Structures of Branched Dextrins Produced by Saccharifying A-Amylase of Bacillus Subtilis

Total Page:16

File Type:pdf, Size:1020Kb

Structures of Branched Dextrins Produced by Saccharifying A-Amylase of Bacillus Subtilis /. Biochem., 72, 1219-1226 (1972) Structures of Branched Dextrins Produced by Saccharifying a-Amylase of Bacillus subtilis Kimio UMEKI and Takehiko YAMAMOTO Downloaded from https://academic.oup.com/jb/article/72/5/1219/878303 by guest on 29 September 2021 The Faculty of Science, Osaka City University, Osaka Received for publication, May 25, 1972 The branched dextrins produced from waxy rice starch ^-limit dextrin by Bacillus subtilis' saccharifying a-amylse [EC 3.2.1.1] were isolated by the multiple develop- ment paper chromatography and their chemical structures were investigated. The analyses using £-amylase [EC 3.2.1. 2], glucoamylase [EC 3.2.1.3], pullulanase, and pullulan a-1,4-glucoside hydrolase revealed that they were doubly branched dextrins with the following structures: e'-a-^'-a-glucosylmaltosylJ-maltotriose, 68-a-, 65-a- diglucosylmaltopentaose, and 68-a-{6*-a-glucosylmaltotriosyl)-maltotriose. The results were discussed in connection with the interior structure of /3-limit dextrin. Only a few papers have so far been published from each other (8, 9). on the action of a-amylase [EC 3.2.1.1] on The saccharifying a-amylase is character- branched substrates (1-3). French and his istic in that it hydrolyzes starch to produce coworkers have reported that the porcine reducing sugars of about twice as much as pancreatic a-amylase produces various branched those produced by the liquefying a-amylase dextrins as the limit dextrins (4). Our pre- and none of the hydrolysis products by the vious paper (5) has also shown that a-amylase saccharifying a-amylase are attacked by the of starch liquefying type from Bacillus subtilis liquefying a-amylase. Another characteristic produces various kinds of branched dextrins property of the saccharifying ar-amylase is from /3-limit dextrin, indicating that hydrolysis that in the digestion of /3-limit dextrin prepared of a-1, 4-glucosidic linkages by the enzyme is from waxy rice starch, the enzyme produces greatly affected by neighboring a-1, 6-glucosi- 68-a-glucosylmaltotriose in a yield of more dic bonds which are the ramifying points of than 20% (5). Thus, the enzyme was em- /3-limit dextrin. ployed in our previous paper to study the struc- As reported previously, there is another ture of singly branched hexaose dextrins pro- type of a-amylase in Bacillus subtilis which duced from /3-limit dextrin by the liquefying has been referred to by us as saccharifying a-amylase. a-amylase (6~). Whether an a-amylase of Recently, the structures of several branch- Bacillus subtilis is liquefying or saccharifying ed dextrins produced by the saccharifying a- type is quite dependent on the bacterial strain amylase from /3-limit dextrin were investigated which produces the enzyme (7). Also, chem- and it was found that with a sharp contrast ical and enzymatic properties of the two to those produced by other a-amylases, a cer- bacterial a-amylases are significantly different tain regularity exists among the structures of Vol. 72, No. 5, 1972 1219 1220 K. UMEKI and T. YAMAMOTO the branched dextrins produced by the sac- conducted at 28°C by the descending method charifying a-amylase. The present paper de- on Toyo Roshi No. 50 (60x60 cm), developing scribes the experimental details for determina- multiply with a mixture of n-butanol: pyridine: tion of the structures of some of the dextrins water in the proportion described later. Loca- produced by the saccharifying a-amylase, add- tion of reducing sugars was detected by using ing some discussion on the action of the silver nitrate and NaOH (12). In the case enzyme on branched substrates as well as the of thin layer chromatography, detection of inner structure of ^-limit dextrin. sugars was made by the anisaldehyde-sulfuric acid method (13). MATERIALS AND METHODS 3. Quantitative Determination of Sugars— Downloaded from https://academic.oup.com/jb/article/72/5/1219/878303 by guest on 29 September 2021 The Somogyi-Nelson method (14) was applied 1. fi-Limit Dextrin and Enzymes Employ- to the micro-assay of reducing sugar. Estima- ed—/S-Limit dextrin was prepared from the tion of comparatively large quantities of reduc- digests of purified waxy rice starch with /3- ing sugars was conducted by the method of amylase [EC 3. 2.1.2] from soybean, according Shaffer-Somogyi (75). Total sugar content to the method reported previously (5). of dextrins was determined by the phenol- Crystalline preparations of saccharifying sulfuric acid method (16). a-amylase of Bacillus subtilis and glucoamylase [EC 3.2.1. 3] of Rhizopus niveus were purchas- RESULTS ed from Seikagaku Kogyo Co. /3-Amylase and pullulanase were prepared from defatted 1. Hydrolysis of fi-Limit Dextrin with soybean and bacterial cells of a certain Aero- Saccharifying a-Amylase— /3-Limit dextrin (800 bacter species, respectively, by the methods mg) dissolved in 8 ml of 0.01 M acetate buffer, reported previously (5). A new enzyme, pH 5.4, was mixed with 2 ml of saccharifying which was a generous gift from Drs. Tsujisaka a-amylase solution (100 pg as protein; total and Hamada of Osaka Municipal Research activity, 40 units) and the mixture was incu- Institute for Technology and has been tenta- bated at 40°C with a few drops of toluene. At tively named by us pullulan a-l,4-glucoside certain intervals of time, 0.02 ml aliquots of hydrolase, was also used in the present work. the reaction mixture were taken and spotted Isolation of this enzyme was reported inde- on a filter paper for paper chromatography, pendently by Tsujisaka and Hamada (10) and to investigate a change in the kind of hydrolysis by Sakano et al. (11), at the same time in products as the hydrolysis proceeded. As 1971 and the enzyme was found to attack a- shown in Fig. 1, maltotriose and certain 1,4-glucosidic linkages of pullulan forming branched dextrins appeared at an early stage isopanose as the hydrolysis product. of hydrolysis, but later they gradually disap- a-Amylase, glucoamylase, and pullulanase peared. On the other hand, certain kinds of were assayed according to the methods de- branched oligosaccharides appeared (1 hr) and scribed in our previous paper (5). Pullulan increased as the hydrolysis proceeded. a-1, 4-glucoside hydrolase was assayed by the 2. Isolation of the Branched Dextrins Con- method of Tsujisaka and Hamada (10) in sisting of Six and Seven Glucose Units—jS-Limit which one unit of the enzyme activity was dextrin was hydrolyzed with saccharifying a- defined as the enzyme quantity that produced amylase under the same condition as above, 1 ^mole of reducing sugar as glucose from except that a ten-fold quantity of saccharify- pullulan per min at 40°C. ing a-amylase was employed and 48 hr later, 2. Isolation of Saccharifying a-Amylase the hydrolysate was subjected to paper chro- Branched Limit Dextrins — Separation and matography with seven times developement isolation of the dextrins produced from /9- using w-butanol: pyridine: water (6:4:3) and limit dextrin by the saccharifying a-amylase then with five times developement using a were performed by preparative scale paper mixture of an equal volume of n-butanol, py- chromatography. Paper chromatography was ridine, and water, as the solvent. The result /. Biochem. BRANCHED DEXTRINS PRODUCED BY SACCHARIFYING a-AMYLASE 122 L <5. # Downloaded from https://academic.oup.com/jb/article/72/5/1219/878303 by guest on 29 September 2021 s» I S. | ; i i Fig. 2. Paper chromatogram of the digests of /3- limit dextrin with saccharifying a-amylase of Bacillus subtilis (BSA). 500 units BSA per g of /3-limit dextrin, 40°C, 48 hr; as to the procedure of paper chromatography, see the text. Fig. 1. Paper chromatogram of the progressive hydrolysis products of /3-limit dextrin with sac- sis products were identified by paper chroma- charifying a-amylase of Bacillus subtilis. a-Amylase ; tography and by enzymatic method. 50 units per g of ^-limit dextrin, pH 5.4, 40°C. 7) Dextrin No. 3: Dextrin No. 3 (0.3 mg) was incubated at 40°C with pullulanase (12 is presented in Fig. 2, showing that the oli- units) in 5 ml of water under a few drops of gosaccharides of No. 3, 4-1, and 4-2 in the toluene. After reaction for 24 hr, the mixture paper chromatograms obtained after develop- was heated in boiling water for 15 min to in- ment with the former solvent were further activate pullulanase, and then concentrated to distinctly separated by multiple development a small volume under reduced pressure. The with the latter solvent. Dextrin No. 3, 4-1, paper chromatography of the concentrate and 4-2 were recovered from the chromato- showed that No. 3 had been hydrolyzed into grams in approximate yield of 2, 6, and 4%, maltotriose and a branched trisaccharide with respectively, based on the amount of /3-limit an Rf value corresponding to panose, as shown dextrin used. The polymerization degree of in Fig. 3. The branched trisaccharide formed the isolated branched dextrins was determined there was extracted from the paper, and then according to the' method reported previously incubated with glucoamylase. The periodical (5). Dextrin No. 3, 4-1, and 4-2 were esti- analyses of the hydrolysate by paper chroma- mated to be composed of 6, 7, and 7 glucose tography revealed that the saccharide was units, respectively. split into glucose and maltose, and no isomal- 3. Structures of Dextrin No. 3, 4-1, and tose was formed, indicating that the branched 4-2—The isolated branched dextrins No. 3, 4- trisaccharide was panose. 1, and 4-2 were separately hydrolyzed by fi- Dextrin No.
Recommended publications
  • University of Cape Town
    CHEMICAL AND CONFORMATIONAL STUDIES OF BACTERIAL CELL SURFACE POLYSACCHARIDE REPEATING UNITS Zaheer Timol University of Cape Town Supervisors: Neil Ravenscroft, Michelle Kuttel and David Gammon A thesis presented for the degree of Master in Science University of Cape Town March 2017 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Abstract Bacterial cell surface polysaccharides are primarily present as lipopolysaccharides or capsular polysac- charides. They are used by cells for both structure and function and have been shown to be a virulence factor of bacterial pathogens. Cell surface polysaccharides are widely utilised as antigenic components in vaccines and play an important role in the protection against numerous diseases including meningo- coccal disease and shigellosis. This study is composed of two parts: a computational section, which investigates the capsular polysaccharide (CPS) repeating unit (RU) conformations of meningococcal Y and W CPS vaccines and a second experimental component that involves synthetic studies toward the O-specific polysaccharide (O-SP) RU of Shigella sonnei. The CPS RU of MenY [!6)-a-D-Glc(1!4)-a-D-NeuNAc-(2!] and MenW [!6)-a-D-Gal(1!4)-a- D-NeuNAc-(2!] differ only in the orientation of the C-4 hydroxyl: equatorial in MenY and axial in MenW.
    [Show full text]
  • Determination of Carbohydrates in Honey Manali Aggrawal, Jingli Hu and Jeff Rohrer, Thermo Fisher Scientific, Sunnyvale, CA
    Determination of carbohydrates in honey Manali Aggrawal, Jingli Hu and Jeff Rohrer, Thermo Fisher Scientific, Sunnyvale, CA ABSTRACT RESULTS SAMPLE ANALYSIS METHOD ACCURACY Table 7. Adulteration parameters for HS6 adulterated with 10% SS1 through SS5. Purpose: To develop an HPAE-PAD method for the determination of carbohydrates in honey Honey sugar analysis Sample Recovery HS6 (Wild Mountain Honey) samples to evaluate their quality and to assess the possibility of adulteration. Separation Adulteration Honey sugars were separated using a Dionex CarboPac PA210-Fast-4μm column (150 × 4 mm) in Method accuracy was evaluated by measuring recoveries of 10 sugar standards spiked into honey Parameters 100% + 10% + 10% + 10% + 10% + 10% For this study, we purchased 12 commercial honey samples (Table 1) and analyzed them using Honey SS1 SS2 SS3 SS4 SS5 Methods: Separation of individual honey sugars was achieved on the recently introduced Thermo series with a Dionex CarboPac PA210 guard column (50 × 4 mm). The column selectivity allow samples. For spiking experiments, four honey samples were used (HS7–HS10) and spiked with a 10- HPAE-PAD. Figure 3 shows the representative chromatograms of 3 honey samples. For all 12 Glucose(G), mg/L 121 115 116 117 119 107 Scientific™ Dionex™ CarboPac™ PA210-Fast-4μm column. Carbohydrate detection was by pulsed carbohydrates to be separated with only a hydroxide eluent generated using an eluent generator. A sugar standard mix at two concentration levels. Figure 4 shows the representative chromatograms investigated honey samples, fructose and glucose (Peak 2 and Peak 3), were found to be the major Fructose(F), mg/L 127 115 115 116 126 116 amperometric detection (PAD) with a gold working electrode and, therefore, no sample derivatization solution of honey sugar standards was prepared and an aliquot (10 μL) of the solution was injected of unspiked and spiked honey sample HS7.
    [Show full text]
  • Carbohydrates: Occurrence, Structures and Chemistry
    Carbohydrates: Occurrence, Structures and Chemistry FRIEDER W. LICHTENTHALER, Clemens-Schopf-Institut€ fur€ Organische Chemie und Biochemie, Technische Universit€at Darmstadt, Darmstadt, Germany 1. Introduction..................... 1 6.3. Isomerization .................. 17 2. Monosaccharides ................. 2 6.4. Decomposition ................. 18 2.1. Structure and Configuration ...... 2 7. Reactions at the Carbonyl Group . 18 2.2. Ring Forms of Sugars: Cyclic 7.1. Glycosides .................... 18 Hemiacetals ................... 3 7.2. Thioacetals and Thioglycosides .... 19 2.3. Conformation of Pyranoses and 7.3. Glycosylamines, Hydrazones, and Furanoses..................... 4 Osazones ..................... 19 2.4. Structural Variations of 7.4. Chain Extension................ 20 Monosaccharides ............... 6 7.5. Chain Degradation. ........... 21 3. Oligosaccharides ................. 7 7.6. Reductions to Alditols ........... 21 3.1. Common Disaccharides .......... 7 7.7. Oxidation .................... 23 3.2. Cyclodextrins .................. 10 8. Reactions at the Hydroxyl Groups. 23 4. Polysaccharides ................. 11 8.1. Ethers ....................... 23 5. Nomenclature .................. 15 8.2. Esters of Inorganic Acids......... 24 6. General Reactions . ............ 16 8.3. Esters of Organic Acids .......... 25 6.1. Hydrolysis .................... 16 8.4. Acylated Glycosyl Halides ........ 25 6.2. Dehydration ................... 16 8.5. Acetals ....................... 26 1. Introduction replacement of one or more hydroxyl group (s) by a hydrogen atom, an amino group, a thiol Terrestrial biomass constitutes a multifaceted group, or similar heteroatomic groups. A simi- conglomeration of low and high molecular mass larly broad meaning applies to the word ‘sugar’, products, exemplified by sugars, hydroxy and which is often used as a synonym for amino acids, lipids, and biopolymers such as ‘monosaccharide’, but may also be applied to cellulose, hemicelluloses, chitin, starch, lignin simple compounds containing more than one and proteins.
    [Show full text]
  • Structure and Metabolism of the Intracellular Polysaccharide of Corynebacterium. Don D
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1969 Structure and Metabolism of the Intracellular Polysaccharide of Corynebacterium. Don D. Mickey Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Mickey, Don D., "Structure and Metabolism of the Intracellular Polysaccharide of Corynebacterium." (1969). LSU Historical Dissertations and Theses. 1679. https://digitalcommons.lsu.edu/gradschool_disstheses/1679 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 70-9079 MICKEY, Don D., 1940- STRUCTURE AND METABOLISM OF THE INTRACELLULAR POLYSACCHARIDE OF CORYNEBACTERIUM. The Louisiana State University and Agricultural and Mechanical College, Ph.D., 1969 Microbiology University Microfilms, Inc., Ann Arbor, Michigan STRUCTURE AND METABOLISM OF THE INTRACELLULAR POLYSACCHARIDE OF CORYNEBACTERIUM A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Microbiology by Don D. Mickey B. S., Louisiana State University, 1963 August, 1969 ACKNOWLEDGMENT The author wishes to acknowledge Dr. M. D. Socolofsky for his guidance during the preparation of this dissertation. He also wishes to thank Dr. H. D. Braymer and Dr. A. D. Larson and other members of the Department of Microbiology for helpful advice given during various phases of this research.
    [Show full text]
  • Oligosaccharides Disaccharides
    1 Oligosaccharides Oligosaccharides are carbohydrates formed of 2-10 monosaccharide units covalently bonded to each other by glycosidic bonds. According to the number of sugar units, they are classified into disaccharides, trisaccharides and so on. Disaccharides Disaccharides are oligosaccharides formed of two monosaccharide units covalently bonded by glycosidic bond. Classification Disaccharides are classified according to the type of its monosaccharide unites into: 1- Homodisaccharides These are disaccharides in which the two monosaccharide units are the same e.g.: • Maltose which formed of two α-glucose units linked together by α- (1,4) glycosidic bond It is the major degradation product of starch It has a free aldehyde group so; it is a reducing sugar • Cellobiose which is formed of two units of β glucose linked together by β-(1,4) glycosidic bond. It has a free aldehyde group so; it is a reducing sugar 2- Heterodisaccharide These are disaccharides in which the two monosaccharide units are different e.g.: 2 • Sucrose which is formed of one α glucose molecule and one β fructose molecule linked by α-(1,2)β-glycosidic bond It is prevalent in cane sugar and beets. Sucrose is a non-reducing sugar as it contains no free aldehyde or ketone group. • Lactose is found exclusively in the milk It is formed of one β- galactose and one β- glucose linked together by β-(1,4) glycosidic bond. It has a free aldehyde group so; it is a reducing sugar. Trisaccharides Trisaccharides are oligosaccharides formed of three monosaccharide units covalently bonded to each other by glycosidic bonds.
    [Show full text]
  • Carbohydrate Chemistry from Fischer to Now
    GENERAL ARTICLE Carbohydrate Chemistry from Fischer to Now N R Krishnaswamy The story of carbohydrate chemistry from its embryonic stage to the present day high profile research bridging organic chemistry and the life sciences is like a fascinating travelogue through space and time. In this brief article, this intriguing field of natural products chemistry is presented with appro- priate illustrations, with the hope that it will kindle further N R Krishnaswamy interest in the young readers to whom this is primarily ad- was initiated into the dressed. We begin our journey with Emil Fischer and quickly world of natural products traverse some areas of classical and modern organic chemis- by T R Seshadri at try. In the process we come across some familiar landmarks University of Delhi and has carried on the glorious as well as visit a few exotic places before ending on the borders traditions of his mentor. of biology. Beyond this is a region full of promise inviting He has taught at further exploration. Bangalore University, Calicut University and Introduction Sri Sathya Sai Institute of Higher Learning. Among organic compounds the most well known, even to lay- men, are the carbohydrates, produced by plants. Green leaves produce glucose using atmospheric carbon dioxide and water with the help of chlorophyll and sunlight. Several molecules of glucose are then condensed together to form cellulose, which serves as a structural material, and starch which acts as a source of food. Glucose, sucrose, cellulose and starch are household names even if the common man may not know that glucose is a constituent of Keywords the other three, two of which are polymers! Within this group, one Carbohydrates, mutarotation, comes across a wide range of molecular sizes (from monomers to Fischer–Kiliani synthesis, cyclo- oligomers to polymers), and shapes.
    [Show full text]
  • 1 Part 4. Carbohydrates As Bioorganic Molecules Сontent Pages 4.1
    1 Part 4. Carbohydrates as bioorganic molecules Сontent Pages 4.1. General information……………………….. 3 4.2. Classification of carbohydrates …….. 4 4.3. Monosaccharides (simple sugar)…….. 4 4.3.1. Monosaccharides classification……………………….. 5 4.3.2. Stereochemical properties of monosaccharides. … 6 4.3.2.1. Chiral carbon atom…………………………………. 6 4.3.2.2. D-, L-configurations of optical isomers ……….. 8 4.3.2.3. Optical activity of enantiomers. Racemate. …… 9 4.3.3. Open chain (acyclic) and closed chain (cyclic) forms of monosaccharides. Haworth projections ……………… 9 4.3.4. Pyranose and furanose forms of sugars ……………. 10 4.3.5. Mechanism of cyclic form of aldoses and ketoses formation ………………………………………………………………….. 11 4.3.6. Anomeric carbon …………………………………………. 14 4.3.7. α and β anomers ………………………………………… 14 4.3.8. Chair and boat 3D conformations of pyranoses and envelope 3D conformation of furanoses ……………………. 15 4.3.9. Mutarotation as a interconverce of α and β forms of D-glucose ………………………………………………………………… 15 4.3.10. Important monosaccharides .............................. 17 4.3.11. Physical and chemical properties of monosaccharides ………………………………………………………… 18 4.3.11.1. Izomerization reaction (with epimers forming). 18 4.3.11.2. Oxidation of monosaccharides…………………. 18 4.3.11.3. Reducing Sugars …………………………………. 19 4.3.11.4. Visual tests for aldehydes ……………………… 21 4.3.11.5. Reduction of monosaccharides ……………….. 21 4.3.11.6. Glycoside bond and formation of Glycosides (Acetals) ……………………………………………………………….. 22 4.3.12. Natural sugar derivatives ................................... 24 4.3.12.1. Deoxy sugars ............................................... 24 4.3.12.2. Amino sugars …………………………………….. 24 4.3.12.3. Sugar phosphates ………………………………… 26 4.4. Disaccharides ………………………………… 26 4.4.1.
    [Show full text]
  • Glycosaminoglycan-Protein Interactions: Definition of Consensus Sites in Glycosaminoglycan Binding Proteins Ronald E
    Review articles Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins Ronald E. Hileman,1 Jonathan R. Fromm,1 John M. Weiler,3,4 and Robert J. Linhardt1,2* Summary Although interactions of proteins with glycosaminoglycans (GAGs), such as heparin and heparan sulphate, are of great biological importance, structural requirements for protein-GAG binding have not been well-characterised. Ionic interactions are important in promoting protein-GAG binding. Polyelectrolyte theory suggests that much of the free energy of binding comes from entropically favourable release of cations from GAG chains. Despite their identical charges, arginine residues bind more tightly to GAGs than lysine residues. The spacing of these residues may determine protein-GAG affinity and specificity. Consensus sequences such as XBBBXXBX, XBBXBX and a critical 20 A˚ spacing of basic residues are found in some protein sites that bind GAG. A new consensus sequence TXXBXXTBXXXTBB is described, where turns bring basic interacting amino acid residues into proximity. Clearly, protein-GAG interactions play a prominent role in cell-cell interaction and cell growth. Pathogens including virus particles might target GAG-binding sites in envelope proteins leading to infection. BioEssays 20:156–167, 1998. ௠ 1998 John Wiley & Sons, Inc. GLYCOSAMINOGLYCAN (GAG) STRUCTURE mately 106 (Fig. 1). The protein core has multiple gly- cosaminoglycan (GAG) chains attached to serine residues Proteoglycans (PGs) through a neutral trisaccharide
    [Show full text]
  • Trisaccharide Containing Α2,3-Linked Sialic Acid Is a Receptor for Mumps Virus
    Trisaccharide containing α2,3-linked sialic acid is a receptor for mumps virus Marie Kubotaa, Kaoru Takeuchib,1, Shumpei Watanabea, Shinji Ohnoa, Rei Matsuokac, Daisuke Kohdac, Shin-ichi Nakakitad, Hiroaki Hiramatsue, Yasuo Suzukie, Tetsuo Nakayamaf, Tohru Teradag, Kentaro Shimizug, Nobutaka Shimizuh, Mitsunori Shiroishii, Yusuke Yanagia, and Takao Hashiguchia,1 aDepartment of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan; bLaboratory of Environmental Microbiology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; cDivision of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; dDepartment of Functional Glycomics, Life Science Research Center, Kagawa University, Kagawa 761-0793, Japan; eHealth Science Hills, College of Life and Health Sciences, Chubu University, Kasugai 487-8501, Japan; fLaboratory of Viral Infection, Kitasato Institute for Life Sciences, Tokyo 108-8641, Japan; gDepartment of Biotechnology and Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; hPhoton Factory, Institute of Materials Structure Science, High-Energy Accelerator Research Organization, Tsukuba 305-0801, Japan; and iGraduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan Edited by Michael B. A. Oldstone, The Scripps Research Institute, La Jolla, CA, and approved August 19, 2016 (received for review May 25, 2016) Mumps virus (MuV) remains an important pathogen worldwide, MuV is classified into 12 genotypes, which are used for surveil- causing epidemic parotitis, orchitis, meningitis, and encephalitis. lance by the World Health Organization (1). The vaccine strains Here we show that MuV preferentially uses a trisaccharide containing currently used worldwide belong to genotype A, B, H, or N (1).
    [Show full text]
  • Handout 3 Carbohydrate Chemistry ANSC 689 PHYSIOLOGICAL CHEMISTRY of LIVESTOCK SPECIES Carbohydrate Chemistry I
    Handout 3 Carbohydrate Chemistry ANSC 689 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIES Carbohydrate Chemistry I. General structures A. D-Aldoses 1. All monosaccharides are aldehydes or ketones with multiple hydroxyl groups (i.e., alcohol groups). 2. Smallest is D-glyceraldehyde (as in glyceraldehyde-3-phosphate in glycolysis). 3. Nutritionally most important is D- glucose. 4. L-forms are mirror images. B. D-Ketoses 1. Smallest is D-dihydroxyacetone (as in dihydroxyacetone-phosphate). 2. Nutritionally most important is D- fructose. 3. Free aldehydes are ketones are reducing sugars. In the presence of heat and OH- they reduce cations. 1 Handout 3 Carbohydrate Chemistry C. Formation of ring structures 1. Six-sided pyranoses form when the free aldehyde end of a hexose reacts with one of the C-5 alcohol group to form a hemiacetal. 2. Five-sided furanoses form when the C-2 keto group of a hexose reacts with one of the C-5 alcohol group to form another hemiacetal. D. Monosaccharides and dissacharides 1. Monosaccharides have free reducing ends. 2. Dissacharides can have free reducing ends, and are linked by α-1,4, α-1,2 or ß-1,4-O- glycosidic bonds. E. Nonstructural polysaccharides 1. Amylose – the linear subunit of starch and glycogen. Has only α- 1,4 linkages. Soluble. 2 Handout 3 Carbohydrate Chemistry 2. Amylopectin – the branched subunit of some starches and glycogen. Contains both α-1,4 and α-1,6 linkages. Soluble. 3. Starch – linear and branched 4. Glycogen – only branched F. Structural polysaccharides 1. Cellulose – Linear polymers of glucose in ß-1,4 linkage.
    [Show full text]
  • CHEM 331 Problem Set #6- Lehninger 5E, Chapter 7 Due Wednesday, November14, 2012 ANSWER KEY (56 Total Pts.) 1. in the Monosaccha
    CHEM 331 Problem Set #6- Lehninger 5e, Chapter 7 Due Wednesday, November14, 2012 ANSWER KEY (56 total pts.) 1. In the monosaccharide derivatives known as sugar alcohols, the carbonyl oxygen is reduced to a hydroxyl group. For example, D-glyceraldehyde can be reduced to glycerol. However, this sugar alcohol is no longer designated D or L. Why? (2 pts.) With reduction of the carbonyl oxygen to a hydroxyl group, the stereochemistry at C-1 and C-3 is the same; the glycerol molecule is not chiral. 2. Many carbohydrates react with phenyl-hydrazine (C6H5NHNH2) to form bright yellow crystalline derivatives known as osazones: The melting temperatures of these derivatives are easily determined and are characteristic for each osazone. This information was used to help identify monosaccharides before the development of HPLC or gas-liquid chromatography. Listed below are the melting points (MPs) of some aldose-osazone derivatives: As the table shows, certain pairs of derivatives have the same melting points, although the underivatized monosaccharides do not. Why do glucose and mannose, and similarly galactose and talose, form osazone derivatives with the same melting points? (3 pts.) The configuration at C-2 of an aldose is lost in its osazone derivative, so aldoses dif- fering only at the C-2 configuration (C-2 epimers) give the same derivative, with the same melting point. Glucose and mannose are C-2 epimers and thus form the same osazone; the same is true for galactose and talose (see Fig. 7–3). 3. Describe the common structural features and the differences for each pair: (a) cellulose and glycogen; (b) D-glucose and D-fructose; (c) maltose and sucrose.
    [Show full text]
  • Recent Advances in Synthesis of Bacterial Rare Sugar Building Blocks and Their Applications
    Natural Product Reports Recent Advances in Synthesis of Bacterial Rare Sugar Building Blocks and Their Applications Journal: Natural Product Reports Manuscript ID: NP-HIG-01-2014-000003.R1 Article Type: Highlight Date Submitted by the Author: 13-Feb-2014 Complete List of Authors: Emmadi, Madhu; IIT Bombay, Department of Chemistry; Kulkarni, Suvarn; IIT Bombay, Deapartment of Chemistry Page 1 of 11 Natural Product Reports NPR RSCPublishing HIGHLIGHT Recent Advances in Synthesis of Bacterial Rare Sugar Building Blocks and Their Applications Cite this: DOI: 10.1039/x0xx00000x Madhu Emmadi and Suvarn S. Kulkarni* Received 00th January 2012, Covering: 1964 to 2013 Accepted 00th January 2012 DOI: 10.1039/x0xx00000x Bacteria have unusual glycans on their surfaces which distinguish them from the host cells. These www.rsc.org/ unique structures offer avenues for targeting bacteria with specific therapeutics and vaccines. However, the rare sugars are not accessible in acceptable purity and amounts by isolation from natural sources. Thus, procurement of orthogonally protected rare sugar building blocks through efficient chemical synthesis is regarded as a crucial step towards the development of glycoconjugate vaccines. This Highlight focuses on recent advances in the synthesis of the bacterial deoxy amino hexopyranoside building blocks and their applications to construct various biologically important bacterial O‐glycans. 1. Introduction Bacterial glycoproteins and oligosaccharides contain rare deoxy 1- amino sugars which are not present on the human cell surface. 6 6 X 4 These important structural differences help to differentiate 5 O between the pathogen and the host cell and can be exploited for HO 3 2 1 OH target specific drug discovery and carbohydrate based vaccine AcHN development.7 However, these rare sugars are not available from natural sources.
    [Show full text]