing cancer risk. Epidemiological evidence strongly suggests that consumption of dietary phytochemicals found in vegetables and fruit can decrease cancer incidence. Among the various vegetables, broccoli and other cruciferous species appear most closely associated with reduced cancer risk in organs such as the colorectum, lung, prostate and breast. The protecting effects against cancer risk have been attributed, at least partly, due to their comparatively high amounts of glucosinolates, which differentiate them from other vegetables. Glucosinolates, a class of sulphur- containing glycosides, present at substantial amounts in cruciferous vegetables, and their breakdown products such as the isothiocyanates, are believed to be responsible for their health benefits. However, the underlying mechanisms responsible for the chemopreventive effect of these compounds are likely to be manifold, possibly concerning very complex interactions, and thus difficult to fully understand. Therefore,
    [Show full text]
  • Volume 73 Some Chemicals That Cause Tumours of the Kidney Or Urinary Bladder in Rodents and Some Other Substances
    WORLD HEALTH ORGANIZATION INTERNATIONAL AGENCY FOR RESEARCH ON CANCER IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS VOLUME 73 SOME CHEMICALS THAT CAUSE TUMOURS OF THE KIDNEY OR URINARY BLADDER IN RODENTS AND SOME OTHER SUBSTANCES 1999 IARC LYON FRANCE WORLD HEALTH ORGANIZATION INTERNATIONAL AGENCY FOR RESEARCH ON CANCER IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS Some Chemicals that Cause Tumours of the Kidney or Urinary Bladder in Rodents and Some Other Substances VOLUME 73 This publication represents the views and expert opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, which met in Lyon, 13–20 October 1998 1999 IARC MONOGRAPHS In 1969, the International Agency for Research on Cancer (IARC) initiated a programme on the evaluation of the carcinogenic risk of chemicals to humans involving the production of critically evaluated monographs on individual chemicals. The programme was subsequently expanded to include evaluations of carcinogenic risks associated with exposures to complex mixtures, life-style factors and biological agents, as well as those in specific occupations. The objective of the programme is to elaborate and publish in the form of monographs critical reviews of data on carcinogenicity for agents to which humans are known to be exposed and on specific exposure situations; to evaluate these data in terms of human risk with the help of international working groups of experts in chemical carcinogenesis and related fields; and to indicate where additional research efforts are needed. The lists of IARC evaluations are regularly updated and are available on Internet: http://www.iarc.fr/.
    [Show full text]
  • Anti-Carcinogenic Glucosinolates in Cruciferous Vegetables and Their Antagonistic Effects on Prevention of Cancers
    molecules Review Anti-Carcinogenic Glucosinolates in Cruciferous Vegetables and Their Antagonistic Effects on Prevention of Cancers Prabhakaran Soundararajan and Jung Sun Kim * Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; [email protected] * Correspondence: [email protected] Academic Editor: Gautam Sethi Received: 15 October 2018; Accepted: 13 November 2018; Published: 15 November 2018 Abstract: Glucosinolates (GSL) are naturally occurring β-D-thioglucosides found across the cruciferous vegetables. Core structure formation and side-chain modifications lead to the synthesis of more than 200 types of GSLs in Brassicaceae. Isothiocyanates (ITCs) are chemoprotectives produced as the hydrolyzed product of GSLs by enzyme myrosinase. Benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC) and sulforaphane ([1-isothioyanato-4-(methyl-sulfinyl) butane], SFN) are potential ITCs with efficient therapeutic properties. Beneficial role of BITC, PEITC and SFN was widely studied against various cancers such as breast, brain, blood, bone, colon, gastric, liver, lung, oral, pancreatic, prostate and so forth. Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key transcription factor limits the tumor progression. Induction of ARE (antioxidant responsive element) and ROS (reactive oxygen species) mediated pathway by Nrf2 controls the activity of nuclear factor-kappaB (NF-κB). NF-κB has a double edged role in the immune system. NF-κB induced during inflammatory is essential for an acute immune process. Meanwhile, hyper activation of NF-κB transcription factors was witnessed in the tumor cells. Antagonistic activity of BITC, PEITC and SFN against cancer was related with the direct/indirect interaction with Nrf2 and NF-κB protein.
    [Show full text]
  • Effects of Cruciferous Vegetable Consumption on Urinary
    Cancer Epidemiology, Biomarkers & Prevention 997 Effects of Cruciferous Vegetable Consumption on Urinary Metabolites of the Tobacco-Specific Lung Carcinogen 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanone in Singapore Chinese Stephen S. Hecht,1 Steven G. Carmella,1 Patrick M.J. Kenney,1 Siew-Hong Low,2 Kazuko Arakawa,3 and Mimi C. Yu3 1University of Minnesota Cancer Center, Minneapolis, Minnesota; 2Department of Community, Occupational, and Family Medicine, National University of Singapore, Singapore; and 3Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California Abstract Vegetable consumption, including cruciferous vegeta- major glucosinolates in seven of the nine cruciferous bles, is protective against lung cancer, but the mechan- vegetables, accounting for 70.0% to 93.2% of all glu- isms are poorly understood. The purpose of this study cosinolates in these vegetables. There was a significant was to investigate the effects of cruciferous vegetable correlation (P = 0.01) between increased consumption consumption on the metabolism of the tobacco-specific of glucobrassicins and decreased levels of NNAL in lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1- urine after adjustment for number of cigarettes smoked butanone (NNK) in smokers. The study was carried out per day; similar trends were observed for NNAL-Glucs in Singapore Chinese, whose mean daily intake of (P = 0.08) and NNAL plus NNAL-Glucs (P = 0.03). cruciferous vegetables is three times greater than that These results are consistent with those of previous of people in the United States. Eighty-four smokers studies, which demonstrate that indole-3-carbinol de- provided urine samples and were interviewed about creases levels of urinary NNAL probably by inducing dietary habits using a structured questionnaire, which hepatic metabolism of NNK.
    [Show full text]
  • Benzyl Isothiocyanate As an Adjuvant Chemotherapy Option for Head and Neck Squamous Cell Carcinoma Mary Allison Wolf [email protected]
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2014 Benzyl Isothiocyanate as an Adjuvant Chemotherapy Option for Head and Neck Squamous Cell Carcinoma Mary Allison Wolf [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Biological Phenomena, Cell Phenomena, and Immunity Commons, Medical Biochemistry Commons, Medical Cell Biology Commons, and the Oncology Commons Recommended Citation Wolf, Mary Allison, "Benzyl Isothiocyanate as an Adjuvant Chemotherapy Option for Head and Neck Squamous Cell Carcinoma" (2014). Theses, Dissertations and Capstones. Paper 801. This Dissertation is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. Benzyl Isothiocyanate as an Adjuvant Chemotherapy Option for Head and Neck Squamous Cell Carcinoma A dissertation submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Sciences By Mary Allison Wolf Approved by Pier Paolo Claudio, M.D., Ph.D., Committee Chairperson Richard Egleton, Ph.D. W. Elaine Hardman, Ph.D. Jagan Valluri, Ph.D. Hongwei Yu, PhD Marshall University May 2014 DEDICATION “I sustain myself with the love of family”—Maya Angelou To my wonderful husband, loving parents, and beautiful daughter—thank you for everything you have given me. ii ACKNOWLEDGEMENTS First and foremost, I would like to thank my mentor Dr. Pier Paolo Claudio. He has instilled in me the skills necessary to become an independent and successful researcher.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    THE EFFECTS OF SOIL TYPE AND NITROGEN RATES ON GLUCOSINOLATE AND OIL PRODUCTION IN BRASSICA CARNATA By THEODOR LINARES STANSLY A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2016 © 2016 Theodor Linares Stansly To my parents, Philip and Silvia Stansly, I thank you from the bottom of my heart. Not all of the important lessons needed for a successful career can be taught in schools or universities. They must also come from those who have persevered through life’s obstacles without losing hope, inspiration, and spirit. I am grateful for everything you have done and continue to do throughout these years. ACKNOWLEDGMENTS Many thanks to Pete C. Andersen for allowing me the opportunity to pursue my passion for science and providing the steppingstones to a career as a professional researcher. I also want to thank David Wright, Jim Marois, Sheeja George, and Ramdeo (Andy) Seapaul and the rest of the Brassica carinata research team at the UF North Florida Research and Education Center for all your support and assistance in the development of my project. Mosbah M. Kushad from the University of Illinois and Steven H. Miller at the University of South Florida for assisting in various aspects of data acquisition of the samples. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ...........................................................................................................
    [Show full text]
  • Broccoli Sprout Beverage Is Safe for Thyroid Hormonal and Autoimmune Status: Results of a 12-Week Randomized Trial T
    Food and Chemical Toxicology 126 (2019) 1–6 Contents lists available at ScienceDirect Food and Chemical Toxicology journal homepage: www.elsevier.com/locate/foodchemtox Broccoli sprout beverage is safe for thyroid hormonal and autoimmune status: Results of a 12-week randomized trial T Dionysios V. Chartoumpekisa,2, Panos G. Zirosb, Jian-Guo Chenc, John D. Groopmand, ∗ Thomas W. Kenslera,1,3, Gerasimos P. Sykiotisb, ,1 a Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA b Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Lausanne, Switzerland c Department of Epidemiology, Qidong Liver Cancer Institute, Qidong, Jiangsu, China d Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA ARTICLE INFO ABSTRACT Keywords: Sulforaphane is a redox-active natural product present in cruciferous vegetables like broccoli. Broccoli sprout- Nrf2 derived products are promising agents for the prevention of oxidative stress-related diseases, but some have long Thyroid been suspected of thyroidal toxicity. Recent findings also raise the possibility that long-term exposure to sul- Sulforaphane foraphane, or to other natural substances or drugs that modulate the activity of the transcription factor Nrf2 Glucoraphanin (NFE2-related factor 2) may lead to thyroid dysfunction or thyroid autoimmune disease, questioning the safety Broccoli sprout beverage of trials with sulforaphane-containing products. Previous studies addressing possible effects of sulforaphane- Clinical trial related compounds from natural product extracts on the thyroid were quite short and/or inconsistent. To in- vestigate whether long-term exposure to a beverage enriched with sulforaphane and its precursor glucoraphanin may affect thyroid function, we analyzed biochemical measures of thyroid function and thyroid autoimmunity in 45 female participants in a randomized clinical trial at baseline and after 84 days of beverage administration.
    [Show full text]
  • A Natural Antimicrobial Ingredient
    Mustard: A Natural Antimicrobial Ingredient Did you know? Mustard has natural antimicrobial properties, the bioactive compounds ‐ glucosinolates in mustard, are converted to the antimicrobial isothiocyanates in the presence of water Natural preservative functionality of mustard can be very valuable to the food industry Mustard isothiocyanates can effect up to a 5‐log reduction of E. coli 0157:H7 in fermented meats Mustard Essential Oils (MEO) can be added to bakery products to inhibit fungal growth and production of aflatoxins Glucosinolates from deheated / deodorized (bland) mustard can be converted into highly antimicrobial isothiocyanate by bacterial myrosinase‐like enzyme action present in E. coli, 0157:H7, Staphylococcus carnosus and Pediococcus pentosaceus11,12,13 and in L. monocytogenes, Enterococcus faecalis, Staphylococcus aureus and Salmonella typhimurium Mustard’s inherent antimicrobial properties should fit well with the food industry’s growing interest and increasing consumer demand for the use of a natural preservative to enhance food safety and increase shelf‐life of prepared packaged foods with a “clean label” claim. Mustards in Foods Mustards (Yellow and Brown) are commercially available as whole seeds, ground/cracked seeds, meals or flour forms and are widely used in the manufacture of condiments, salad dressings, pickles, sauces, processed meats and as substitutes for egg ingredients. While mainly used as a spice or for its functional properties, mustard can also provide raw and processed foods protection against pathogenic and spoilage microorganisms. Antimicrobial Bioactives in Mustard All mustards, Yellow (& White) (Sinapis alba) and Brown/Oriental (Brassica juncea), contain glucosinolates. It is these glucosinolates and their isothiocyanate (ITC) breakdown products which contribute to its natural antimicrobial activity and to the heat and pungency of mustard.
    [Show full text]
  • Soil Mobility of Allyl Isothiocyanate and Chloropicrin As Influenced By
    HORTSCIENCE 54(4):706–714. 2019. https://doi.org/10.21273/HORTSCI13836-18 and some soil arthropods, but it provides little control of fungi and weeds, whereas Met-Na controls weeds, nematodes, and some fungi. CP Soil Mobility of Allyl Isothiocyanate controls insects and fungi, but it has less activity against nematodes and weeds (Ajwa and Trout, and Chloropicrin as Influenced by 2004). The most promising MeBr alternatives are chloropicrin and Met-Na (Gao et al., 2012; Surfactants and Soil Texture Jacoby, 2016; Klose et al., 2008; Yates et al., 2002); therefore, more than 7000 tons of chlo- Feras Almasri ropicrin were used in 2011 (Nelson et al., 2013) Department of Plant Sciences, University of California at Davis, Davis, CA in California. 95616 Although Met-Na is an effective fumigant (Nelson et al., 2002), the use of Met-Na is Husein A. Ajwa strongly regulated due to the excessive soil fu- Department of Plant Sciences, University of California at Davis, 1636 East migant release into the atmosphere (Goodhue et al., 2016; Saeed et al., 1997). Because of Alisal Street, Salinas, CA 93905 this excessive release into the atmosphere, Sanjai J. Parikh Met-Na, Met-K, and DMTT labels require wide buffer zones and specific measures to University of California at Davis, Department of Land, Air and Water protect people from off-target movement Resources, Davis, CA 95616 (Guthman and Brown, 2016). Furthermore, 1 Met-Na, Met-K, and DMTT degrade in soil Kassim Al-Khatib to MITC, which is classified as a toxicity I Department of Plant Sciences, University of California at Davis, Davis, CA category pesticide (Gao et al., 2012; Klose 95616 et al., 2008).
    [Show full text]