Mechanistic Investigations Into the Application of Sulfoxides in Carbohydrate Synthesis

Total Page:16

File Type:pdf, Size:1020Kb

Mechanistic Investigations Into the Application of Sulfoxides in Carbohydrate Synthesis This is a repository copy of Mechanistic Investigations into the Application of Sulfoxides in Carbohydrate Synthesis. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/93061/ Version: Accepted Version Article: Fascione, Martin Anthony orcid.org/0000-0002-0066-4419, Brabham, Robin and Turnbull, W. Bruce (2016) Mechanistic Investigations into the Application of Sulfoxides in Carbohydrate Synthesis. Chemistry - A European Journal. ISSN 1521-3765 https://doi.org/10.1002/chem.201503504 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Mechanistic Investigations into the Application of Sulfoxides in Carbohydrate Synthesis Martin A. Fascione*,[a] Robin Brabham,[a] and W. Bruce Turnbull*[b] Abstract: The utility of sulfoxides in a diverse range of The use of thioglycoside donors has been widespread since transformations in the field of carbohydrate chemistry has seen their introduction by Ferrier.[6] The next substantial step forward rapid growth since the first introduction of a sulfoxide as a in the use of thioglycoside derivatives came from Kahne and co- glycosyl donor in 1989. Sulfoxides have since developed into workers[7] who originally developed the concept of using a more than just anomeric leaving groups, and today have multiple sulfoxide glycosyl donor after unsuccessful attempts to roles in glycosylation reactions. These include as activators for glycosylate deoxycholic ester derivative 1 (Scheme 1), where thioglycosides, hemiacetals, and glycals, and as precursors to the target axial alcohol is very unreactive due to 1,3-diaxial steric glycosyl triflates, which are essential for stereoselective β- hindrance. Sulfoxide glycosylation reactions with benzylated mannoside synthesis, and bicyclic sulfonium ions that facilitate donor 2 and deoxycholic ester 1 afforded glycoside 3 in the stereoselective synthesis of α-glycosides. In this review we excellent yield, in a number of different solvents (Scheme 1). highlight the mechanistic investigations undertaken in this area, OBn OBn often outlining strategies employed to differentiate between i) Tf O, -78 °C BnO O 2 O multiple proposed reaction pathways, and how the conclusions BnO Ph BnO S ii) DTBMP, 1, -60 °C BnO of these investigations have and continue to inform upon the BnO BnO OR O development of more efficient transformations in sulfoxide based 2 OBn OTf 3 BnO O carbohydrate synthesis. BnO Ph BnO S 4 OTf 1. Introduction toluene = 86% Me α:β 24:1 Me CO2Me The widespread use of sulfoxides in organic chemistry is a result CH3CH2CN = 86% α:β 1:8 of their rich and varied reactivity[1] showcased by an enviable OH CH Cl = 80% plethora of reactions. Well-studied examples include the use of EtO O 1 2 2 [2] α:β 1:3 dimethyl sulfoxide in the oxidation of alcohols , the activation of O [3] sulfoxides in Pummerer-type reactions and pericyclic reactions [4] Scheme 1. The challenging glycosylation of a deoxycholic ester is feasible of sulfoxides, such as the Mislow-Evans rearrangement. using sulfoxide based glycosyl donors. However, few fields have benefited more from the diverse chemical capabilities of sulfoxides than modern synthetic Activation of the sulfoxide was achieved with triflic anhydride at [5] carbohydrate chemistry, where they often play integral roles −78 ºC, and proceeded via putative sulfonium triflate species 4. as leaving groups, or as activating agents in high yielding Further examples with benzyl and pivaloyl-protected donors glycosylation reactions. An all-encompassing review of the use were also high yielding, and included the first example of of sulfoxides in carbohydrate chemistry has been forsaken here glycosylation of an amide nitrogen, using trimethylsilyl in favour of an in-depth analysis of the elegant mechanistic acetamide - an early demonstration of the potential utility of investigations performed in this area, which have begun to glycosyl sulfoxides as novel glycosyl donors. Kahne and co- underpin many of the contemporary theories regarding workers noted the glycosylation of less reactive trimethylsilyl stereoselectivity and efficiency in challenging sulfoxide based acetamide stalled at −78 ºC, but re-initiated between 0 ºC and carbohydrate synthesis. Included will be a discussion on the use ambient temperature over 12 hours.[7] Having previously of glycosyl sulfoxides as glycosyl donors, as well as the demonstrated the reactivity of glycosyl sulfoxides at low application of sulfoxide reagents in dehydrative glycosylations, temperatures, the authors postulated any reactive intermediates glycal activation and thioglycoside donor activation. present at −78 ºC would decompose at higher temperatures. This implied that glycosylation at the higher temperatures occurred via an unidentified more stable intermediate. After 2. Glycosyl sulfoxides further investigation, this unknown intermediate was subsequently assigned as a glycosyl sulfenate as the sulfenate 5 and disaccharide 6 were isolated in a 2:1 ratio (Scheme 2) following activation of fucose donor 7 at −60 ºC.[8] Application of [a] Dr. M. A, Fascione, Robin Brabham glycosyl sulfenates as donors had previously been performed at York Structural Biology Lab, Department of Chemistry 0 ºC;[9] therefore the isolated glycosyl sulfenate 5 seemed a University of York, Heslington Road, York, YO10 5DD, UK likely candidate as a reactive intermediate in the sulfoxide [email protected] reactions at higher temperatures. [b] Dr. W.B. Turnbull School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK [email protected] SPh reversal in selectivity was observed and β-mannopyranoside O O S Ph 10β was formed stereoselectively (pre-activation protocol, OBn O OBn O OBn Scheme 4b). OBn 7 OBn OBn 5 50% Tf2O, DTBMP + + Martin Fascione received his Ph.D. from the -78 °C → -60 °C OBz CH Cl University of Leeds in 2009, working under OBz 2 2 O O OMOMO the tutelage of W. Bruce Turnbull on the HO MOMO MOMO O OMe stereoselective synthesis of 1,2-cis- MOMO OBn glycosides. Following a postdoctoral period in OMe OBn 6 23% Leeds, he was then awarded a Marie Curie OBn International Outgoing Fellowship to study Scheme 2. At sufficiently low temperatures, glycosyl sulfenate 5 can be the mechanisms of carbohydrate-processing isolated from glycosylations involving glycosyl sulfoxides. enzymes with Professor Steve Withers, FRS, at the University of British Columbia in Subsequently, formation of glycosyl sulfenates from glycosyl Vancouver, Canada (2012-2013) and Professor Gideon Davies, FRS, sulfoxides was achieved using catalytic triflic anhydride.[8] Based FMedSci, at the University of York, UK (2013-2014). In August 2014 he took upon this observation a mechanism to account for formation of up a lectureship in the York Structural Biology Laboratory, within the both glycosides and glycosyl sulfenates in sulfoxide Department of Chemistry. His research interests include chemical glycosylations was proposed (Scheme 3). Following these glycobiology, synthetic carbohydrate chemistry and the chemical/enzymatic mechanistic insights, Kahne and co-workers developed a modification of proteins. strategy to scavenge by-products in the sulfoxide glycosylation reaction using 4-allyl-1,2-dimethoxybenzene[10] an improvement Robin Brabham was born in Southampton which aided their program of challenging synthetic endeavours (UK) in 1993, and was awarded a MChem including the synthesis of the blood group antigens,[11] the [12] degree from the Department of Chemistry at calicheamicin oligosaccharide and the ciclamycin ((Author Portrait)) the University of York, UK (July 2015). In trisaccharide.[12] October 2015 he commences Ph.D. studies in the Fascione group. Robin’s Masters OTf OTf O O O ROH research focussed upon developing new S Ph OR routes to stereoselective glycosyl donors to glycoside be deployed in the synthesis of chemical oxocarbenium ion probes with potential use as therapeutic O O agents. Ph OTf O S Ph O S glycosyl sulfoxide O O SPh O glycosyl sulfenate Bruce Turnbull completed his Ph.D. with Prof Rob Field at University of St Andrews in 1998 Scheme 3. Proposed mechanism for triflic anhydride-activated glycosylation of before taking up a Wellcome Trust sulfoxide donors, accounting for the glycosyl sulfenate byproduct. International Prize Travelling Research ((Author Portrait)) Fellowship at University of California Los 3. Stereoselective synthesis of β- Angeles with Prof Sir Fraser Stoddart FRS. mannopyranosides and α-glucopyranosides He returned to the UK for further postdoctoral studies with Prof Steve Homans at University of Leeds, where he subsequently held a While pursuing a radical-based solution[13] to the ubiquitous Royal Society University Research problem of stereoselective β-mannopyranoside synthesis,[14] Fellowship in the School of Chemistry. He was awarded the
Recommended publications
  • STEREOSELECTIVE GLYCOSYLATIONS and SYNTHESIS of HYALURONAN BIOSYNTHESIS INHIBITORS by Gilbert Ochieng Wasonga a THESIS Submitted
    STEREOSELECTIVE GLYCOSYLATIONS AND SYNTHESIS OF HYALURONAN BIOSYNTHESIS INHIBITORS By Gilbert Ochieng Wasonga A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE CHEMISTRY 2010 1 ABSTRACT STEREOSELECTIVE GLYCOSYLATIONS AND SYNTHESIS OF HYALURONAN SYNTHESIS INHIBITORS By Gilbert Ochieng Wasonga Stereochemical control is an important issue in carbohydrate synthesis. Glycosyl donors with participating acyl protective groups on 2-O have been shown to give 1,2-trans glycosides reliably under the pre-activation based reaction condition. In this work, the effects of additives and reaction solvent on stereoselectivity was examined using donors without participating protective groups on 2-O. We have established that the stereoselectivity could be directed by reaction solvent. The trend of stereochemical dependence on reaction solvent was applicable to a variety of reactions including the selective formation of β-mannosides. In the second part, 3-MeO-GlcNAc is efficiently prepared using a furanose oxazoline intermediate which is well suited for large scale synthesis without the need for extensive column chromatography. In addition, we have developed a robust and rapid procedure for the synthesis of 3-F-GlcNAc derivative required for inhibition studies of hyaluronan biosynthesis. In the course of our synthesis, we have shown the expanded utility of Lattrell-Dax method for carbohydrate epimerization reactions. II ACKNOWLEDGMENTS I would like to thank my advisor Professor Xuefei Huang for his guidance and support that have been instrumental in my graduate studies. Along the way, I have had the opportunity to be mentored by Doctor Youlin Zeng who was a very helpful mentor at the beginning of my chemistry research experience and I will always be grateful to him.
    [Show full text]
  • Synthesis of Carbohydrate Building Blocks Via Regioselective Uniform Protection/Deprotection Strategies
    Organic & Biomolecular Chemistry Synthesis of carbohydrate building blocks via regioselective uniform protection/deprotection strategies Journal: Organic & Biomolecular Chemistry Manuscript ID OB-REV-03-2019-000573.R1 Article Type: Review Article Date Submitted by the 21-Apr-2019 Author: Complete List of Authors: Wang, Tinghua; University of Missouri - St. Louis, Deparment of Chemistry and Biochemistry Demchenko, Alexei; University of Missouri - St. Louis, Deparment of Chemistry and Biochemistry Page 1 of 14 Organic & Biomolecular Chemistry Synthesis of carbohydrate building blocks via regioselective uniform protection/deprotection strategies Tinghua Wang and Alexei V. Demchenko* Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA O Scope 1 HO O n R PO O n-1 R Scope 2 OH PO n R P = protecting group R = anomeric substituent Scope 1: sugar is uniformly protected leaving only one (or two) free hydroxyl; Scope 2: uniformly protected sugar is deprotected to liberate only one (or two) hydroxyl ABSTRACT: Discussed herein is the synthesis of partially protected carbohydrates by manipulating only one type of a protecting group for a given substrate. The first focus of this review is the uniform protection of the unprotected starting material in the way that only one (or two) hydroxyl groups remain unprotected. The second focus involves regioselective partial deprotection of uniformly protected compounds in the way that only one (or two) hydroxyl groups become liberated.. Contents challenges in carbohydrate chemistry.1-3 During sequencing of simple monosaccharides into larger oligomeric networks, 1. Introduction and basic considerations most of the functional groups need to be temporarily blocked 2.
    [Show full text]
  • Nucleotide Sugars in Chemistry and Biology
    molecules Review Nucleotide Sugars in Chemistry and Biology Satu Mikkola Department of Chemistry, University of Turku, 20014 Turku, Finland; satu.mikkola@utu.fi Academic Editor: David R. W. Hodgson Received: 15 November 2020; Accepted: 4 December 2020; Published: 6 December 2020 Abstract: Nucleotide sugars have essential roles in every living creature. They are the building blocks of the biosynthesis of carbohydrates and their conjugates. They are involved in processes that are targets for drug development, and their analogs are potential inhibitors of these processes. Drug development requires efficient methods for the synthesis of oligosaccharides and nucleotide sugar building blocks as well as of modified structures as potential inhibitors. It requires also understanding the details of biological and chemical processes as well as the reactivity and reactions under different conditions. This article addresses all these issues by giving a broad overview on nucleotide sugars in biological and chemical reactions. As the background for the topic, glycosylation reactions in mammalian and bacterial cells are briefly discussed. In the following sections, structures and biosynthetic routes for nucleotide sugars, as well as the mechanisms of action of nucleotide sugar-utilizing enzymes, are discussed. Chemical topics include the reactivity and chemical synthesis methods. Finally, the enzymatic in vitro synthesis of nucleotide sugars and the utilization of enzyme cascades in the synthesis of nucleotide sugars and oligosaccharides are briefly discussed. Keywords: nucleotide sugar; glycosylation; glycoconjugate; mechanism; reactivity; synthesis; chemoenzymatic synthesis 1. Introduction Nucleotide sugars consist of a monosaccharide and a nucleoside mono- or diphosphate moiety. The term often refers specifically to structures where the nucleotide is attached to the anomeric carbon of the sugar component.
    [Show full text]
  • Carbohydrate Synthesis and Study of Carbohydrate- Lectin Interactions Using QCM Biosensors and Microarray Technologies
    Carbohydrate Synthesis and Study of Carbohydrate- Lectin Interactions Using QCM Biosensors and Microarray Technologies Zhichao Pei 裴志超 KTH Chemical Science and Engineering Doctoral Thesis Stockholm 2006 Akademisk avhandling som med tillstånd av Kungliga Tekniska Högskolan i Stockholm framlägges till offentlig granskning för avläggande av filosofie doktorsexamen i kemi med inriktning mot organisk kemi, fredagen den 1 Dec., kl 10.00 i sal D3, KTH, Lindstedtsvägen 5, Stockholm. Avhandlingen försvaras på engelska. Opponent är Professor Roland J. Pieters, Utrecht University, the Netherlands. 1 ISBN 91-7178-503-5 ISRN KTH/IOK/FR--06/106--SE ISSN 1100-7974 TRITA-IOK Forskningsrapport 2006:106 © Zhichao Pei Universitetsservice US AB, Stockholm 2 Carbohydrate Synthesis and Study of Carbohydrate-Lectin Interactions Using QCM Biosensors and Microarray Technologies Zhichao Pei, Organic Chemistry, KTH Chemical Science and Engineering, SE-10044 Stockholm, Sweden Dissertation for the degree of Doctor of Philosophy in Chemistry, 2006. Abstract Interactions between carbohydrates and proteins are increasingly being recognized as crucial in many biological processes, such as cellular adhesion and communication. In order to investigate the interactions of carbohydrates and proteins, the development of efficient analytic technologies, as well as novel strategies for the synthesis of carbohydrates, have to be explored. To date, several methods have been exploited to analyze interactions of carbohydrates and proteins, for example, biosensors, nuclear magnetic resonance (NMR); enzyme-linked immunosorbent assays (ELISA), X-ray crystallography and array technologies. This thesis describes the development of novel strategies for the synthesis of carbohydrates, as well as new efficient strategies to Quartz Crystal Microbalance- (QCM-) biosensors and carbohydrate microarrays technologies.
    [Show full text]
  • Glycosylation of Amino Acids and Efficient Synthesis of Glycosphingolipids
    Georgia State University ScholarWorks @ Georgia State University Chemistry Theses Department of Chemistry 8-11-2015 Glycosylation of Amino Acids and Efficient Synthesis of Glycosphingolipids Jonathan Wooten Georgia State University, [email protected] Follow this and additional works at: https://scholarworks.gsu.edu/chemistry_theses Recommended Citation Wooten, Jonathan, "Glycosylation of Amino Acids and Efficient Synthesis of Glycosphingolipids." Thesis, Georgia State University, 2015. https://scholarworks.gsu.edu/chemistry_theses/74 This Thesis is brought to you for free and open access by the Department of Chemistry at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Chemistry Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. GLYCOSYLATION OF AMINO ACIDS AND EFFICIENT SYNTHESIS OF GLYCOSPHINGOLIPIDS by JONATHAN VALENTINE WOOTEN Under the Direction of Peng George Wang, PhD ABSTRACT Glycoscience is an emerging field of science that focuses on the study of the structure, biosynthesis, biology, and evolution of saccharides (sugars). It covers a broad range of subjects including microwave-assisted synthesis as well as sphingolipid synthesis. In this field, knowledge is limited due to the complexity of carbohydrates and their derivatives. Therefore, it is all the more important that synthesis of these complex molecules occurs in order to fully understand their biological significance. The following report summarizes
    [Show full text]
  • 1 General Aspects of the Glycosidic Bond Formation Alexei V
    j1 1 General Aspects of the Glycosidic Bond Formation Alexei V. Demchenko 1.1 Introduction Since the first attempts at the turn of the twentieth century, enormous progress has been made in the area of the chemical synthesis of O-glycosides. However, it was only in the past two decades that the scientificworldhadwitnessedadramatic improvement the methods used for chemical glycosylation. The development of new classes of glycosyl donors has not only allowed accessing novel types of glycosidic linkages but also led to the discovery of rapid and convergent strategies for expeditious oligosaccharide synthesis. This chapter summarizes major prin- ciples of the glycosidic bond formation and strategies to obtain certain classes of compounds, ranging from glycosides of uncommon sugars to complex oligosac- charide sequences. 1.2 Major Types of O-Glycosidic Linkages There are two major types of O-glycosides, which are, depending on nomen- clature, most commonly defined as a-andb-, or 1,2-cis and 1,2-trans glycosides. The 1,2-cis glycosyl residues, a-glycosides for D-glucose, D-galactose, L-fucose, D-xylose or b-glycosides for D-mannose, L-arabinose, as well as their 1,2-trans counter- parts (b-glycosides for D-glucose, D-galactose, a-glycosides for D-mannose,etc.),are equally important components in a variety of natural compounds. Representative examples of common glycosides are shown in Figure 1.1. Some other types of glycosides, in particular 2-deoxyglycosides and sialosides, can be defined neither as 1,2-cis nor as 1,2-trans derivatives, yet are important targets because of their com- mon occurrence as components of many classes of natural glycostructures.
    [Show full text]
  • Solid-Phase Oligosaccharide Synthesis and Combinatorial Carbohydrate Libraries
    Solid-Phase Oligosaccharide Synthesis and Combinatorial Carbohydrate Libraries Peter H. Seeberger* and Wilm-Christian Haase Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Received April 12, 2000 Contents C. Synthesis of Deoxyglycosides 22 D. Synthesis of Thio-Oligosaccharides 22 I. Introduction 1 E. Miscellaneous Procedures 23 A. Challenges of Carbohydrate Chemistry 2 X. Synthesis of Complex Oligosaccharides 23 B. Advantages of Polymer-Supported Synthesis 3 A. Glycal Assembly Approach 23 C. Central Aspects of Solid-Phase 3 Oligosaccharide Synthesis B. Glycosyl Sulfoxides 24 II. Early Work 3 C. Glycosyl Trichloroacetimidates 25 III. Synthetic Strategies 7 D. Thioglycoside Donors 28 A. Donor-Bound Glycosylation Strategy 7 E. n-Pentenyl Glycosides 32 B. Acceptor-Bound Glycosylation Strategy 8 F. Glycosyl Phosphates 32 C. Bidirectional Strategy 8 XI. Synthesis of Combinatorial Carbohydrate 32 Libraries IV. Polymer Supports 8 A. Combinatorial Oligosaccharide Libraries 33 A. Insoluble Supports 8 B. Carbohydrates as Scaffolds for Combinatorial 36 B. Soluble Supports 10 Libraries V. Linker Systems 10 C. Special Methods for the Construction of 37 A. Silyl Ether Linkers 10 Carbohydrate-Related Libraries B. Acid- and Base-Labile Linkers 11 XII. Toward Automation of Oligosaccharide Synthesis 40 C. Thioglycoside Linkers 12 A. Solution-Phase Approaches 40 D. Linkers Cleaved by Oxidation 12 B. Automation of Solid-Phase Oligosaccharide 41 E. Linkers Cleaved by Hydrogenation 13 Synthesis F. Photocleavable Linkers 14 XIII. Conclusion and Outlook 42 G. Linkers Cleaved by Olefin Metathesis 14 XIV. List of Abbreviations 42 VI. Protecting Groups 16 XV. References 43 A. Benzyl Ethers 16 B. Base-Labile Protecting Groups 17 C.
    [Show full text]
  • N-Acetylhexosaminidases for Carbohydrate Synthesis Via Trans-Glycosylation
    Downloaded from orbit.dtu.dk on: Oct 01, 2021 -N-Acetylhexosaminidases for Carbohydrate Synthesis via Trans-Glycosylation Muschiol, Jan; Vuillemin, Marlene; Meyer, Anne S.; Zeuner, Birgitte Published in: Catalysts Link to article, DOI: 10.3390/catal10040365 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Muschiol, J., Vuillemin, M., Meyer, A. S., & Zeuner, B. (2020). -N-Acetylhexosaminidases for Carbohydrate Synthesis via Trans-Glycosylation. Catalysts, 10(4), [365]. https://doi.org/10.3390/catal10040365 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. catalysts Review β-N-Acetylhexosaminidases for Carbohydrate Synthesis via Trans-Glycosylation Jan Muschiol , Marlene Vuillemin, Anne S. Meyer * and Birgitte Zeuner Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Søltofts Plads 221, 2800 Kongens Lyngby, Denmark; [email protected] (J.M.); [email protected] (M.V.); [email protected] (B.Z.) * Correspondence: [email protected] Received: 10 March 2020; Accepted: 26 March 2020; Published: 29 March 2020 Abstract: β-N-acetylhexosaminidases (EC 3.2.1.52) are retaining hydrolases of glycoside hydrolase family 20 (GH20).
    [Show full text]
  • Application of the Picoloyl Group in Carbohydrate Chemistry
    University of Missouri, St. Louis IRL @ UMSL Dissertations UMSL Graduate Works 4-5-2019 Application of the Picoloyl Group in Carbohydrate Chemistry Michael Mannino University of Missouri-St. Louis, [email protected] Follow this and additional works at: https://irl.umsl.edu/dissertation Part of the Organic Chemistry Commons Recommended Citation Mannino, Michael, "Application of the Picoloyl Group in Carbohydrate Chemistry" (2019). Dissertations. 818. https://irl.umsl.edu/dissertation/818 This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Dissertations by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. Application of the Picoloyl Group in Carbohydrate Chemistry By Michael P. Mannino Master of Science (Chemistry), University of Missouri-St. Louis, May 2016 Bachelor of Science (Chemistry), University of Missouri-St. Louis, May 2014 A Dissertation Submitted to the Graduate School of the UNIVERSITY OF MISSOURI – ST. LOUIS in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in CHEMISTRY May, 2019 Dissertation Committee Prof. Alexei V. Demchenko, Ph.D. (Chair) Prof. Cynthia M. Dupureur, Ph.D. Prof. Christopher D. Spilling, Ph.D. Prof. Michael R. Nichols, Ph.D. ABSTRACT Application of the Picoloyl Substituent in Carbohydrate Chemistry Michael P. Mannino Doctor of Philosophy, University of Missouri – St. Louis Prof. Alexei V. Demchenko, Advisor Stereocontrol of glycosylation reactions is a constant struggle in the field of synthetic carbohydrate chemistry. The application of the picoloyl (Pico) substituent can offer numerous stereocontrolling avenues. The most popular application is the Hydrogen-bond-mediated Aglycone Delivery (HAD) method that provides excellent selectivity in the glycosylation of a variety of sugar substrates.
    [Show full text]
  • New Catalytic Reactions in Carbohydrate Chemistry
    University of Missouri, St. Louis IRL @ UMSL Dissertations UMSL Graduate Works 3-20-2020 New Catalytic Reactions in Carbohydrate Chemistry Scott Geringer University of Missouri-St. Louis, [email protected] Follow this and additional works at: https://irl.umsl.edu/dissertation Part of the Organic Chemistry Commons Recommended Citation Geringer, Scott, "New Catalytic Reactions in Carbohydrate Chemistry" (2020). Dissertations. 920. https://irl.umsl.edu/dissertation/920 This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Dissertations by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. New Catalytic Reactions in Carbohydrate Chemistry By Scott A. Geringer Master of Science (Chemistry), University of Missouri-St. Louis, December 2018 Master of Science (Chemistry), Southern Illinois University-Edwardsville, May 2016 Bachelor of Science (Chemistry), Southern Illinois University-Edwardsville, May 2013 A Dissertation Submitted to the Graduate School of the UNIVERSITY OF MISSOURI – ST. LOUIS in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in CHEMISTRY with an emphasis on Organic Chemistry May 2020 Dissertation Committee Prof. Alexei V. Demchenko, Ph.D. (Chair) Prof. Eike B. Bauer, Ph.D. Prof. Cristina De Meo, Ph.D. (SIUE) Prof. Keith J. Stine, Ph.D. ABSTRACT New Catalytic Reactions in Carbohydrate Chemistry Scott A. Geringer Doctor of Philosophy, University of Missouri – St. Louis Prof. Alexei V. Demchenko, Advisor Carbohydrates or sugars are some of the most diverse and abundant biological molecules. They are involved in a multitude of processes in the body such as fertilization, cell-cell communication, and cancer metathesis.
    [Show full text]
  • Chemical Synthesis of Oligosaccharides: Efficiency and Selectivity Due to the Significant Roles They Play in Various Biological
    Chemical Synthesis of Oligosaccharides: Efficiency and Selectivity Osamu Kanie, Tomoya Ogawa and Yukishige Ito The Institute of Physical and Chemical Research (RIKEN) Abstract: Due to high demand to access biologically important oligosaccharide structures, efficient and stereoselective synthetic methods are required. This article addresses these two issues from our recent studies. The first part deals with ƒÀ-mannosylation and ƒ¿-sialylation known as the two most difficult glycosylation reactions which were now made possible by means of an "intramolecular aglycon delivery" system and control by "auxiliary", respectively. In the second part, the remarkably efficient "orthogonal glycosylation strategy" which was developed based on tactical analysis of oligosaccharide synthesis is described. 1. Introduction Due to the significant roles they play in various biological events (ref. 1), glycoconjugates are attracting wide attention and multidisciplinary research areas called glycobiology and glycotechnology have emerged (ref. 2). These molecules include glycolipids, glycoproteins and proteoglycans and each of these groups has a high degree of structural diversity. Most typically, they exist on the cell surface and their oligosaccharide portions (glycans) are extruded into the outer region of the cell. This particular feature allows them to participate in various cell surface recognition events such as cell-cell and cell- matrix adhesion, bacterial and virus invasion, cancer cell migration, cell differentiation, sperm-oocyte interaction, and others (ref. 3). In addition, it is now well known that the glycan portions serve as functional parts in a majority of glycoproteins, to stabilize them and tune their activity by controlling three-dimensional structures and participate in intra- and inter-cellular transportation (ref. 4).
    [Show full text]
  • Efficient Carbohydrate Synthesis by Controlled Inversion Strategies
    Efficient Carbohydrate Synthesis by Intra- and Supramolecular Control Hai Dong Doctoral Thesis Stockholm 2008 Akademisk avhandling som med tillstånd av Kungliga Tekniska Högskolan i Stockholm framlägges till offentlig granskning för avläggande av teknologie doktorsexamen i kemi, med inriktning mot organisk kemi, torsdagen den 5 Feb 2009, kl 10.00 i sal F3, KTH, Lindstedtsvägen 26, Stockholm. Avhandlingen försvaras på engelska. Opponent är Ulf Nilsson, Lunds Tekniska Högskola/Lunds Universitet. ISBN 978-91-7415-207-4 ISSN 1654-1081 TRITA-CHE-Report 2009:2 © Hai Dong, 2008 Universitetsservice US AB, Stockholm 献给晓溪, 东东和爱玲. Till Emilia, Dongdong och Ailing. The road ahead is hard and long, but nothing will stop me as I go searching up and down. ………Qu Yuan (B.C. 340 - 278) Translated by Hai Hai Dong, 2008: “Efficient Carbohydrate Synthesis by Intra- and Supramolecular Control” Organic Chemistry, KTH Chemistry, Royal Institute of Technology, S- 10044 Stockholm, Sweden. Abstract The Lattrell-Dax method of nitrite-mediated substitution of carbohydrate triflates is an efficient method to generate structures of inverse configuration. In this study, the effects of the neighboring group on the Lattrell-Dax inversion were explored. A new carbohydrate/anion host-guest system was discovered and the ambident reactivity of the nitrite anion was found to cause a complicated behavior of the reaction. It has been demonstrated that a neighboring equatorial ester group plays a highly important role in this carbohydrate epimerization reaction, restricting the nitrite N-attack, thus resulting in O-attack only and inducing the formation of inversion compounds in good yields. Based on this effect, efficient synthetic routes to a range of carbohydrate structures, notably β-D-mannosides and β-D-talosides, were designed by use of double parallel and double serial inversion.
    [Show full text]