Secondary Metabolites from Bacillus Amyloliquefaciens Isolated from Soil Can Kill Burkholderia Pseudomallei Patcharaporn Boottanun1,2, Chotima Potisap1,2, Julian G

Total Page:16

File Type:pdf, Size:1020Kb

Secondary Metabolites from Bacillus Amyloliquefaciens Isolated from Soil Can Kill Burkholderia Pseudomallei Patcharaporn Boottanun1,2, Chotima Potisap1,2, Julian G Boottanun et al. AMB Expr (2017) 7:16 DOI 10.1186/s13568-016-0302-0 ORIGINAL ARTICLE Open Access Secondary metabolites from Bacillus amyloliquefaciens isolated from soil can kill Burkholderia pseudomallei Patcharaporn Boottanun1,2, Chotima Potisap1,2, Julian G. Hurdle3 and Rasana W. Sermswan1,2* Abstract Bacillus species are Gram-positive bacteria found in abundance in nature and their secondary metabolites were found to possess various potential activities, notably antimicrobial. In this study, Bacillus amyloliquefaciens N2-4 and N3-8 were isolated from soil and their metabolites could kill Burkholderia pseudomallei, a Gram-negative pathogenic bac- terium also found in soil in its endemic areas. Moreover, the metabolites were able to kill drug resistant isolates of B. pseudomallei and also inhibit other pathogenic bacteria such as Staphylococcus aureus, Escherichia coli and Acinetobac- ter baumannii but not the non-pathogenic Burkholderia thailandensis, which is closely related to B. pseudomallei. Since the antimicrobial activity of N3-8 was not partially decreased or abolished when treated with proteolytic enzymes or autoclaved, but N2-4 was, these two strains should have produced different compounds. The N3-8 metabolites with antimicrobial activity consisted of both protein and non-protein compounds. The inhibition spectrum of the precipi- tated proteins compared to the culture supernatant indicated a possible synergistic effect of the non-protein and peptide compounds of N3-8 isolates against other pathogens. When either N2-4 or N3-8 isolates was co-cultured with B. pseudomallei the numbers of the bacteria decreased by 5 log10 within 72 h. Further purification and characterization of the metabolites is required for future use of the bacteria or their metabolites as biological controls of B. pseudomal- lei in the environment or for development as new drugs for problematic pathogenic bacteria. Keywords: Bio-control, Antimicrobial peptides, Pathogenic bacteria, Secondary metabolites Introduction substance from Bacillus licheniformis could inhibit food Bacillus spp. are Gram-positive bacteria found diversely spoilage bacteria (Guo et al. 2012). Moreover, the culture in nature especially in soil. In unsuitable conditions such supernatant from Bacillus spp. isolated from soil named as high temperature, radiation and harsh chemical rea- KW and SA was reported to contain N-acyl homoserine gents, they can form endospores for survival (Errington lactone that significantly decreased biofilm formation of 2003). Besides spore forming, Bacillus spp. are also able Burkholderia pseudomallei (Ramli et al. 2012). In addi- to produce secondary metabolite products (Sansine- tion, the Bacillus strain TKS1-1 in endospore form, was nea and Ortiz 2011), which is an additional function to used to reduce the incidence of citrus bacterial canker compete against other organisms. Bioactive compounds (Huang et al. 2012). Some Bacillus spp. can produce sev- from Bacillus subtilis, bacteriocin-like substances, were eral types of active compounds such as B. amyloliquefa- reported to inhibit several clinical bacteria such as Lis- ciens FZB42 that has 8.5% of the genome dedicated for teria monocytogenes, Staphylococcus aureus, Bacil- the synthesis of secondary metabolites (Chen et al. 2007). lus cereus, Salmonella typhi (Xie et al. 2009) and also a It can produce lipopeptides; surfactin, fengycin, bacillo- mycin D, polyketide (difficidin) and dipeptide bacilysin that can suppress growth of Erwinia amylovora (Chen *Correspondence: [email protected] 1 Department of Biochemistry, Faculty of Medicine, Khon Kaen University, et al. 2009). 123 Mitraparb Rd, Muang District, Khon Kaen Province 40002, Thailand Full list of author information is available at the end of the article © The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Boottanun et al. AMB Expr (2017) 7:16 Page 2 of 11 Melioidosis is one of infectious diseases that pose a agar (NA) plates and incubated at 37 °C for 18–24 h. Bac- significant public health problem in Southeast Asia and terial isolates with colony morphology of large, dry, white North Australia. The causative agent is B. pseudomal- color with wavy, lobed margins were selected to sub- lei, a Gram-negative bacteria which can be found in soil culture and confirmed by the Gram’s stain. These isolates and water in endemic areas (Cheng and Currie 2005). were tested for their ability to kill B. pseudomallei and Melioidosis is the third most cause of death among the other pathogens. infectious diseases in northeast Thailand and is respon- sible for 20% of community acquired septicemias with Agar well diffusion method for screening of antimicrobial a 40% mortality rate (Wiersinga et al. 2012). The bacte- activity rium is intrinsically resistant to several antibiotics and Antimicrobial activity against B. pseudomallei or other acquired resistant to ceftazidime the drug of choice after pathogens of culture supernatants and precipitated pro- lost a penicillin-binding protein 3 gene (Chantratita tein from culture supernatants of Bacillus spp. were et al. 2011). Burkholderia pseudomallei was found to be investigated by the agar well diffusion method (Umer unevenly distributed in soil and that the physicochemi- et al. 2013). In brief, overnight 1% cultures in Luria Ber- cal properties of soil may partially influence the presence tani (LB) medium of B. pseudomallei and other indica- and absence of the bacterium (Ngamsang et al. 2015; tor bacteria were inoculated into fresh LB medium and Palasatien et al. 2008). Some microbes in soil may also incubated at 37 °C, 200 rpm for 4 h until the log phase inhibit or compete by producing some active compounds and were then used at approximately 105–106 CFU/ml against the bacteria. to swab on Müller-Hinton agar (MHA) plates. The plates In this study, it was therefore of interest to screen for were punched to obtain 6.6 mm wells by sterile pipette Bacillus spp. in soils that were negative for B. pseudomal- tips and then 100 µl of sterile supernatant or precipitated lei and characterize the metabolites that could inhibit or proteins were added into each well. Ceftazidime (Sigma- kill B. pseudomallei. The Bacillus spp. themselves or their Aldrich, St. Loius, MO, USA) at 50 µg/ml concentration antimicrobial metabolites might then be used as bio-con- was used as the positive control and minimal medium trols to prevent and reduce the incidence of melioidosis was used as the negative control. The plates were left in endemic areas. at room temperature for 1 h before being incubated at 37 °C, for 18–24 h. Inhibition activity was evaluated by Materials and methods measuring the diameter of inhibition zone against B. Bacterial strains pseudomallei. Bacterial strains used to test for the inhibition spectrum of B. amyloliquefaciens metabolites are listed in Addi- Species identification tional file 1: Table S1. They were obtained from the Meli- N2-4 and N3-8 with inhibitory activity against B. pseu- oidosis Research Center, Faculty of Medicine Khon Kaen domallei were selected for gDNA extraction with an RBC University, Thailand and also kindly provided by Asso- kit (RBC ribosicen, Taiwan) and were then used for PCR ciate Professor Julian G. Hurdle’s laboratory, Center for amplification using universal primers against the con- Infectious and Inflammatory diseases, Institute of Bio- served region in 16s rDNA gene (Rd1; 5′AAGGAGGT sciences and Technology, Texas A&M University, USA. GATCCAGCC3′, Fd1; 5′AGTTTGATCCTGGCTCAG3′) Our bacterial strains were deposited in culture collec- (Ghribi et al. 2012). The master mix of PCR contained tion belonging to World Data Centre for Microorganism 2.5 µl of 10X PCR buffer, 0.16 mM dNTP, 2.0 mM MgCl2, (WDCM) as MRCKKU (registration number 1130). 0.1 µM of each primer, 0.04 unit/ml of Taq DNA poly- merase, 50 ng of DNA template and DNase-free water Isolation of Bacillus spp. from soil to a final volume of 25 µl. The PCR products were ana- Twenty-five soil samples that were confirmed as nega- lyzed with 1.2% agarose gel electrophoresis and stained tive for B. pseudomallei by culture and semi-nested PCR with SYRB Gold. The expected PCR products of 1500 bps (Ngamsang et al. 2015) were used for isolation of Bacillus were sequenced (First Base laboratories Sdn Bhd, Malay- spp. sia) and the BLASTn program was used (Altschul et al. The protocol for isolation of Bacillus spp. from soil was 1997; National Center for Biotechnology Information according to Travers et al. (1987) described with some 2015) to identify their species. modifications. One gram of each soil sample was mixed with 10 ml sterile distilled water and boiled at 100 °C for Production kinetics of antimicrobial metabolites 5 min to kill other vegetative cells. Thereafter, superna- N2-4 and N3-8 were cultured in duplicate in 200 ml tants were diluted by 10-fold serial dilution and 100 µl of of minimal medium composed of 5.0 g l-glutamic −2 −3 −4 the 10 , 10 , 10 dilutions were spread onto nutrient acid, 0.5 g KH2PO4, 0.5 g K2HPO4, 0.2 g MgSO4·7H2O, Boottanun et al. AMB Expr (2017) 7:16 Page 3 of 11 Partial purification of proteins 0.01 g MnSO4·H2O, NaCl 0.01 g, FeSO4·7H2O 0.01 g, CuSO4·7H2O 0.01 g and CaCl2·2H2O 0.015 g/L. This was Culture supernatants from N2-4 and N3-8 were pre- supplemented with 1% w/v sterile glucose as described by cipitated using 20, 40, 60 and 80% saturated ammonium Jamil et al. (2007) at 37 °C with 200 rpm shaking for 102 h.
Recommended publications
  • Identification and Characterization of Andalusicin: N-Terminally Dimethylated Class III Lantibiotic from Bacillus Thuringiensis Sv
    Identification and characterization of andalusicin: N-terminally dimethylated class III lantibiotic from Bacillus thuringiensis sv. andalousiensis Anastasiia Grigoreva, Julia Andreeva, Dmitry Bikmetov, Anastasiia Rusanova, Marina Serebryakova, Andrea Hernandez Garcia, Darya Slonova, Satish Nair, Guy Lippens, Konstantin Severinov, et al. To cite this version: Anastasiia Grigoreva, Julia Andreeva, Dmitry Bikmetov, Anastasiia Rusanova, Marina Serebryakova, et al.. Identification and characterization of andalusicin: N-terminally dimethylated class III lantibiotic from Bacillus thuringiensis sv. andalousiensis. iScience, Elsevier, 2021, 24 (5), 10.1016/j.isci.2021.102480. hal-03270626 HAL Id: hal-03270626 https://hal.inrae.fr/hal-03270626 Submitted on 25 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License iScience ll OPEN ACCESS Article Identification and characterization of andalusicin: N-terminally dimethylated class III lantibiotic from Bacillus thuringiensis sv. andalousiensis
    [Show full text]
  • Plantazolicin Manuscript OA
    Total Synthesis of the Post-translationally Modified Polyazole Peptide Antibiotic Plantazolicin A Hiroki Wada, Huw E. L. Williams and Christopher J. Moody*[a] School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K. E-mail: [email protected] Abstract: The power of rhodium carbene methodology in chemistry is demonstrated by the synthesis of a structurally complex polyazole antibiotic. Plantazolicin A, a novel soil bacterium metabolite, comprises a linear array of 10 five-membered rings in two pentacyclic regions that derive from ribosomal peptide synthesis followed by extensive post-translational modification. The compound possesses potent antimicrobial activity, and is selectively active against the anthrax causing organism. A conceptually different synthesis of plantazolicin A is reported in which the key steps are the use of rhodium(II)-catalyzed reactions of diazocarbonyl compounds to generate up to six of the seven oxazole rings of the antibiotic. NMR Spectroscopic studies and molecular modeling, reveal a likely dynamic hairpin conformation with a hinge region around the two isoleucine residues. The compound has modest activity against methicillin-resistant Staphylococcus aureus (MRSA). In the one and a half centuries since August Kekulé and Archibald Scott Couper independently proposed that a carbon atom could form four bonds to other atoms (including other carbons),[1,2] the existence of divalent carbons species with a 6-electron valence shell has intrigued chemists. Once regarded as mechanistic curiosities
    [Show full text]
  • Anew Drug Design Strategy in the Liht of Molecular Hybridization Concept
    www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 “Drug Design strategy and chemical process maximization in the light of Molecular Hybridization Concept.” Subhasis Basu, Ph D Registration No: VB 1198 of 2018-2019. Department Of Chemistry, Visva-Bharati University A Draft Thesis is submitted for the partial fulfilment of PhD in Chemistry Thesis/Degree proceeding. DECLARATION I Certify that a. The Work contained in this thesis is original and has been done by me under the guidance of my supervisor. b. The work has not been submitted to any other Institute for any degree or diploma. c. I have followed the guidelines provided by the Institute in preparing the thesis. d. I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the Institute. e. Whenever I have used materials (data, theoretical analysis, figures and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references. Further, I have taken permission from the copyright owners of the sources, whenever necessary. IJCRT2012039 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 284 www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 f. Whenever I have quoted written materials from other sources I have put them under quotation marks and given due credit to the sources by citing them and giving required details in the references. (Subhasis Basu) ACKNOWLEDGEMENT This preface is to extend an appreciation to all those individuals who with their generous co- operation guided us in every aspect to make this design and drawing successful.
    [Show full text]
  • Identification and Classification of Known and Putative Antimicrobial Compounds Produced by a Wide Variety of Bacillales Species Xin Zhao1,2 and Oscar P
    Zhao and Kuipers BMC Genomics (2016) 17:882 DOI 10.1186/s12864-016-3224-y RESEARCH ARTICLE Open Access Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species Xin Zhao1,2 and Oscar P. Kuipers1* Abstract Background: Gram-positive bacteria of the Bacillales are important producers of antimicrobial compounds that might be utilized for medical, food or agricultural applications. Thanks to the wide availability of whole genome sequence data and the development of specific genome mining tools, novel antimicrobial compounds, either ribosomally- or non-ribosomally produced, of various Bacillales species can be predicted and classified. Here, we provide a classification scheme of known and putative antimicrobial compounds in the specific context of Bacillales species. Results: We identify and describe known and putative bacteriocins, non-ribosomally synthesized peptides (NRPs), polyketides (PKs) and other antimicrobials from 328 whole-genome sequenced strains of 57 species of Bacillales by using web based genome-mining prediction tools. We provide a classification scheme for these bacteriocins, update the findings of NRPs and PKs and investigate their characteristics and suitability for biocontrol by describing per class their genetic organization and structure. Moreover, we highlight the potential of several known and novel antimicrobials from various species of Bacillales. Conclusions: Our extended classification of antimicrobial compounds demonstrates that Bacillales provide a rich source of novel antimicrobials that can now readily be tapped experimentally, since many new gene clusters are identified. Keywords: Antimicrobials, Bacillales, Bacillus, Genome-mining, Lanthipeptides, Sactipeptides, Thiopeptides, NRPs, PKs Background (bacteriocins) [4], as well as non-ribosomally synthesized Most of the species of the genus Bacillus and related peptides (NRPs) and polyketides (PKs) [5].
    [Show full text]
  • The Highly Modified Microcin Peptide Plantazolicin Is Associated with Nematicidal Activity of Bacillus Amyloliquefaciens FZB42
    Appl Microbiol Biotechnol (2013) 97:10081–10090 DOI 10.1007/s00253-013-5247-5 APPLIED GENETICS AND MOLECULAR BIOTECHNOLOGY The highly modified microcin peptide plantazolicin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42 Zhongzhong Liu & Anto Budiharjo & Pengfei Wang & Hui Shi & Juan Fang & Rainer Borriss & Keqin Zhang & Xiaowei Huang Received: 9 May 2013 /Revised: 19 August 2013 /Accepted: 22 August 2013 /Published online: 2 October 2013 # Springer-Verlag Berlin Heidelberg 2013 Abstract Bacillus amyloliquefaciens FZB42 has been shown plantazolicin bearing a molecular weight of 1,354 Da was to stimulate plant growth and to suppress the growth of plant present in wild-type B. amyloliquefaciens FZB42, but absent pathogenic organisms including nematodes. However, the in the ΔRABM_007470 mutant. Furthermore, bioassay of the mechanism underlying its effect against nematodes remains organic extract containing plantazolicin also showed a mod- unknown. In this study, we screened a random mutant library erate nematicidal activity. We conclude that a novel gene of B. amyloliquefaciens FZB42 generated by the mariner RBAM_007470 and its related metabolite are involved in the transposon TnYLB-1 and identified a mutant strain F5 with antagonistic effect exerted by B. amyloliquefaciens FZB42 attenuated nematicidal activity. Reversible polymerase chain against nematodes. reaction revealed that three candidate genes RAMB_007470, yhdY,andprkA that were disrupted by the transposon in strain Keywords Bacillus amyloliquefaciens FZB42 . Nematicidal F5 potentially contributed to its decreased nematicidal activ- activity . RBAM_007470 gene . Plantazolicin . Himar1 ity. Bioassay of mutants impaired in the three candidate genes transposon library . ESI-TOF-MS demonstrated that directed deletion of gene RBAM_007470 resulted in loss of nematicidal activity comparable with that of the F5 triple mutant.
    [Show full text]
  • Antibacterial Activities of Bacteria Isolated from the Marine Sponges Isodictya Compressa and Higginsia Bidentifera Collected from Algoa Bay, South Africa
    Article Antibacterial Activities of Bacteria Isolated from the Marine Sponges Isodictya compressa and Higginsia bidentifera Collected from Algoa Bay, South Africa Relebohile Matthew Matobole 1, Leonardo Joaquim van Zyl 1,*, Shirley Parker‐Nance 2,3, Michael T. Davies‐Coleman 4 and Marla Trindade 1 1 Institute for Microbial Biotechnology and Metagenomics (IMBM), Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, South Africa; [email protected] (R.M.M.); [email protected] (M.T.) 2 Department of Zoology, Nelson Mandela Metropolitan University, University Way, Port Elizabeth 6031, South Africa; Shirley.Parker‐[email protected] 3 South African Institute for Aquatic Biodiversity (SAIAB), Somerset Street, Grahamstown 6139, South Africa 4 Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, South Africa; mdavies‐[email protected] * Correspondence: [email protected]; Tel.: +27‐21‐959‐2325 Academic Editor: Keith B. Glaser Received: 8 November 2016; Accepted: 30 January 2017; Published: 17 February 2017 Abstract: Due to the rise in multi‐drug resistant pathogens and other diseases, there is renewed interest in marine sponge endosymbionts as a rich source of natural products (NPs). The South African marine environment is rich in marine biota that remains largely unexplored and may represent an important source for the discovery of novel NPs. We first investigated the bacterial diversity associated with five South African marine sponges, whose microbial populations had not previously been investigated, and select the two sponges (Isodictya compressa and Higginsia bidentifera) with highest species richness to culture bacteria. By employing 33 different growth conditions 415 sponge‐associated bacterial isolates were cultured and screened for antibacterial activity.
    [Show full text]
  • Genetic and Biochemical Analysis of the Micrococcin Biosynthetic Pathway Philip Ross Bennallack Brigham Young University
    Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2016-11-01 Genetic and Biochemical Analysis of the Micrococcin Biosynthetic Pathway Philip Ross Bennallack Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Bennallack, Philip Ross, "Genetic and Biochemical Analysis of the Micrococcin Biosynthetic Pathway" (2016). All Theses and Dissertations. 6182. https://scholarsarchive.byu.edu/etd/6182 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Genetic and Biochemical Analysis of the Micrococcin Biosynthetic Pathway Philip Ross Bennallack A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Richard A. Robison, Co-Chair Joel S. Griffitts, Co-Chair Julianne H. Grose Steven M. Johnson Bradley C. Bundy Department of Microbiology and Molecular Biology Brigham Young University Copyright © 2016 Philip Ross Bennallack All Rights Reserved ABSTRACT Genetic and Biochemical Analysis of the Micrococcin Biosynthetic Pathway Philip Ross Bennallack Department of Microbiology and Molecular Biology, BYU Doctor of Philosophy Declining antibiotic discovery and flourishing antibiotic resistance have led to a modern antibiotic crisis which threatens to compromise our ability to treat infectious disease. Consequently, there is significant interest in developing new antibiotics with novel modes of action and chemical properties. Ribosomally synthesized and post- translationally modified peptides (RiPPs) are natural compounds with the appealing attributes of being derived directly from a genetic template while possessing numerous exotic chemical features that contribute to stability and antimicrobial activity.
    [Show full text]
  • Plantazolicin a and B: Structure Elucidation of Ribosomally Synthesized Thiazole/Oxazole Peptides from Bacillus Amyloliquefacien
    ORGANIC LETTERS XXXX Plantazolicin A and B: Structure Vol. XX, No. XX Elucidation of Ribosomally Synthesized 000–000 Thiazole/Oxazole Peptides from Bacillus amyloliquefaciens FZB42 Bahar Kalyon,† Soleiman E. Helaly,†,‡ Romy Scholz,§ Jonny Nachtigall,† Joachim Vater,† Rainer Borriss,§ and Roderich D. Sussmuth*€ ,† Institut fur€ Chemie, Technische Universitat€ Berlin, 10623 Berlin, Germany, Department of Chemistry, Faculty of Science, South Valley University, Aswan 81528, Egypt, and Institute of Biology/Bakteriengenetik, Humboldt Universitat€ zu Berlin, 10115 Berlin, Germany [email protected] Received March 28, 2011 ABSTRACT The structures of the ribosomally synthesized peptide antibiotics from Bacillus amyloliquefaciens FZB42, plantazolicin A and B, have been elucidated by high resolving ESI-MSMS, 2D 1HÀ13C-correlated NMR spectroscopy as well as 1HÀ15N-HMQC/1HÀ15N-HMBC NMR experiments. 15N-labeling prior to the experiments facilitated the structure determination, unveiling a hitherto unusual number of thiazoles and oxazoles formed from a linear 14mer precursor peptide. This finding further extends the number of known secondary metabolites from B. amyloliquefaciens and represents a new type of secondary metabolites from the genus Bacillus. The bacterium Bacillus amyloliquefaciens FZB42, which B. amyloliquefaciens was dedicated to the biosynthesis of is highly related to the Gram-positive model organism various secondary metabolites. These genes comprise the Bacillus subtilis, promotes plant growth.1 Following com- biosynthesis of nonribosomally synthesized lipocyclodep- plete sequencing and annotation of its genome,2 it was sipeptides, fengycin,3 surfactin,4 and bacillomycin5 as well found that a considerable part of the genomic DNA of as the siderophore bacillibactin.6 Likewise, based on the genomic data, genes coding for three different polyketide synthase gene clusters could be assigned to the biosynthetic † Technische Universit€at Berlin.
    [Show full text]
  • Partnering to Advance Industry Through Innovation
    Partnering to Advance Industry through Innovation Research from the laboratory of Dr Douglas Mitchell Partnering Opportunity: Genes for the Biosynthesis of Department of Chemistry http://www.scs.illinois.edu/mitchell/ Plantazolicin, a Molecule Effective in Killing Bacillus Home.html Anthracis Anthrax disease, caused the by the bacterium Bacillus anthracis, is a major bioterrorism threat. Currently, B. anthracis infections are treated with various broad-spectrum antibiotics. Antibiotic treatment must be effective at eliminating all B. anthracis, which often requires over 60 days of antibiotic treatment. Consequently, the current method of treatment increases the dangers of multi-drug resistance. Multi-drug resistance arises from horizontal gene transfer of drug-resistant bacteria and has lead to the generation of For More Information on many harmful infectious diseases including, but not limited to, Vancomycin-resistant enterococcus (VRE) licensing and partnering and Methicillin-resistance Staphlococcus aureus (MRSA). opportunities, please contact Most current treatments of bacterial infections kill off the human intestinal bacterial which has two negative side effects: the “healthy” bacteria serve as a reservoir for antibiotic resistance and keep other Jonathan Ho pathogens at bay. Prolonged, broad-spectrum antibiotics leave patients at risk for secondary infections Technology Manager that are harder to treat that the primary infection. Therefore, it would be beneficial to develop a treatment for Anthrax that would avoid these potent side effects. Office of Technology Management Microcins are antibacterial peptides that differ from popular broad-range antibiotics in a variety of ways. University of Illinois at One important difference is that microcins target a narrow spectrum of bacteria. As a result, natural human microbial flora will go undisturbed aiding in decreased side effects.
    [Show full text]
  • The Total Synthesis of the Bioactive Natural Product Plantazolicin a and Its Biosynthetic Precursor Plantazolicin B
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo The total synthesis of the bioactive natural product plantazolicin A and its biosynthetic precursor plantazolicin B. Sabine Fenner,[a][b] Zoe E. Wilson[a] and Steven V. Ley*[a] [a] Dr Sabine Fenner, Dr Zoe E. Wilson and Professor Steven V. Ley, Department of Chemistry, University of Cambridge, Lensfield road, CB21EW, Cambridge, UK. E-mail: [email protected] [b] Dr Fenner is now employed by GlaxoSmithKline, Gunnels Wood Rd, SG12NY, Stevenage, UK Abstract: Herein we describe our full investigations into the synthesis of the peptide derived natural product plantazolicin A, a compound which demonstrates promising selective activity against the causative agent of anthrax toxicity, and its biosynthetic precursor plantazolicin B. This report particularly focuses on the challenging preparation of the arginine containing thiazole fragment, including the development of a robust, high yielding procedure that avoids the use of sulfurating agents. Extensive studies on the design of a coherent protecting group strategy and the establishment of a step efficient dicyclization/oxidation approach allowed high levels of convergence for the construction of the oxazole fragments. This has led to a unified, highly convergent synthesis for both plantazolicin A and B. Introduction The need for new antibiotics, especially those which work by novel mechanisms of action, is undisputed.[1] The rise of antibiotic resistant bacteria is thought, in part, to have been due to the use of broad spectrum antibiotics and therefore narrow spectrum anti-bacterial compounds are garnering increased attention.[1] Natural products have proven to be a significant source of both chemically and mechanistically diverse antibiotics.[2] The isolation of the bioactive molecule plantazolicin A (1) and its biosynthetic precursor[3] plantazolicin B (2) was first reported in 2011 from the Bacillus amyloliquifaciens FZB42[4], a bacterium which has been recently reclassified as Bacillus velezensis FZB42[5].
    [Show full text]
  • UNIVERSITY of CALIFORNIA SAN DIEGO Total Synthesis and Anti
    UNIVERSITY OF CALIFORNIA SAN DIEGO Total Synthesis and Anti-Cancer Activity of Micrococcin P1 and Synthetic Fragments A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry By Mitchell Patrick Christy Committee in charge: Professor Dionicio Siegel, Chair Professor Neal Devaraj Professor William Gerwick Professor Emmanuel Theodorakis Professor Yitzhak Tor 2019 Copyright Mitchell Patrick Christy, 2019 All rights reserved The Dissertation of Mitchell Patrick Christy is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California San Diego 2019 DEDICATION To my family who has been so supportive, especially when it was hard. Without them none of this is possible. TABLE OF CONTENTS Signature Page………………………………………………………………………………………….iii Dedication………………………………………………………………………………………………..iv Table of Contents………………………………………………………………………………………...v List of Abbreviations……………………………………………………………………………………vi List of Figures…………………………………………………………………………………………….x List of Schemes…………………………………………………………………………………………..xi List of Tables……………………………………………………………………………………………xii Acknowledgements……………………………………………………………………………………xiii Vita………………………………………………………………………………………………………xiv Abstract of the Dissertation………………………………………………………………………….xvi Chapter 1: Total Synthesis of Micrococcin P1….…………………………………………………...1 Experimental Section…………………………………………………………………………29 Chapter 2: Anti-Cancer Activity of Micrococcin P1 and Synthetic Intermediates……..…….72
    [Show full text]
  • The Carb Gene of Escherichia Coli BL21(DE3) Is Associated with Nematicidal Activity Against the Root-Knot Nematode Meloidogyne Javanica
    pathogens Article The carB Gene of Escherichia coli BL21(DE3) is Associated with Nematicidal Activity against the Root-Knot Nematode Meloidogyne javanica Yanfei Xia 1,2,3,*, Shen Li 3, Guohui Xu 1, Shanshan Xie 2 , Xueting Liu 3, Xiaomin Lin 3, Huijun Wu 2,* and Xuewen Gao 2 1 Department of Forensic Medicine, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin 541001, Guangxi, China; [email protected] 2 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, Jiangsu, China; xssfl[email protected] (S.X.); [email protected] (X.G.) 3 Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang 471023, Henan, China; [email protected] (S.L.); [email protected] (X.L.); [email protected] (X.L.) * Correspondence: [email protected] (Y.X.); [email protected] (H.W.); Tel.: +86-773-2816-299 (Y.X.); +86-25-8439-5268 (H.W.) Abstract: Biological nematicides have been widely used to lower the losses generated by phytopara- sitic nematodes. The purpose of this study was to evaluate the nematicidal effects of Escherichia coli BL21(DE3) against Meloidogyne javanica and to identify nematicide-related genes. Culture filtrates of BL21(DE3) caused juvenile mortality and inhibited egg hatching in a dose-dependent manner. In the greenhouse, treatment of tomato seedlings with BL21(DE3) culture filtrates at 50 and 100% concentrations not only reduced the amount of M. javanica egg masses and galls, but improved plant Citation: Xia, Y.; Li, S.; Xu, G.; Xie, S.; root and shoot fresh weight.
    [Show full text]