Abstract Book [PDF]

Total Page:16

File Type:pdf, Size:1020Kb

Abstract Book [PDF] Table of Contents The 37th Steenbock Symposium Page 1 General Information e Future of Chemical Biology 2 Support Staff 3 About Harry Steenbock e symposium will bring together leading 3 Area Map scientists in the eld of chemical biology to discuss their most recent research activities. 4 - 5 Schedule 6 Sponsors Presentations will cover topics including: 7 Symposium Organizer • Natural Products 8 - 9 Speaker Index • Small Molecule Modulators 9 Chair Index • Post-translational Modification 10 - 57 Speaker Bios & Abstracts • Imaging 58 - 62 Poster Presenter Index • Protein Quality Control 64 - 149 Poster Abstracts • Chemistry for Chemical Biology 151- 155 Attendees General Information Name Badges Symposium participants are requested to wear the name badge during all conference activities. Registration Pick up conference materials on Thursday, June 5th, 5:00-6:50 pm Ebling Symposium Center Lobby, Microbial Sciences Building, 1550 Linden Drive. Opening Reception Thursday, June 5th, 5:00-6:50 pm. Welcoming and Keynote speakers starting at 7:00 pm. Ebling Symposium Center Lobby, Microbial Sciences Building, 1550 Linden Drive. Scientific Talks All talks will be in the Ebling Symposium Center, Microbial Sciences Building, 1550 Linden Drive. Talks begin at 8:55 am on Friday and conclude by 5:00 pm Saturday. Breakfast & Lunches Friday and Saturday. Please wear your name badge. Registration fee includes breakfasts, breaks and lunches. See schedule for locations. Poster Sessions Poster Session 1: Friday 12:30-1:40 pm, HF DeLuca Biochemistry Laboratories, 433 Babcock Drive Posters can go up starting at 7:00 am Friday. To be taken down at the end of the poster session. Poster Session 2: Saturday 1:30-2:40 pm, HF DeLuca Biochemical Sciences Building, 440 Henry Mall Posters can go up starting at 8:30 am Saturday. To be taken down at the end of the poster session. Boards are numbered and reserved. Please see the reservation list in this booklet and near the boards. Banquet Friday, June 6th, 6:30-9:45 pm,Wisconsin Institutes for Discovery, 330 North Orchard Street Banquet included in the registration fee. The Future of Chemical Biology 1 The Future of Chemical Biology 37th Steenbock Symposium University of Wisconsin – Madison Symposium Organizer Laura L. Kiessling Departments of Biochemistry & Chemistry University of Wisconsin – Madison Symposium Coordinators Kris Turkow Department of Chemistry University of Wisconsin – Madison Leah Leighty CALS Conference Services University of Wisconsin – Madison Robin Davies & Laura Vanderploeg Symposium Web Site, Abstract Book & Illustrations 2 37th Steenbock Symposium June 5th – 7th, 2014 Harry Steenbock 1886–1967 A distinguished Professor of Biochemistry at the University of Wisconsin-Madison, Professor Steenbock's interests and contributions spanned many areas of nutrition and biochemistry. Of special note is his discovery of the conversion of carotenes to vitamin A, the production of vitamin D by ultraviolet irradiation, and his central participation in demonstrating that copper and iron cure nutritional anemia. The production of vitamin D by ultraviolet irradiation virtually abolished rickets, a widespread and debilitating disease. Professor Steenbock patented the irradiation process for producing vitamin D and conceived the idea of the Wisconsin Alumni Research Foundation (WARF), a nonprofit foundation which invests the proceeds from patents for support of research in the natural sciences at the University of Wisconsin-Madison. Professor Steenbock assigned his valuable patents to the Foundation, and revenue from them has provided uniquely flexible resources for fostering sustained scientific development on the Madison campus. To honor Professor Steenbock, the Steenbock Endowment sponsors a symposium at the University of Wisconsin-Madison. Area Map JOHNSON ST GORHAM ST N. PINCK NEY GILMAN ST LAKE S. BLAIR MENDOTA S. BUTLER ST LAK 1. Microbial Sciences Building ESI DE B WIS (Site of Symposium) IKE / HIKING PA TH N. CARROLL AVE 2. H.F. DeLuca Biochemistry Laboratories (Site of Poster Session 1) 6 DAY TON ST 3. H.F. DeLuca Biochemical Sciences Building 1 LINDEN DR LANGDON ST STATE ST STATE (Site of Poster Session 2) BABCOCK DR CAPITOL 2-3 Lot 20 4. Wisconsin Institutes for Discovery MALL < > HENRY 7 (Site of the Banquet) S. PINCKNEY UNIVERSITY AVE 4 HENRY ST 5. Union South 6. Memorial Union JOHNSON ST Lot 17 5 BROOM 7. Lake St. & Frances St. Parking Ramps DAYTON ST S. CARROLL MARTIN LUTHER KING BLVD CAMP BASSETT JOHN NOLEN DR. RANDALL LAKE ST PARK ST MARION ST FRANCES ST CHARTER ST ORCHARD ST RANDALL AVE WILSON ST W. WASHINGTON AVE REGENT ST MONROE ST LAKE MONONA The Future of Chemical Biology 3 Symposium Schedule Thursday, June 5th, 2014 Registration & Hors d'oeuvres 5:00 - 6:50 PM Ebling Symposium Center Lobby, Microbial Sciences Building, 1550 Linden Drive Welcome & Opening Remarks – Laura Kiessling 7:00 PM Ebling Symposium Center 7:15 - 8:15 PM Keynote – Dennis Dougherty ** All talks will be in the Ebling Symposium Center ** Microbial Sciences Building, 1550 Linden Drive Friday, June 6th, 2014 8:30 - 8:50 AM Breakfast – Ebling Lobby 8:55 - 10:30 AM Session I • Natural Products 8:55 AM Chair: Helen Blackwell 9:00 AM Rebecca Butcher 9:30 AM Yi Tang 10:00 AM Frank Schroeder 10:30 - 10:50 AM Break – Ebling Lobby 10:55 - 12:30 PM Session II • Small Molecule Modulators 10:55 AM Chair: Dehua Pei 11:00 AM Nathanael Gray 11:30 AM Dustin Maly 12:00 PM Jack Taunton Lunch & Poster Session 1 12:30-1:40 PM HF DeLuca Biochemistry Laboratories, 433 Babcock Drive Posters can go up starting at 7:00 am Friday. To be taken down at the end of the poster session. 1:55 - 4:00 PM Session III • Post-translational Modification 1:55 PM Chair: Martha Oakley 2:00 PM Minkui Luo 2:30 PM Chuan He 3:00 PM Eranthie Weerapana 3:30 PM Mark Distefano 4:00 - 4:20 Break – Ebling Lobby 4:25 - 5:30 PM Session IV• Imaging 4:25 PM Chair: Brett Van Veller 4:30 PM Luke Lavis 5:00 PM Christopher Chang 6:30 PM Reception – Wisconsin Institutes for Discovery, 330 North Orchard Street 7:30- 9:45 PM Dinner Banquet – Wisconsin Institutes for Discovery, 330 North Orchard Street 4 37th Steenbock Symposium June 5th – 7th, 2014 Symposium Schedule Saturday, June 7th, 2014 8:30 - 8:50 AM Breakfast – Ebling Lobby 8:55 - 11:00 AM Session V • Protein Quality Control 8:55 AM Chair: Eric Strieter 9:00 AM Jason Gestwicki 9:30 AM Alexander Statsyuk 10:00 AM Peter Chien 10:30 AM Sachdev Siddhu 11:00 - 11:20 AM Break – Ebling Lobby 11:25 - 1:30 PM Session VI • Chemistry for Chemical Biology 11:25 AM Chair: Jiaoyang Jiang 11:30 AM Ratmir Derda 12:00 PM Nicola Pohl 12:30 PM Geert-Jan Boons 1:00 PM David Spiegel Lunch & Poster Session 2 1:30-2:40 PM HF DeLuca Biochemical Sciences Building, 440 Henry Mall Posters can go up starting at 8:30 am Saturday. To be taken down at the end of the poster session. 2:55 - 4:30 PM Session VII• Small Molecule Modulators II 2:55 PM Chair: Eric Underbakke 3:00 PM Douglas Weibel 3:30 PM Paul Thompson 4:00 PM Hening Lin 4:30 PM Closing Remarks – Laura Kiessling 1 1. Microbial Sciences Building N Site of Symposium • 1550 Linden Drive Linden Drive Henry Mall 2. H.F. DeLuca Biochemistry Laboratories Site of Poster Session 1 • 433 Babcock Drive 4 Henry Mall 2 3 3. H.F. DeLuca Biochemical Sciences Building 3 Site of Poster Session 2 • 440 Henry Mall 2 Babcock Drive Campus Drive 4. Wisconsin Institutes for Discovery Site of the Banquet • 330 North Orchard University Avenue 4 North Orchard St North Randall Ave The Future of Chemical Biology 5 Symposium Sponsors The Steenbock Endowment Department of Biochemistry University of Wisconsin – Madison 6 37th Steenbock Symposium June 5th – 7th, 2014 Symposium Organizer Laura L. Kiessling Laura L. Kiessling was born in Milwaukee, WI. She received her B.S. in Chemistry from MIT and her Ph.D. in Chemistry from Yale University. After postdoctoral training in Chemical Biology at the California Institute of Technology, she returned to Wisconsin to begin her independent career at the University of Wisconsin-Madison in 1991. She currently is a Steenbock Professor of Chemistry and the Laurens Anderson Professor of Biochemistry. She also serves as the Director of the Keck Center for Chemical Genomics, the Program Director for the Chemical Biological Interface Training Program, and the Editor-In-Chief of ACS Chemical Biology. Her interdisciplinary research interests focus on elucidating and exploiting the mechanisms of cell surface recognition processes, including those that involve of protein–saccharide recognition and oligosaccharide function. Another major interest of her group is multivalency and its role in recognition and signal transduction. Her research combines tools from organic synthesis, polymer chemistry, structural biology, microbiology, and molecular and cell biology to address problems in chemical biology. More information on Dr. Kiessling and her research can be found at www.biochem.wisc.edu/faculty/kiessling/lab/. The Future of Chemical Biology 7 Speaker Index Abstract Day Speaker Title of Talk Page Time Functional Glycomics Through Chemical Saturday Geert-Jan Boons 11 Synthesis 12:30 PM Chemical Communication in C. elegans and other Friday Rebecca A. Butcher 13 Nematodes 9:00 AM Molecular Approaches to Mapping and Friday Christopher J. Chang 15 Understanding Inorganic Chemistry in the Brain 5:00 PM Saturday Peter Chien Regulated Protein Degradation in Bacteria 17 10:00 AM Discovery of Ligands from Genetically-encoded Saturday Ratmir Derda 19 Libraries of Synthetic Molecules 11:30 AM Friday Mark Distefano Chemical Biology of Protein Prenylation 21 3:30 PM Chemistry on the Brain: Thursday Dennis A. Dougherty 23 Understanding the Nicotine Receptor 7:15 PM Protein Folding in the Eye: Saturday Jason E.
Recommended publications
  • The-Chemical-Biologist.Pdf
    Chunxiao Song LUDWIG WORKING FROM HOME “Basically, everything around us can be represented in this very simple and elegant way. It seemed like the whole world could be written in simple formulas.” 38 The chemical biologist IN 2008, CHUNXIAO SONG WAS JUST A dozen years on, that lost feeling is a beginning his graduate studies in chemistry pleasantly dim memory for Song, who is at the University of Chicago. It was not going now an assistant member of the Oxford well. A foreign student from China, Song Branch of the Ludwig Institute for Cancer had never traveled outside his country, and Research. In 2019, Song, in collaboration the pressure and loneliness were starting to with his Ludwig Oxford colleague Benjamin get to him. “Graduate studies, especially for Schuster-Boeckler, published a study in the foreigners, can be tough,” Song says. journal Nature Biotechnology that detailed a greatly improved method for mapping a He was professionally adrift as well. During key chemical—or “epigenetic”—modification college at Peking University, Song had made to DNA known as methylation. majored in organic chemistry. Now, eager Epigenetic modifications play a critical to harness chemistry to probe the natural role in controlling gene expression, and world, he had switched his focus to chemical aberrant methylation across the genome biology. He was adept at designing reactions has long been known to be a hallmark of to create synthetic molecules without cancer. In 2020, Song and his colleagues concern for their immediate utility. But in launched a company named Base Genomics the biological world, chemistry is only useful to commercialize their new technology to the extent that it explains or enables and apply it to minimally invasive cancer discovery.
    [Show full text]
  • Hemistry N E W S L E T T E R
    University of Michigan Chemistry N E W S L E T T E R Letter from the Chair I am pleased to send greetings and to fullerene, was a very engaging keynote Contents highlight the activities of the Chemistry speaker for this event. Before his talk, the Department this past year. The Depart- Department was awarded a 2006 Citation Letter from the Chair ........................ 1 ment is continuing to make enormous for Chemical Breakthroughs from the Di- New Faculty ..................................... 3 strides towards accomplishing its goal of vision of the History of Chemistry of the becoming one of the top Chemistry De- American Chemical Society in recognition Faculty News.................................... 4 partments in the nation. The most recent of work by Moses Gomberg. Additionally, I 150th Birthday ...................................4 US News and World Report ranking of have enjoyed meeting departmental alumni Graduate Program News Chemistry Departments listed Michigan and alumnae as well as prospective faculty as 16th in the nation; the analytical cluster candidates at the University of Michigan Graduate Awards .......................... 7 was ranked 9th, biochemistry 13th, organic reception that is held at every American Graduate Degrees........................ 10 th th 13 , and inorganic 15 . These are the Chemical Society National meeting. Please GS Council News .........................12 highest rankings for these clusters in many plan on attending this reception at the next years. We anticipate that our standing in ACS meeting. Undergraduate Program News the community will continue to rise, in REU Program ...............................12 Over the past year the department has view of the tremendous success that we recruited Dr. Anne McNeil, an outstand- Undergraduate Awards ...............
    [Show full text]
  • Identification and Characterization of Andalusicin: N-Terminally Dimethylated Class III Lantibiotic from Bacillus Thuringiensis Sv
    Identification and characterization of andalusicin: N-terminally dimethylated class III lantibiotic from Bacillus thuringiensis sv. andalousiensis Anastasiia Grigoreva, Julia Andreeva, Dmitry Bikmetov, Anastasiia Rusanova, Marina Serebryakova, Andrea Hernandez Garcia, Darya Slonova, Satish Nair, Guy Lippens, Konstantin Severinov, et al. To cite this version: Anastasiia Grigoreva, Julia Andreeva, Dmitry Bikmetov, Anastasiia Rusanova, Marina Serebryakova, et al.. Identification and characterization of andalusicin: N-terminally dimethylated class III lantibiotic from Bacillus thuringiensis sv. andalousiensis. iScience, Elsevier, 2021, 24 (5), 10.1016/j.isci.2021.102480. hal-03270626 HAL Id: hal-03270626 https://hal.inrae.fr/hal-03270626 Submitted on 25 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License iScience ll OPEN ACCESS Article Identification and characterization of andalusicin: N-terminally dimethylated class III lantibiotic from Bacillus thuringiensis sv. andalousiensis
    [Show full text]
  • Academic Career Research Interests Honors and Awards
    Prof. Dr. Christian P.R. Hackenberger born 04.02.1976 in Osnabrück Humboldt Universität zu Berlin Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP) Homepage: www.fmp‐berlin.info/hackenbe/ Academic career 1996 – 1998 Undergraduate studies and prediploma in Chemistry Albert‐Ludwigs‐Universität Freiburg 1998 – 1999 Graduate studies and M.Sc. with Prof. Samuel H. Gellman Univ. of Wisconsin/Madison, USA 2000 – 2003 Ph.D. research with Prof. Carsten Bolm (summa cum laude) RWTH‐Aachen 2003 – 2005 Postdoctoral work with Prof. Barbara Imperiali Massachusetts Institute of Technology, USA 2004 Research stay with Prof. Sheena E. Radford University of Leeds, UK 2005 – 2006 Junior group leader as Liebig‐Scholar (FCI) Freie Universität Berlin 2006 – 2011 Emmy‐Noether‐Group leader (DFG) Freie Universität Berlin 2011 Habilitation and venia legendi in Organic Chemistry Freie Universität Berlin 2011 – 2012 Associate Professor (W2) for Bioorganic Chemistry Freie Universität Berlin 2012 – Leibniz‐Humboldt‐Professor (W3) for Chemical Biology Humboldt Universität zu Berlin and FMP Research interests ‐ Development of ligation and modification strategies for the synthesis of functional proteins ‐ Labeling strategies for antibody‐ and nanobody‐conjugates, generation of antibody‐drug‐conjugates (ADCs) ‐ Synthesis and proteomic analysis of labile phosphorylated peptides (pLys and pCys) ‐ Intracellular delivery and targeting of functional proteins ‐ Functional investigation of the Alzheimer‐relevant Tau protein ‐ Engineering of protein‐based multivalent scaffolds, metabolic oligosaccharide engineering Honors and Awards 2018 Leonidas Zervas Award of the European Peptide Society 2018 Leibniz Gründerpreis for the foundation of Tubulis Technologies 2016 Fellow of the Royal Society of Chemistry 2014 “The best 40 under 40 in Germany” (Welt am Sonntag) 2013 Harlan L.
    [Show full text]
  • Caged Phosphopeptides and Phosphoproteins: Agents in Unraveling Complex Biological Pathways
    Caged Phosphopeptides and Phosphoproteins: Agents in Unraveling Complex Biological Pathways by Deborah Maria Rothman S. B., Biochemistry, University of Chicago, 2000 A. B., Biology, University of Chicago, 2000 Submitted to the Department of Chemistry in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the Massachusetts Institute of Technology June 2005 MASSACi.USE_.]S iNSTITTE OF TECHNOLOGY © 2005 Massachusetts Institute of Technology JUN 2 1 2005 All rights reserved LIBRARIES Signature of Author: ( I I 1., , ,, - Department of Chemistry May 9, 2005 Certified by: Barbara Imperiali Class of 1922 Professor of Chemistry and Professor of Biology Thesis Supervisor Accepted by: Robert W. Field Haslam and Dewey Professor of Chemistry Chairman, Departmental Committee on Graduate Students AtmCHlvtS This doctoral thesis has been examined by a committee of the Department of Chemistry as follows: Timothy F. Jamison Chairman Professor of Chemistry 6) Barbara ImDerialiI Thesis Supervisor Class of 1922 Professor of Chemistry and Professor of Biology Douglas A. Lauffenburger oafEr fi s o ei/- g/ a Bl Whitaker Professor of Biological Engineering, Pofessor of themica/ngineering and Biology 2 Caged Phosphopeptides and Phosphoproteins: Agents in Unraveling Complex Biological Pathways by Deborah Maria Rothman Submitted to the Department of Chemistry on May 9, 2005 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy ABSTRACT Within cellular signaling, protein phosphorylation is the post-translational modification most frequently used to regulate protein activity. Protein kinases and phosphoprotein phosphatases generate and terminate these phosphoryl signals, respectively. Chemical approaches for studying protein phosphorylation and the roles of phosphoproteins include photolabile caged analogs of bioactive species.
    [Show full text]
  • Bacterial Carbohydrate Diversity — a Brave New World 1,2
    Available online at www.sciencedirect.com ScienceDirect Bacterial carbohydrate diversity — a Brave New World 1,2 Barbara Imperiali Glycans and glycoconjugates feature on the ‘front line’ of (Figure 1a) and among these, the hexoses show extensive bacterial cells, playing critical roles in the mechanical and variation in substitution patterns and the heptoses and chemical stability of the microorganisms, and orchestrating octoses are exclusively prokaryotic. The nonulosonic acids, interactions with the environment and all other living organisms. which are derived biosynthetically from the hexoses, are To negotiate such central tasks, bacterial glycomes also far more varied: there is a single example in man, but incorporate a dizzying array of carbohydrate building blocks dozens have been characterized to date in various bacteria and non-carbohydrate modifications, which create [5]. In addition, a plethora of modifications including alkyl, opportunities for infinite structural variation. This review acyl, amino acyl, phosphoryl, and even nucleoside groups highlights some of the challenges and opportunities for the are often found decorating the carbohydrates [4 ]. Defining chemical biology community in the field of bacterial and cataloging this variety, not to mention understanding glycobiology. its significance, is a Herculean task. Addresses Bacterial carbohydrates may be components of repeating 1 Department of Biology, Massachusetts Institute of Technology, glycopolymers or, more complex glycoconjugates, which Cambridge, MA 02139, United States 2 may reveal elaborate ‘samplers’ of different sugars Department of Chemistry, Massachusetts Institute of Technology, (Figure 1b) [6]. In cells, the glycans commonly include Cambridge, MA 02139, United States cell-surface structures that are essential for the mechanical Corresponding author: Imperiali, Barbara ([email protected]) integrity of bacterial cells and for critical interactions with other bacteria and the hosts with which they coexist [7,8].
    [Show full text]
  • Plantazolicin Manuscript OA
    Total Synthesis of the Post-translationally Modified Polyazole Peptide Antibiotic Plantazolicin A Hiroki Wada, Huw E. L. Williams and Christopher J. Moody*[a] School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K. E-mail: [email protected] Abstract: The power of rhodium carbene methodology in chemistry is demonstrated by the synthesis of a structurally complex polyazole antibiotic. Plantazolicin A, a novel soil bacterium metabolite, comprises a linear array of 10 five-membered rings in two pentacyclic regions that derive from ribosomal peptide synthesis followed by extensive post-translational modification. The compound possesses potent antimicrobial activity, and is selectively active against the anthrax causing organism. A conceptually different synthesis of plantazolicin A is reported in which the key steps are the use of rhodium(II)-catalyzed reactions of diazocarbonyl compounds to generate up to six of the seven oxazole rings of the antibiotic. NMR Spectroscopic studies and molecular modeling, reveal a likely dynamic hairpin conformation with a hinge region around the two isoleucine residues. The compound has modest activity against methicillin-resistant Staphylococcus aureus (MRSA). In the one and a half centuries since August Kekulé and Archibald Scott Couper independently proposed that a carbon atom could form four bonds to other atoms (including other carbons),[1,2] the existence of divalent carbons species with a 6-electron valence shell has intrigued chemists. Once regarded as mechanistic curiosities
    [Show full text]
  • Anew Drug Design Strategy in the Liht of Molecular Hybridization Concept
    www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 “Drug Design strategy and chemical process maximization in the light of Molecular Hybridization Concept.” Subhasis Basu, Ph D Registration No: VB 1198 of 2018-2019. Department Of Chemistry, Visva-Bharati University A Draft Thesis is submitted for the partial fulfilment of PhD in Chemistry Thesis/Degree proceeding. DECLARATION I Certify that a. The Work contained in this thesis is original and has been done by me under the guidance of my supervisor. b. The work has not been submitted to any other Institute for any degree or diploma. c. I have followed the guidelines provided by the Institute in preparing the thesis. d. I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the Institute. e. Whenever I have used materials (data, theoretical analysis, figures and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references. Further, I have taken permission from the copyright owners of the sources, whenever necessary. IJCRT2012039 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 284 www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 f. Whenever I have quoted written materials from other sources I have put them under quotation marks and given due credit to the sources by citing them and giving required details in the references. (Subhasis Basu) ACKNOWLEDGEMENT This preface is to extend an appreciation to all those individuals who with their generous co- operation guided us in every aspect to make this design and drawing successful.
    [Show full text]
  • Curriculum Vitae-Chuan He
    Curriculum Vitae-Chuan He Position John T. Wilson Distinguished Service Professor of Chemistry Director of Institute for Biophysical Dynamics Howard Hughes Medical Institute Investigator The University of Chicago Address GCIS E319B, 929 East 57th Street Department of Chemistry The University of Chicago Chicago, IL 60637 USA Tel: 773-702-5061. Fax: 773-702-0805. Email: [email protected] Born Feb. 25, 1972, in P. R. China Education University of Science and Technology of China, Bachelor of Science in Chemistry, June, 1994. Massachusetts Institute of Technology, Ph.D. in Chemistry, August, 2000 (Adviser, Professor Stephen J. Lippard) Harvard University, Postdoc in Chemical Biology, 2000-2002 (Adviser, Professor Gregory L. Verdine) Employment Massachusetts Institute of Technology, Teaching Assistant, 1995-1996 Massachusetts Institute of Technology, Research Assistant, 1996-1997 Massachusetts Institute of Technology, Merck/MIT Graduate Fellow, 1997-1999 Massachusetts Institute of Technology, Research Assistant, 1999-2000 Harvard University, Damon Runyon Cancer Foundation Postdoctoral Fellow, 2000-2002 The University of Chicago, Assistant Professor, 2002-2008 The University of Chicago, Associate Professor, 2008-2010 The University of Chicago, Professor, 2010- The University of Chicago, Director of Institute for Biophysical Dynamics, 2012- Investigator of Howard Hughes Medical Institute, 2014- The University of Chicago, John T Wilson Distinguished Service Professor, 2014- Director of the Synthetic and Functional Biomolecules Center (SFBC) at Peking University, 2011- Awards Merck/MIT Graduate Fellowship, MIT, 1997-1999. The Fourth Annual Davison Prize for the Best Thesis in Inorganic Chemistry, MIT, 2001. Postdoctoral Fellowship from the Damon Runyon Cancer Research Foundation, 2000-2002. Searle Scholar Award, 2003 Research Corporation Research Innovation Award, 2003 G&P Foundation for Cancer Research Young Investigation Award, 2004 W.
    [Show full text]
  • A Thesis Entitled Thio-Arylglycosides with Various Aglycon Para-Substituents, a Useful Tool for Mechanistic Investigation Of
    A Thesis entitled Thio-arylglycosides with Various Aglycon Para-Substituents, a Useful Tool for Mechanistic Investigation of Chemical Glycosylations by Xiaoning Li Submitted as partial fulfillment of the requirements for the Master of Science Degree in Chemistry ___________________________ Advisor: Dr. Xuefei Huang ___________________________ College of Graduate Studies The University of Toledo August 2007 An Abstract of Thio-arylglycosides with Various Aglycon Para-Substituents, a Useful Tool for Mechanistic Investigation of Chemical Glycosylations by Xiaoning Li Submitted as partial fulfillment of the requirements for the Master of Science Degree in Chemistry The University of Toledo August 2007 Oligosaccharides are usually found as protein or lipid conjugates in cellular systems. They play crucial roles in many biological processes. Among many approaches, organic synthesis is a very important way to obtain the desired oligosaccharides for biological studies. To date, no general synthetic procedures are available for oligosaccharide synthesis. Laborious synthetic transformations are generally required in order to obtain the desired regio- and/or stereo-selective control in oligosaccharide synthesis, due to their diverse and complex structures and many chemical equivalent ii hydroxyl functional groups. To achieve a rapid synthetic routine with high yields, a key step - glycosylation in oligosaccharide synthesis needs to be well understood. Thus an insight into the mechanism of glycosylation will provide valuable information potentially leading to the development of generalized glycosylation method. In this work, kinetic properties of glycosylation were evaluated by model reactions between three different series of glycosyl donors and three different glycosyl acceptors. The glycosylation mechanism was analyzed in the context of a linear-free energy relationship.
    [Show full text]
  • Identification and Classification of Known and Putative Antimicrobial Compounds Produced by a Wide Variety of Bacillales Species Xin Zhao1,2 and Oscar P
    Zhao and Kuipers BMC Genomics (2016) 17:882 DOI 10.1186/s12864-016-3224-y RESEARCH ARTICLE Open Access Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species Xin Zhao1,2 and Oscar P. Kuipers1* Abstract Background: Gram-positive bacteria of the Bacillales are important producers of antimicrobial compounds that might be utilized for medical, food or agricultural applications. Thanks to the wide availability of whole genome sequence data and the development of specific genome mining tools, novel antimicrobial compounds, either ribosomally- or non-ribosomally produced, of various Bacillales species can be predicted and classified. Here, we provide a classification scheme of known and putative antimicrobial compounds in the specific context of Bacillales species. Results: We identify and describe known and putative bacteriocins, non-ribosomally synthesized peptides (NRPs), polyketides (PKs) and other antimicrobials from 328 whole-genome sequenced strains of 57 species of Bacillales by using web based genome-mining prediction tools. We provide a classification scheme for these bacteriocins, update the findings of NRPs and PKs and investigate their characteristics and suitability for biocontrol by describing per class their genetic organization and structure. Moreover, we highlight the potential of several known and novel antimicrobials from various species of Bacillales. Conclusions: Our extended classification of antimicrobial compounds demonstrates that Bacillales provide a rich source of novel antimicrobials that can now readily be tapped experimentally, since many new gene clusters are identified. Keywords: Antimicrobials, Bacillales, Bacillus, Genome-mining, Lanthipeptides, Sactipeptides, Thiopeptides, NRPs, PKs Background (bacteriocins) [4], as well as non-ribosomally synthesized Most of the species of the genus Bacillus and related peptides (NRPs) and polyketides (PKs) [5].
    [Show full text]
  • 1 General Aspects of the Glycosidic Bond Formation Alexei V
    j1 1 General Aspects of the Glycosidic Bond Formation Alexei V. Demchenko 1.1 Introduction Since the first attempts at the turn of the twentieth century, enormous progress has been made in the area of the chemical synthesis of O-glycosides. However, it was only in the past two decades that the scientificworldhadwitnessedadramatic improvement the methods used for chemical glycosylation. The development of new classes of glycosyl donors has not only allowed accessing novel types of glycosidic linkages but also led to the discovery of rapid and convergent strategies for expeditious oligosaccharide synthesis. This chapter summarizes major prin- ciples of the glycosidic bond formation and strategies to obtain certain classes of compounds, ranging from glycosides of uncommon sugars to complex oligosac- charide sequences. 1.2 Major Types of O-Glycosidic Linkages There are two major types of O-glycosides, which are, depending on nomen- clature, most commonly defined as a-andb-, or 1,2-cis and 1,2-trans glycosides. The 1,2-cis glycosyl residues, a-glycosides for D-glucose, D-galactose, L-fucose, D-xylose or b-glycosides for D-mannose, L-arabinose, as well as their 1,2-trans counter- parts (b-glycosides for D-glucose, D-galactose, a-glycosides for D-mannose,etc.),are equally important components in a variety of natural compounds. Representative examples of common glycosides are shown in Figure 1.1. Some other types of glycosides, in particular 2-deoxyglycosides and sialosides, can be defined neither as 1,2-cis nor as 1,2-trans derivatives, yet are important targets because of their com- mon occurrence as components of many classes of natural glycostructures.
    [Show full text]