Application of the Picoloyl Group in Carbohydrate Chemistry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Synechococcus Elongatus
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.30.424818; this version posted December 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 5-Deoxyadenosine Salvage by Promiscuous Enzyme Activity 2 leads to Bioactive Deoxy-Sugar Synthesis in 3 Synechococcus elongatus 4 5 Running title: Unusual 5-deoxyadenosine salvage in S. elongatus 6 7 Johanna Rappa, Pascal Rathb, Joachim Kilianc, Klaus Brilisauera, Stephanie Grondb, Karl 8 Forchhammera# 9 aInterfaculty Institute of Microbiology and Infection Medicine, Microbiology/Organismic Interactions, Eberhard 10 Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany. 11 bInstitute of Organic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, 12 Germany. 13 cCenter for Plant Molecular Biology, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 32, 72076 14 Tübingen, Germany. 15 16 #corresponding author ([email protected], Tel.: +49 (7071) 29- 72096) 17 18 Abbreviations: SAM: S-Adenosylmethionine; MTA: Methylthioadenosine; 5dAdo: 19 5-Deoxyadenosine; MSP: Methionine salvage pathway; 5dR: 5-Deoxyribose; 7dSh: 20 7-Deoxysedoheptulose; 5dR-1P: 5-Deoxyribose 1-phosphate; 5dRu-1P: 5-Deoxyribulose 21 1-phosphate; MTRI: Methylthioribose 1-phosphate isomerase; MTR: Methylthioribose 22 23 Keywords: 5-Deoxyadenosine salvage, 5-deoxyribose, 7-deoxysedoheptulose, 7dSh 24 biosynthesis; enzyme promiscuity, S-adenosylmethionine, radical SAM enzymes, 25 cyanobacteria 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.30.424818; this version posted December 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. -
Monosaccharides and Their Derivatives in Carbonaceous Meteorites: a Scenario for Their Synthesis and Onset of Enantiomeric Excesses
life Review Monosaccharides and Their Derivatives in Carbonaceous Meteorites: A Scenario for Their Synthesis and Onset of Enantiomeric Excesses George Cooper 1,*, Andro C. Rios 1,2,* and Michel Nuevo 1,3 ID 1 NASA-Ames Research Center, Moffett Field, CA 94035, USA; [email protected] 2 Blue Marble Space, 1001 4th Ave, Ste 3201, Seattle, WA 98154, USA 3 Bay Area Environmental Research Institute, NASA Research Park, Moffett Field, CA 94035, USA * Correspondence: [email protected] (G.C.); [email protected] (A.C.R.) Received: 5 June 2018; Accepted: 22 August 2018; Published: 27 August 2018 Abstract: Carbonaceous meteorites provide the best glimpse into the solar system’s earliest physical and chemical processes. These ancient objects, ~4.56 billion years old, contain evidence of phenomena ranging from solar system formation to the synthesis of organic compounds by aqueous and (likely) low-temperature photolytic reactions. Collectively, chemical reactions resulted in an insoluble kerogen-like carbon phase and a complex mixture of discrete soluble compounds including amino acids, nucleobases, and monosaccharide (or “sugar”) derivatives. This review presents the documented search for sugars and their derivatives in carbonaceous meteorites. We examine early papers, published in the early 1960s, and note the analytical methods used for meteorite analysis as well as conclusions on the results. We then present the recent finding of sugar derivatives including sugar alcohols and several sugar acids: The latter compounds were found to possess unusual “D” enantiomeric (mirror-image) excesses. After discussions on the possible roles of interstellar grain chemistry and meteorite parent body aqueous activity in the synthesis of sugar derivatives, we present a scenario that suggests that most of Earth’s extraterrestrial sugar alcohols (e.g., glycerol) were synthesized by interstellar irradiation and/or cold grain chemistry and that the early solar disk was the location of the initial enantiomeric excesses in meteoritic sugar derivatives. -
STEREOSELECTIVE GLYCOSYLATIONS and SYNTHESIS of HYALURONAN BIOSYNTHESIS INHIBITORS by Gilbert Ochieng Wasonga a THESIS Submitted
STEREOSELECTIVE GLYCOSYLATIONS AND SYNTHESIS OF HYALURONAN BIOSYNTHESIS INHIBITORS By Gilbert Ochieng Wasonga A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE CHEMISTRY 2010 1 ABSTRACT STEREOSELECTIVE GLYCOSYLATIONS AND SYNTHESIS OF HYALURONAN SYNTHESIS INHIBITORS By Gilbert Ochieng Wasonga Stereochemical control is an important issue in carbohydrate synthesis. Glycosyl donors with participating acyl protective groups on 2-O have been shown to give 1,2-trans glycosides reliably under the pre-activation based reaction condition. In this work, the effects of additives and reaction solvent on stereoselectivity was examined using donors without participating protective groups on 2-O. We have established that the stereoselectivity could be directed by reaction solvent. The trend of stereochemical dependence on reaction solvent was applicable to a variety of reactions including the selective formation of β-mannosides. In the second part, 3-MeO-GlcNAc is efficiently prepared using a furanose oxazoline intermediate which is well suited for large scale synthesis without the need for extensive column chromatography. In addition, we have developed a robust and rapid procedure for the synthesis of 3-F-GlcNAc derivative required for inhibition studies of hyaluronan biosynthesis. In the course of our synthesis, we have shown the expanded utility of Lattrell-Dax method for carbohydrate epimerization reactions. II ACKNOWLEDGMENTS I would like to thank my advisor Professor Xuefei Huang for his guidance and support that have been instrumental in my graduate studies. Along the way, I have had the opportunity to be mentored by Doctor Youlin Zeng who was a very helpful mentor at the beginning of my chemistry research experience and I will always be grateful to him. -
Chapter 12 Slides
11/15/17 CHAPTER 12: Carbohydrates: Structure and Function OUTLINE • 12.1 Role of Carbohydrates • 12.2 Monosaccharides • 12.3 Complex Carbohydrates • 12.4 Carbohydrate Catabolism • 12.5 Oligosaccharides as Cell Markers CHAPTER 12: Carbohydrates: Structure and Function WHAT ARE CARBOHYDRATES? • Glucose and its derivatives are carbohydrates: Ø Carbohydrates are simple organic molecules that have a shared basic chemical Formula: Cn(H2O)n Ø The name “carbo + hydrate” represents that Fact that they are made from CO2 and H2O by photosynthesis • About halF oF all earth’s solid carbon is Found in two polymers of glucose found in plants: Ø Starch = major energy storage molecule Ø Cellulose = major structural component oF the plant cell wall (aka. “fiber”) CHAPTER 12: Carbohydrates: Structure and Function THE SIMPLEST CARBOHYDRATES • Monosaccharides are carbohydrates that cannot be hydrolyZed into simpler carbohydrates: Ø These are the Fundamental building blocks For all other carbohydrates (oFten called “simple sugars”) Ø All have Formulas of based on the basic pattern: Cn(H2O)n • Monosaccharides have speciFic Functional groups: 1. An aldehyde OR a ketone (not both!) 2. Several (two or more) alcohol (-OH) groups 1 11/15/17 CHAPTER 12: Carbohydrates: Structure and Function STRUCTURE & NOMENCLATURE OF MONOSACCHARIDES • Monosaccharides are classiFied by two features: 1. Length of their main carbon chain (utilize standard IUPAC naming For # oF carbons) 2. Whether they contain an aldehyde or ketone group • Names always end with –ose • Two common hexoses: -
Total Synthesis of Zwitterionic Bacterial Polysaccharide (PS A1) Antigen Fragments
A Dissertation Titled: Total Synthesis of Zwitterionic Bacterial Polysaccharide (PS A1) Antigen Fragments from B. fragilis ATCC 25285/NCTC 9343 with Alternating Charges on Adjacent Monosaccharides by Pradheep Eradi Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Chemistry ___________________________________________ Dr. Peter R. Andreana, PhD, Committee Chair ___________________________________________ Dr. Steve Sucheck, PhD, Committee Member ___________________________________________ Dr. Jianglong Zhu, PhD, Committee Member ___________________________________________ Dr. Amanda C. Bryant-Freidrich, PhD, Committee Member ___________________________________________ Dr. Cyndee Gruden, Dean College of Graduate Studies The University of Toledo May 2019 Copyright 2019 Pradheep Eradi This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Total Synthesis of Zwitterionic Bacterial Polysaccharide (PS A1) Antigen Fragments from B. fragilis ATCC 25285/NCTC 9343 with Alternating Charges on Adjacent Monosaccharides by Pradheep Eradi Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Chemistry The University of Toledo May 2019 Zwitterionic polysaccharides (ZPSs) are a relatively new class of carbohydrate antigens, with a paradigm shifting property; they can activate CD4+ T-cells in the absence of lipids, peptide(s) or protein(s) upon MHC class II presentation. Up until now, various anaerobic bacteria are known to express ZPSs, for example, PS A1, PS A2 and PS B (Bacteroides fragilis), Sp1 (Streptococcus pneumoniae), CP5 and CP8 (Staphylococcus aureus) and O-chain antigen (Morganella morgani). Among all the afore mentioned ZPSs, Sp1 and PS A1 polysaccharides were the prime focus of research for the past few decades and their biological properties are very well-understood. -
A Versatile Glycosylation Strategy Via Au(III) Catalyzed Activation of Thioglycoside Donors† Cite This: Chem
Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue A versatile glycosylation strategy via Au(III) catalyzed activation of thioglycoside donors† Cite this: Chem. Sci.,2016,7,4259 Amol M. Vibhute, Arun Dhaka, Vignesh Athiyarath and Kana M. Sureshan* Among various methods of chemical glycosylations, glycosylation by activation of thioglycoside donors using a thiophilic promoter is an important strategy. Many promoters have been developed for the activation of thioglycosides. However, incompatibility with substrates having alkenes and the requirement of a stoichiometric amount of promoters, co-promoters and extreme temperatures are some of the limitations. We have developed an efficient methodology for glycosylation via the activation of thioglycoside donors using a catalytic amount of AuCl3 and without any co-promoter. The reaction is Received 10th February 2016 very fast, high-yielding and very facile at room temperature. The versatility of this method is evident from Accepted 4th March 2016 the facile glycosylation with both armed and disarmed donors and sterically demanding substrates DOI: 10.1039/c6sc00633g (acceptors/donors) at ambient conditions, from the stability of the common protecting groups, and from www.rsc.org/chemicalscience the compatibility of alkene-containing substrates during the reaction. Creative Commons Attribution 3.0 Unported Licence. Introduction alkenes;8 and (iv) the requirement of extremely low temperatures for the reaction. Development of novel and milder methods of Various forms of carbohydrates play important biological roles thioglycoside activation that overcome these limitations is an 5 ,6 and hence the chemical synthesis of glycoconjugates and agenda of utmost importance among chemists. g a Pohl et al. -
Effect of Glycosylation on Protein Folding: a Close Look at Thermodynamic Stabilization
Effect of glycosylation on protein folding: A close look at thermodynamic stabilization Dalit Shental-Bechor and Yaakov Levy* Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel Edited by Jose´N. Onuchic, University of California at San Diego, La Jolla, CA, and approved May 1, 2008 (received for review February 10, 2008) Glycosylation is one of the most common posttranslational mod- ical functioning of proteins in the cell. Understanding the effects ifications to occur in protein biosynthesis, yet its effect on the of posttranslational modifications to the protein energy land- thermodynamics and kinetics of proteins is poorly understood. A scape is valuable in understanding protein function and how minimalist model based on the native protein topology, in which protein thermodynamics and kinetics can be modulated by the each amino acid and sugar ring was represented by a single bead, formation of a conjugate or through an external stimulus. In this was used to study the effect of glycosylation on protein folding. article, we explore the effects of glycosylation on the biophysical We studied in silico the folding of 63 engineered SH3 domain properties of proteins with the main goal of understanding variants that had been glycosylated with different numbers of folding mechanisms, thermodynamics, and kinetics in the conjugated polysaccharide chains at different sites on the protein’s context of the cell. surface. Thermal stabilization of the protein by the polysaccharide Glycosylation [i.e., the attachment of polysaccharide chains chains was observed in proportion to the number of attached (also termed ‘‘glycans’’) to proteins] is regarded as one of the chains. -
A Thesis Entitled Thio-Arylglycosides with Various Aglycon Para-Substituents, a Useful Tool for Mechanistic Investigation Of
A Thesis entitled Thio-arylglycosides with Various Aglycon Para-Substituents, a Useful Tool for Mechanistic Investigation of Chemical Glycosylations by Xiaoning Li Submitted as partial fulfillment of the requirements for the Master of Science Degree in Chemistry ___________________________ Advisor: Dr. Xuefei Huang ___________________________ College of Graduate Studies The University of Toledo August 2007 An Abstract of Thio-arylglycosides with Various Aglycon Para-Substituents, a Useful Tool for Mechanistic Investigation of Chemical Glycosylations by Xiaoning Li Submitted as partial fulfillment of the requirements for the Master of Science Degree in Chemistry The University of Toledo August 2007 Oligosaccharides are usually found as protein or lipid conjugates in cellular systems. They play crucial roles in many biological processes. Among many approaches, organic synthesis is a very important way to obtain the desired oligosaccharides for biological studies. To date, no general synthetic procedures are available for oligosaccharide synthesis. Laborious synthetic transformations are generally required in order to obtain the desired regio- and/or stereo-selective control in oligosaccharide synthesis, due to their diverse and complex structures and many chemical equivalent ii hydroxyl functional groups. To achieve a rapid synthetic routine with high yields, a key step - glycosylation in oligosaccharide synthesis needs to be well understood. Thus an insight into the mechanism of glycosylation will provide valuable information potentially leading to the development of generalized glycosylation method. In this work, kinetic properties of glycosylation were evaluated by model reactions between three different series of glycosyl donors and three different glycosyl acceptors. The glycosylation mechanism was analyzed in the context of a linear-free energy relationship. -
Deoxyketohexose Isomerase and Method for Producing Deoxyketohexose and Derivative Thereof Using the Same
(19) & (11) EP 2 161 332 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 10.03.2010 Bulletin 2010/10 C12N 9/90 (2006.01) C07H 3/02 (2006.01) C12P 19/24 (2006.01) C12N 15/09 (2006.01) (21) Application number: 07832172.6 (86) International application number: (22) Date of filing: 20.11.2007 PCT/JP2007/072442 (87) International publication number: WO 2008/062780 (29.05.2008 Gazette 2008/22) (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • IZUMORI, Ken HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE Kita-gun SI SK TR Kagawa 761-0793 (JP) • TOKUDA, Masaaki (30) Priority: 20.11.2006 JP 2006313671 Kita-gun Kagawa 761-0793 (JP) (71) Applicants: • FLEET, George • National University Corporation Kagawa OX27NB (GB) University • TSUJISAKA, Yoshio Takamatsu-shi, Kagawa 760-8521 (JP) Kita-gun • Rare Sugar Production Technical Kagawa 761-0615 (JP) Research Laboratories, LLC • TAKESHITA, Kei Mikicho Marugame-Shi Kita-gun Kagawa 763-8605 (JP) Kagawa 761-0615 (JP) • TSUSAKI, Keiji • Kabushiki Kaisha Hayashibara Seibutsu Okayama-Shi Kagaku Kenkyujo Okayama 712-8046 (JP) Okayama-shi • OKUMA, Kazuhiro Okayama 700-0907 (JP) Itami-shi • Matsutani Chemical Industry Co., Ltd. Hyogo 664-8508 (JP) Itami-shi, Hyogo 664-8508 (JP) (74) Representative: TBK-Patent Bavariaring 4-6 80336 München (DE) (54) DEOXYKETOHEXOSE ISOMERASE AND METHOD FOR PRODUCING DEOXYKETOHEXOSE AND DERIVATIVE THEREOF USING THE SAME (57) Providing 1- or 6-deoxy products corresponding to all of aldohexoses, ketohexoses and sugar alcohols, as based on Deoxy-Izumoring, as well as a method for systematically producing those products. -
Abstract Sugars and Related Polyols Are Critical Components of All
/ /) f t_/ 1 Abstract Sugars and related polyols are critical components of all organisms and may have been necessary for the origin of life. To date, this class of organic compounds had not been definitively identified in meteorites. This study was undertaken to determine if polyols were present in the early Solar System as constituents of carbonaceous meteorites. Results of analyses of the Murchison and Murray meteorites indicate that formaldehyde and sugar chemistry niay be responsible for the presence of a variety of polyols. We conclude that polyols were present on the early Earth through delivery by asteroids and possibly comets. .-) Sugar-Related Organic Compounds in Carbonaceous Meteorites George Cooper*, Novelle Kimmich, Warren Belisle, Josh Sarinana, Katrina Brabham, Laurence Garrel, G. Cooper, N. Kimmich, J. Sarinana, K. Brabham, W. Belisle, NASA Ames Research Center, Moffett Field, CA 94035 USA L. Garrel, current address, International Research Sch ool of Planetary Sciences (IRSPS), Universita' d'Annunzio Viale Pindaro, 42 65127 Pescara, Italy Carbonaceous meteorites contain a diverse suite of soluble organic compounds. To date, these compounds provide the only record available for the laboratory study of organic chemical processes in the early Solar System. The Murchison meteorite is the best-characterized carbonaceous meteorite with respect to organic chemistry. The study of its organic compounds has been important in understanding aqueous processes on carbonaceous meteorite parent bodies chemistry as well as the formation of compounds of potential importance for the origin of life. Among the classes of organic compounds found in Murchison are amino acids, amides, carboxylic acids, hydroxy acids, sulfonic acids, phosphonic acids, purines and pyrimidines (1). -
Synthesis of Carbohydrate Building Blocks Via Regioselective Uniform Protection/Deprotection Strategies
Organic & Biomolecular Chemistry Synthesis of carbohydrate building blocks via regioselective uniform protection/deprotection strategies Journal: Organic & Biomolecular Chemistry Manuscript ID OB-REV-03-2019-000573.R1 Article Type: Review Article Date Submitted by the 21-Apr-2019 Author: Complete List of Authors: Wang, Tinghua; University of Missouri - St. Louis, Deparment of Chemistry and Biochemistry Demchenko, Alexei; University of Missouri - St. Louis, Deparment of Chemistry and Biochemistry Page 1 of 14 Organic & Biomolecular Chemistry Synthesis of carbohydrate building blocks via regioselective uniform protection/deprotection strategies Tinghua Wang and Alexei V. Demchenko* Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA O Scope 1 HO O n R PO O n-1 R Scope 2 OH PO n R P = protecting group R = anomeric substituent Scope 1: sugar is uniformly protected leaving only one (or two) free hydroxyl; Scope 2: uniformly protected sugar is deprotected to liberate only one (or two) hydroxyl ABSTRACT: Discussed herein is the synthesis of partially protected carbohydrates by manipulating only one type of a protecting group for a given substrate. The first focus of this review is the uniform protection of the unprotected starting material in the way that only one (or two) hydroxyl groups remain unprotected. The second focus involves regioselective partial deprotection of uniformly protected compounds in the way that only one (or two) hydroxyl groups become liberated.. Contents challenges in carbohydrate chemistry.1-3 During sequencing of simple monosaccharides into larger oligomeric networks, 1. Introduction and basic considerations most of the functional groups need to be temporarily blocked 2. -
Characterization of Glycosyl Dioxolenium Ions and Their Role in Glycosylation Reactions
ARTICLE https://doi.org/10.1038/s41467-020-16362-x OPEN Characterization of glycosyl dioxolenium ions and their role in glycosylation reactions Thomas Hansen 1,4, Hidde Elferink2,4, Jacob M. A. van Hengst1, Kas J. Houthuijs 2, Wouter A. Remmerswaal 1, Alexandra Kromm2, Giel Berden 3, Stefan van der Vorm 1, Anouk M. Rijs 3, Hermen S. Overkleeft1, Dmitri V. Filippov1, Floris P. J. T. Rutjes2, Gijsbert A. van der Marel1, Jonathan Martens3, ✉ ✉ ✉ Jos Oomens 3 , Jeroen D. C. Codée 1 & Thomas J. Boltje 2 1234567890():,; Controlling the chemical glycosylation reaction remains the major challenge in the synthesis of oligosaccharides. Though 1,2-trans glycosidic linkages can be installed using neighboring group participation, the construction of 1,2-cis linkages is difficult and has no general solution. Long-range participation (LRP) by distal acyl groups may steer the stereoselectivity, but contradictory results have been reported on the role and strength of this stereoelectronic effect. It has been exceedingly difficult to study the bridging dioxolenium ion intermediates because of their high reactivity and fleeting nature. Here we report an integrated approach, using infrared ion spectroscopy, DFT computations, and a systematic series of glycosylation reactions to probe these ions in detail. Our study reveals how distal acyl groups can play a decisive role in shaping the stereochemical outcome of a glycosylation reaction, and opens new avenues to exploit these species in the assembly of oligosaccharides and glycoconju- gates to fuel biological research. 1 Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands. 2 Radboud University Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.