Exploring the Structure of Oligo- and Polysaccharides Synthesis and NMR Spectroscopy Studies

Total Page:16

File Type:pdf, Size:1020Kb

Exploring the Structure of Oligo- and Polysaccharides Synthesis and NMR Spectroscopy Studies Exploring the structure of oligo- and polysaccharides Synthesis and NMR spectroscopy studies Hanna Jonsson ©Hanna Jonsson, Stockholm 2010 Cover picture “Bacteria runs NMR” ISBN 978-91-7447-041-3 Printed in Sweden by US-AB, Stockholm 2010 Distributor: Department of Organic Chemistry, Stockholm University All I ever want is sugar. -Andy Warhol Mina mångåriga akademiska studier har lett mig fram till, den för hela den vetenskapliga forskningen epokgörande slutsatsen, att jag är bäst. -Ur Grallimatik Tage Danielsson Abstract A deeper understanding of the diversity of carbohydrates and the many ap- plications of oligo- and polysaccharides found in nature are of high interest. Many of the processes involving carbohydrates affect our everyday life. This thesis is based on six papers all contributing to an extended perspective of carbohydrate property and functionality. An introduction to carbohydrate chemistry together with a presentation of selected carbohydrate synthesis and analysis methods introduces the reader to the research field. The first paper is an NMR spectroscopy reinvestigation of the structures of the O- antigens from the lipopolysaccharides (LPS) of Escherichia coli O124 and Shigella dysenteriae type 3. The repeating units were concluded to be built of identical branched pentasaccharides now with the correct anomeric con- figurations. Paper II is a structural investigation of the O-antigen from the LPS of E. coli O74 which is built of branched tetrasaccharide repeating units including the uncommon monosaccharide D-Fuc3NAc. Paper III is a con- formational study of a rhamnose derivative, using NMR spectroscopy and X- ray crystallography. The benzoyl ester group positioned at C4 prefers an “eclipsed” conformation in the crystal as well as in solution. The use of site- specifically 13C-labeled compounds in conformational studies is discussed in Papers IV and V. The disaccharide α-L-Rhap-(1→2)-α-L-Rhap-OMe was synthesized together with two 13C-isotopologues and studied with NMR spectroscopy to give five J-couplings related to torsion angles φ and ψ. The trisaccharide α-L-Rhap-(1→2)[α-L-Rhap-(1→3)]-α-L-Rhap-OMe was syn- thesized with 13C-labeling at two positions which presented a solution to a problem of overlapping signals in the 1H NMR spectrum. The site-specific 3 2 labeling also facilitated the measurement of two JCC and two JCH coupling constants. Finally, chapter 6 gives a short introduction to glycosynthase chemistry and discusses the synthesis of α-glycosyl fluorides. A novel cyclic heptasaccharide was synthesized from α-laminariheptaosyl fluoride using a mutant of the enzyme laminarase 16A and subsequently analyzed by NMR spectroscopy. List of publications This thesis is based on the following papers referred to as their Roman nu- merals I-VI. I Structural studies of the O-antigenic polysaccharides from Shigella dysenteriae type 3 and Escherichia coli O124, a rein- vestigation K. Hanna M. Jonsson, Andrej Weintraub and Göran Widmalm Carbohydrate Research 2006, 341, 2986–2989. II Structural determination of the O-antigenic polysaccharide from Escherichia coli O74 K. Hanna M. Jonsson, Andrej Weintraub and Göran Widmalm Carbohydrate Research 2009, 344, 1592–1595. III Methyl 4-O-benzoyl-2,3-O-isopropylidene-α-L-rhamno- pyranoside K. Hanna M. Jonsson, Lars Eriksson and Göran Widmalm Acta Crystallographica C62 2006, o447-o449. IV Studies on the conformational flexibility of α-L-Rhap-(1→2)- α-L-Rhap-OMe using molecular simulation and 13C-site- specific labeling: a model for a commonly occurring disac- charide in bacterial polysaccharides K. Hanna M. Jonsson, Elin Säwén and Göran Widmalm In manuscript n n V NMR analysis of conformationally dependent JC,H and JC,C in the trisaccharide α-L-Rhap-(1→2)[α-L-Rhap-(1→3)]-α-L- Rhap-OMe and a site-specifically labeled isotopologue thereof K. Hanna M. Jonsson, Göran Widmalm In manuscript VI Synthesis of cyclic β-glucan Using Laminarinase 16A Glyco- synthase Mutant from the Basidiomycete Phanerochaete chrysosporium Jonas Vasur, Rie Kawai, K. Hanna M. Jonsson, Göran Widmalm, Åke Engström, Martin Frank, Evalena Andersson, Henrik Hans- son, Zarah Forsberg, Kiyohiko Igarashi, Masahiro Samejima, Mats Sandgren, Jerry Ståhlberg Journal of the American Chemical Society 2010, 132, 1724- 1730. Paper I and II were reprinted with kind permission from Elsevier, paper III from IUCr and Paper VI from ACS. Contents Chapter 1: Introduction to carbohydrate chemistry..........................11 1.1 Carbohydrates in bacteria ................................................................................13 1.2 Short summary of carbohydrate nomenclature...........................................14 Chapter 2: Selected methods of carbohydrate synthesis.................17 2.1 Protecting group chemistry ..............................................................................17 2.2 O-Glycosylation methods..................................................................................18 Chapter 3: Methods of carbohydrate analysis ....................................21 3.1 Sugar analysis.....................................................................................................21 3.2 NMR spectroscopy analysis ..............................................................................22 3.2.1 Methods of structural investigation .......................................................23 3.2.2 Methods of conformational analysis ......................................................25 3.2.3 Selected NMR techniques for J-coupling measurements..................26 Chapter 4: Structural studies of bacterial polysaccharides (Papers I & II)..............................................................................................................29 4.1 Introduction .........................................................................................................29 4.2 Structural investigation of the O-antigenic polysaccharides from E. coli O124 and S. dysenteriae type 3 (Paper I)...........................................................30 4.3 Structural investigation of the O-antigen of E. coli O74 (Paper II) ........33 Chapter 5: Conformational analysis of rhamnose-containing saccharides (Paper III, IV & V) ..............................................................37 13 5.1 Synthesis of C-labeled rhamnopyranoside oligosaccharides .................38 5.2 Conformational study of a rhamnose derivative (Paper III).....................40 5.3 Studies on the conformational flexibility of α-L-Rhap(1→2)-α-L-Rhap- OMe (Paper IV)...........................................................................................................41 5.4 NMR studies on of the trisaccharide α-L-Rhap-(1→2)[α-L-Rhap-(1→3)]- α-L-Rhap-OMe (Paper V)..........................................................................................44 Chapter 6: Enzymatic synthesis using glycosynthases (Paper VI).47 6.1 A short introduction to glycosynthase chemistry ........................................47 6.2 Synthesis of α-glycosyl fluoride donors.........................................................49 6.3 Investigating a cyclic heptaglucan synthesized by mutant laminarase 16A (Paper VI) ...........................................................................................................51 Chapter 7: Concluding remarks and future prospects ......................54 Acknowledgements ...................................................................................56 References ..................................................................................................58 Abbreviations 1DLR One dimensional long-range CPS Capsular polysaccharide DAST Diethylaminosulfur trifluoride DOSY Diffusion-ordered spectroscopy DQF-COSY Double-quantum filtered correlated spectroscopy EIEC Enteroinvasive Escherichia coli Fuc Fucose GalNAc N-acetyl galactosamine GLC Gas-liquid chromatography GlcNAc N-acetyl glucosamine HECADE (Heteronuclear Couplings from ASSCI-domain experiments with E.COSY-type crosspeaks) HETCOR Heteronuclear correlation HMBC Heteronuclear multiple bond correlation HSQC Heteronuclear single quantum correlation LPS Lipopolysaccharide MD Molecular dynamics Me Methyl NIS N-iodosuccinimide NOESY Nuclear Overhauser effect spectroscopy OAc O-acetyl OBz O-benzoyl p pyranose Rha Rhamnose TOCSY Total correlation spectroscopy 2 TSP Sodium 3-methylsilyl-(2,2,3,3- H4)-propanoate Chapter 1: Introduction to carbohydrate chemistry Today when carbohydrates are mentioned one immediately thinks of the main source of energy obtained from our food. People in general also distin- guish between sugar and carbohydrates, the former being the dangerous white food-sweetener and the latter being healthy slow-digesting “good” energy. For a carbohydrate chemist, the difference only lies in the use of the words; sugar is the common word and carbohydrate is the scientifically cor- rect term. Of course, carbohydrates are not only found in the food we eat, they are also the major constituent of wood and the shells of insects and shellfish, and they are present in almost all cell walls of living tissue. They contribute as signaling substances recognized by many proteins and define our blood group antigens. Carbohydrates are the most abundant of the bio- logical substances, produced in thousands of tons per year by photosynthesis in plants and microorganisms. Carbohydrate chemistry was founded by the German researcher Hermann Emil Fischer (1852-1919)1 who already in 1890 established the stereochemi- cal nature and isomerism of the common
Recommended publications
  • University of Cape Town
    CHEMICAL AND CONFORMATIONAL STUDIES OF BACTERIAL CELL SURFACE POLYSACCHARIDE REPEATING UNITS Zaheer Timol University of Cape Town Supervisors: Neil Ravenscroft, Michelle Kuttel and David Gammon A thesis presented for the degree of Master in Science University of Cape Town March 2017 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Abstract Bacterial cell surface polysaccharides are primarily present as lipopolysaccharides or capsular polysac- charides. They are used by cells for both structure and function and have been shown to be a virulence factor of bacterial pathogens. Cell surface polysaccharides are widely utilised as antigenic components in vaccines and play an important role in the protection against numerous diseases including meningo- coccal disease and shigellosis. This study is composed of two parts: a computational section, which investigates the capsular polysaccharide (CPS) repeating unit (RU) conformations of meningococcal Y and W CPS vaccines and a second experimental component that involves synthetic studies toward the O-specific polysaccharide (O-SP) RU of Shigella sonnei. The CPS RU of MenY [!6)-a-D-Glc(1!4)-a-D-NeuNAc-(2!] and MenW [!6)-a-D-Gal(1!4)-a- D-NeuNAc-(2!] differ only in the orientation of the C-4 hydroxyl: equatorial in MenY and axial in MenW.
    [Show full text]
  • STEREOSELECTIVE GLYCOSYLATIONS and SYNTHESIS of HYALURONAN BIOSYNTHESIS INHIBITORS by Gilbert Ochieng Wasonga a THESIS Submitted
    STEREOSELECTIVE GLYCOSYLATIONS AND SYNTHESIS OF HYALURONAN BIOSYNTHESIS INHIBITORS By Gilbert Ochieng Wasonga A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE CHEMISTRY 2010 1 ABSTRACT STEREOSELECTIVE GLYCOSYLATIONS AND SYNTHESIS OF HYALURONAN SYNTHESIS INHIBITORS By Gilbert Ochieng Wasonga Stereochemical control is an important issue in carbohydrate synthesis. Glycosyl donors with participating acyl protective groups on 2-O have been shown to give 1,2-trans glycosides reliably under the pre-activation based reaction condition. In this work, the effects of additives and reaction solvent on stereoselectivity was examined using donors without participating protective groups on 2-O. We have established that the stereoselectivity could be directed by reaction solvent. The trend of stereochemical dependence on reaction solvent was applicable to a variety of reactions including the selective formation of β-mannosides. In the second part, 3-MeO-GlcNAc is efficiently prepared using a furanose oxazoline intermediate which is well suited for large scale synthesis without the need for extensive column chromatography. In addition, we have developed a robust and rapid procedure for the synthesis of 3-F-GlcNAc derivative required for inhibition studies of hyaluronan biosynthesis. In the course of our synthesis, we have shown the expanded utility of Lattrell-Dax method for carbohydrate epimerization reactions. II ACKNOWLEDGMENTS I would like to thank my advisor Professor Xuefei Huang for his guidance and support that have been instrumental in my graduate studies. Along the way, I have had the opportunity to be mentored by Doctor Youlin Zeng who was a very helpful mentor at the beginning of my chemistry research experience and I will always be grateful to him.
    [Show full text]
  • Determination of Total Dietary Fibre and Available Carbohydrates: a Rapid Integrated Procedure That Simulates in Vivo Digestion
    860 DOI 10.1002/star.201500017 Starch/Stärke 2015, 67, 860–883 RESEARCH ARTICLE Determination of total dietary fibre and available carbohydrates: A rapid integrated procedure that simulates in vivo digestion Barry V. McCleary, Naomi Sloane and Anna Draga Megazyme International Ireland, Bray Business Park, Bray, County Wicklow, Ireland The new definition of dietary fibre introduced by Codex Alimentarius in 2008 includes resistant Received: January 23, 2015 starch and the option to include non-digestible oligosaccharides. Implementation of this definition Revised: March 5, 2015 required new methodology. An integrated total dietary fibre method was evaluated and accepted by Accepted: March 5, 2015 AOAC InternationalandAACCInternational(AOACMethods2009.01and2011.25;AACCMethod 32–45.01 and 32–50.01, and recently adopted by Codex Alimentarius as a Type I Method. However, in application of the method to a diverse range of food samples and particularly food ingredients, some limitations have been identified. One of the ongoing criticisms of this method was that the time of incubation with pancreatic a-amylase/amyloglucosidase mixture was 16 h, whereas the time for food to transit through the human small intestine was likely to be approximately 4 h. In the current work, we use an incubation time of 4 h, and have evaluated incubation conditions that yield resistant starch and dietary values in line with ileostomy results within this time frame. Problems associated with production, hydrolysis and chromatography of various oligosaccharides have been addressed resulting in a more rapid procedure that is directly applicable to all foods and food ingredients currently available. Keywords: Available carbohydrates / Codex Alimentarius / Dietary fibre determination / Enzymic / Non-digestible oligosaccharides / Resistant starch : Additional supporting information may be found in the online version of this article at the publisher’s web-site.
    [Show full text]
  • Synthesis and Functions of a Glycopolymer Carrying Gal/Jl-+4(Glcnach Tetrasaccharide
    Polymer Journal, Vol. 30. No. 8, pp 653-658 ( 1998) Synthesis and Functions of a Glycopolymer Carrying Gal/Jl-+4(GlcNAch Tetrasaccharide Kazukiyo KoBAYASHI,t Shoko KAMIYA, Minoru MATSUYAMA,* Takeomi MURATA,* and Taichi Usur* Graduate School of' Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan * Faculty of' Agriculture, Shizuoka University, Ohya, Shizuoka 422---8529, Japan (Received February 16, 1998) ABSTRACT: Tetrasaccharide Galfil--+4(GlcNAch was synthesized from N,N',N"-triacetylchitotriose (GlcNAc)s and lactose using transglycosylation with a P-o-galactosidase from Bacillus circu/ans. The reducing terminal of Galfil--+4(GlcNAclJ was oxidized and connected to p-vinylbenzylamine via amide linkage, and the resulting oligosaccharide-substituted styrene monomer was polymerized with the radical initiator, 2,2' -azobis(2-amidinopropane) dihydrochloride at 60"C. Glycopolystyrene was found to bind strongly with wheat germ agglutinin (WGA) and tomato (Lycopersicon esculentum) agglutinin (LEA) by inhibition of hemagglutination and double diffusion. KEY WORDS Oligosaccharides / Glycopolymers / Lectins / Enzymatic Synthesis/ Recognition / Cell surface carbohydrates from glycoproteins, glyco­ dimensional immunodiffusion in agar and inhibition of lipids, proteoglycans, and capsular polysaccharides play lectin-induced hemagglutination. Comparison was made important roles in biological events, 1.2 Carbohydrate­ using analogous homopolymers carrying N-acetyllactos­ protein interaction is usually weak and multivalent amine and chitooligosaccharides. Chart I illustrates the oligosaccharide chains are required to target cell surface chemical structures and abbreviations of these glycopoly­ carbohydrate receptors and inhibit host infection by mers. pathogens. 3 Glycopolymers carrying pendant oligo­ saccharide chains can be regarded as multivalent ligands known to interact strongly with lectins and antibodies, 4 · 5 Glycopolymers have been synthesized and applied as biomedical materials having biological recognition signals.
    [Show full text]
  • Determination of Carbohydrates in Honey Manali Aggrawal, Jingli Hu and Jeff Rohrer, Thermo Fisher Scientific, Sunnyvale, CA
    Determination of carbohydrates in honey Manali Aggrawal, Jingli Hu and Jeff Rohrer, Thermo Fisher Scientific, Sunnyvale, CA ABSTRACT RESULTS SAMPLE ANALYSIS METHOD ACCURACY Table 7. Adulteration parameters for HS6 adulterated with 10% SS1 through SS5. Purpose: To develop an HPAE-PAD method for the determination of carbohydrates in honey Honey sugar analysis Sample Recovery HS6 (Wild Mountain Honey) samples to evaluate their quality and to assess the possibility of adulteration. Separation Adulteration Honey sugars were separated using a Dionex CarboPac PA210-Fast-4μm column (150 × 4 mm) in Method accuracy was evaluated by measuring recoveries of 10 sugar standards spiked into honey Parameters 100% + 10% + 10% + 10% + 10% + 10% For this study, we purchased 12 commercial honey samples (Table 1) and analyzed them using Honey SS1 SS2 SS3 SS4 SS5 Methods: Separation of individual honey sugars was achieved on the recently introduced Thermo series with a Dionex CarboPac PA210 guard column (50 × 4 mm). The column selectivity allow samples. For spiking experiments, four honey samples were used (HS7–HS10) and spiked with a 10- HPAE-PAD. Figure 3 shows the representative chromatograms of 3 honey samples. For all 12 Glucose(G), mg/L 121 115 116 117 119 107 Scientific™ Dionex™ CarboPac™ PA210-Fast-4μm column. Carbohydrate detection was by pulsed carbohydrates to be separated with only a hydroxide eluent generated using an eluent generator. A sugar standard mix at two concentration levels. Figure 4 shows the representative chromatograms investigated honey samples, fructose and glucose (Peak 2 and Peak 3), were found to be the major Fructose(F), mg/L 127 115 115 116 126 116 amperometric detection (PAD) with a gold working electrode and, therefore, no sample derivatization solution of honey sugar standards was prepared and an aliquot (10 μL) of the solution was injected of unspiked and spiked honey sample HS7.
    [Show full text]
  • Carbohydrates: Occurrence, Structures and Chemistry
    Carbohydrates: Occurrence, Structures and Chemistry FRIEDER W. LICHTENTHALER, Clemens-Schopf-Institut€ fur€ Organische Chemie und Biochemie, Technische Universit€at Darmstadt, Darmstadt, Germany 1. Introduction..................... 1 6.3. Isomerization .................. 17 2. Monosaccharides ................. 2 6.4. Decomposition ................. 18 2.1. Structure and Configuration ...... 2 7. Reactions at the Carbonyl Group . 18 2.2. Ring Forms of Sugars: Cyclic 7.1. Glycosides .................... 18 Hemiacetals ................... 3 7.2. Thioacetals and Thioglycosides .... 19 2.3. Conformation of Pyranoses and 7.3. Glycosylamines, Hydrazones, and Furanoses..................... 4 Osazones ..................... 19 2.4. Structural Variations of 7.4. Chain Extension................ 20 Monosaccharides ............... 6 7.5. Chain Degradation. ........... 21 3. Oligosaccharides ................. 7 7.6. Reductions to Alditols ........... 21 3.1. Common Disaccharides .......... 7 7.7. Oxidation .................... 23 3.2. Cyclodextrins .................. 10 8. Reactions at the Hydroxyl Groups. 23 4. Polysaccharides ................. 11 8.1. Ethers ....................... 23 5. Nomenclature .................. 15 8.2. Esters of Inorganic Acids......... 24 6. General Reactions . ............ 16 8.3. Esters of Organic Acids .......... 25 6.1. Hydrolysis .................... 16 8.4. Acylated Glycosyl Halides ........ 25 6.2. Dehydration ................... 16 8.5. Acetals ....................... 26 1. Introduction replacement of one or more hydroxyl group (s) by a hydrogen atom, an amino group, a thiol Terrestrial biomass constitutes a multifaceted group, or similar heteroatomic groups. A simi- conglomeration of low and high molecular mass larly broad meaning applies to the word ‘sugar’, products, exemplified by sugars, hydroxy and which is often used as a synonym for amino acids, lipids, and biopolymers such as ‘monosaccharide’, but may also be applied to cellulose, hemicelluloses, chitin, starch, lignin simple compounds containing more than one and proteins.
    [Show full text]
  • Total Synthesis of Zwitterionic Bacterial Polysaccharide (PS A1) Antigen Fragments
    A Dissertation Titled: Total Synthesis of Zwitterionic Bacterial Polysaccharide (PS A1) Antigen Fragments from B. fragilis ATCC 25285/NCTC 9343 with Alternating Charges on Adjacent Monosaccharides by Pradheep Eradi Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Chemistry ___________________________________________ Dr. Peter R. Andreana, PhD, Committee Chair ___________________________________________ Dr. Steve Sucheck, PhD, Committee Member ___________________________________________ Dr. Jianglong Zhu, PhD, Committee Member ___________________________________________ Dr. Amanda C. Bryant-Freidrich, PhD, Committee Member ___________________________________________ Dr. Cyndee Gruden, Dean College of Graduate Studies The University of Toledo May 2019 Copyright 2019 Pradheep Eradi This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Total Synthesis of Zwitterionic Bacterial Polysaccharide (PS A1) Antigen Fragments from B. fragilis ATCC 25285/NCTC 9343 with Alternating Charges on Adjacent Monosaccharides by Pradheep Eradi Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Chemistry The University of Toledo May 2019 Zwitterionic polysaccharides (ZPSs) are a relatively new class of carbohydrate antigens, with a paradigm shifting property; they can activate CD4+ T-cells in the absence of lipids, peptide(s) or protein(s) upon MHC class II presentation. Up until now, various anaerobic bacteria are known to express ZPSs, for example, PS A1, PS A2 and PS B (Bacteroides fragilis), Sp1 (Streptococcus pneumoniae), CP5 and CP8 (Staphylococcus aureus) and O-chain antigen (Morganella morgani). Among all the afore mentioned ZPSs, Sp1 and PS A1 polysaccharides were the prime focus of research for the past few decades and their biological properties are very well-understood.
    [Show full text]
  • Tetrasaccharide Glycoforms from Bacillus Anthracis Exosporium and Fragments Thereof
    molecules Article Structure-Immunogenicity Relationship of α- and β-Tetrasaccharide Glycoforms from Bacillus anthracis Exosporium and Fragments Thereof Riccardo De Ricco 1, Christy L. Ventura 2, Filippo Carboni 1, Rina Saksena 3,†, Pavol Kováˇc 3 and Roberto Adamo 1,* ID 1 GSK, Research Centre, via Fiorentina 1, 53100 Siena, Italy; [email protected] (R.D.R.); fi[email protected] (F.C.) 2 Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; [email protected] 3 NIDDK, LBC, National Institutes of Health, Bethesda, MD 20892-0815, USA; [email protected] (R.S.); [email protected] (P.K.) * Correspondence: [email protected]; Tel.: +39-0577-539393 † Current address: Department of Chemistry, The University of New Mexico, Albuquerque, NM 87131, USA. Received: 12 July 2018; Accepted: 17 August 2018; Published: 20 August 2018 Abstract: The tetrasaccharide (2-O-methyl-4-(3-hydroxy-3-methylbutamido)-4,6-dideoxy-α-D- glucopyranosyl-(1!3)-α-L-rhamnopyranosyl-(1!3)-α-L-rhamnopyranosyl-(1!2)-L-rhamnopyranose) from the major exosporium protein (BclA) of Bacillus anthracis has been proposed as a target for development of diagnostics and immune therapy or prophylaxis. While the immunodominant character of the anthrose residue has been previously elucidated, the role of the stereochemical configuration of the downstream rhamnose is unknown. Because the linkage of this residue to the GlcNAc bridging the glycan and the protein is lost during isolation of the tetrasaccharide, its α- and β-glycoforms have been synthesized. Herein, we prepared neoglycoconjugates from a series of fragments of the tetrasaccharide, including the complete α- and β-tetrasaccharide glycoforms, a 2-demethoxylated version of the α-tetrasaccharide, and the α- and β-trirhamnosides and CRM197.
    [Show full text]
  • Structures of Branched Dextrins Produced by Saccharifying A-Amylase of Bacillus Subtilis
    /. Biochem., 72, 1219-1226 (1972) Structures of Branched Dextrins Produced by Saccharifying a-Amylase of Bacillus subtilis Kimio UMEKI and Takehiko YAMAMOTO Downloaded from https://academic.oup.com/jb/article/72/5/1219/878303 by guest on 29 September 2021 The Faculty of Science, Osaka City University, Osaka Received for publication, May 25, 1972 The branched dextrins produced from waxy rice starch ^-limit dextrin by Bacillus subtilis' saccharifying a-amylse [EC 3.2.1.1] were isolated by the multiple develop- ment paper chromatography and their chemical structures were investigated. The analyses using £-amylase [EC 3.2.1. 2], glucoamylase [EC 3.2.1.3], pullulanase, and pullulan a-1,4-glucoside hydrolase revealed that they were doubly branched dextrins with the following structures: e'-a-^'-a-glucosylmaltosylJ-maltotriose, 68-a-, 65-a- diglucosylmaltopentaose, and 68-a-{6*-a-glucosylmaltotriosyl)-maltotriose. The results were discussed in connection with the interior structure of /3-limit dextrin. Only a few papers have so far been published from each other (8, 9). on the action of a-amylase [EC 3.2.1.1] on The saccharifying a-amylase is character- branched substrates (1-3). French and his istic in that it hydrolyzes starch to produce coworkers have reported that the porcine reducing sugars of about twice as much as pancreatic a-amylase produces various branched those produced by the liquefying a-amylase dextrins as the limit dextrins (4). Our pre- and none of the hydrolysis products by the vious paper (5) has also shown that a-amylase saccharifying a-amylase are attacked by the of starch liquefying type from Bacillus subtilis liquefying a-amylase.
    [Show full text]
  • Quantitative Changes in Various Sugar Concentrations During Fermentation
    QUAriTri'AT:CVE GHAI'jGES 111 VARIOUS SUGAR GOIjCm'RATlOKS UJRIMG FEH'IiSm'ATlOII Oi<' DOUGliS, SPONGiiS AMD BRliT/ZS ^' Ting Jui Tan^ 3. S., Tai-.v-an Provincial ChTJungshing Universitj . A MSTEK'S THESIS subnitted in partial fulfilLTient of the req-uireiaent Tor the decree MSTitlR OF SCIENCE Food Science Depairtinsnt Ox Grain Science arid Ladiistiy KAIIS'IS STATK UNXVilRSI'i'Y Manhattan, Kansas 1963 ApTrov'i'id by: I'lajor Professor . ' - LD . /?(? . tSX table of coiitehts eitroduction 1 REVIEV7 OF LITER/iTUPJi; 2 I. The Carbohydrates of Ivlieat and VJheat Flour 2 II. Quantitative Determination of Sugars in Natural ............ Materials 5 III, The Fate of Sugars in Breadmaking ......... 11 ^lETHOD AND MATERIALS l6 I. Flour Samples l6 II. Formulation, Dough I-Iake-up and Balcing 16 III, Determination of Gas Production Rates 19 IV. Schedule of Sample Collection for Sugar Analyses ..... 20 V. Method of Ejctraction of Sugars from Dough, Brew, Sponge and Bread Crumb . , 21 VI. tiethods of Analyses , 21 RESULTS AND DISCUSSION 25 I. of Discussion the Experimental Methods , 25 II. Change in Total Reducing Sugars of the Extracts 31 III. Change of Concentration of Individual Sugars During Fermentation ........... ....... 32 IV. Rate of Gas Production 34 V. Residual Sugars in Bread 36 SU>2^SIRY AND CONCLUSION 37 ACKI^Oi-niEDGEMEIT Zfo LITERATURE CITED , ^ i^l ii LIST _0F TABLES I. The I-Iono- and Di- saccharide Content of Flour , 3 II, Changes of Sugar Content in Steeped and Germinated Ivheat , , , , 12 III, Size of Sar.ples Used in Detenrdnation of Gas Production Hates , . 19 IV.
    [Show full text]
  • Structure and Metabolism of the Intracellular Polysaccharide of Corynebacterium. Don D
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1969 Structure and Metabolism of the Intracellular Polysaccharide of Corynebacterium. Don D. Mickey Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Mickey, Don D., "Structure and Metabolism of the Intracellular Polysaccharide of Corynebacterium." (1969). LSU Historical Dissertations and Theses. 1679. https://digitalcommons.lsu.edu/gradschool_disstheses/1679 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 70-9079 MICKEY, Don D., 1940- STRUCTURE AND METABOLISM OF THE INTRACELLULAR POLYSACCHARIDE OF CORYNEBACTERIUM. The Louisiana State University and Agricultural and Mechanical College, Ph.D., 1969 Microbiology University Microfilms, Inc., Ann Arbor, Michigan STRUCTURE AND METABOLISM OF THE INTRACELLULAR POLYSACCHARIDE OF CORYNEBACTERIUM A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Microbiology by Don D. Mickey B. S., Louisiana State University, 1963 August, 1969 ACKNOWLEDGMENT The author wishes to acknowledge Dr. M. D. Socolofsky for his guidance during the preparation of this dissertation. He also wishes to thank Dr. H. D. Braymer and Dr. A. D. Larson and other members of the Department of Microbiology for helpful advice given during various phases of this research.
    [Show full text]
  • Nutritive Sweeteners from Corn Have Become America’S Premier Sweeteners
    NutritiveNutritive SweetenersSweeteners FromFrom CornCorn CONTENTS Member Companies and Plant Locations ....................................... 2 Foreword .......................................................................................... 3 Historical Perspective ...................................................................... 4 Research and development orientation ....................................... 5 Technology aimed at needs .......................................................... 7 Growth, Development and Diversity ............................................. 7 CONTENTS Classification and Nutrition ............................................................ 9 Classification ................................................................................. 9 Corn sweeteners in nutrition ..................................................... 10 Technical Background ................................................................... 11 Corn starch ................................................................................. 11 Starch hydrolysis ........................................................................ 13 Crystalline dextrose .................................................................... 14 Dextrose isomerization .............................................................. 15 Manufacture ................................................................................... 17 Corn syrups ................................................................................ 17 Dried corn syrups ......................................................................
    [Show full text]