Chemical Society Reviews Glycosyltransferases: mechanisms and applications in natural product development Journal: Chemical Society Reviews Manuscript ID: CS-REV-07-2015-000600 Article Type: Review Article Date Submitted by the Author: 31-Jul-2015 Complete List of Authors: Liang, Dongmei; School of Chemical Engineering and Technology, Department of Pharmaceutical Engineering Liu, Jiaheng; School of Chemical Engineering and Technology, Department of Pharmaceutical Engineering Wu, Hao; School of Chemical Engineering and Technology, Department of Pharmaceutical Engineering Wang, Binbin; School of Chemical Engineering and Technology, Department of Pharmaceutical Engineering Zhu, Hongji; School of Chemical Engineering and Technology, Department of Pharmaceutical Engineering Qiao, Jianjun; School of Chemical Engineering and Technology, Tianjin University, Page 1 of 75 Chemical Society Reviews Glycosyltransferases: mechanisms and applications in natural product development Dong-Mei Liang ‡, Jia-Heng Liu ‡, Hao Wu, Bin-Bin Wang, Hong-Ji Zhu and Jian-Jun Qiao ∗ Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, China. ‡ Dong-Mei Liang and Jia-Heng Liu contributed equally to this work. ∗ Corresponding author. Tel: +86-022-8740-2107; Fax: +86-022-8740-2107. E-mail address:
[email protected] Chemical Society Reviews Page 2 of 75 Abstract Glycosylation reactions mainly catalyzed by glycosyltransferases (Gts), occur almost everywhere in biosphere, and always play crucial roles in vital processes. In order to understand the full potential of Gts, the chemical and structural glycosylation mechanisms are systematically summarized in this review, including some new outlooks in inverting/retaining mechanisms and the overview of GT-C superfamily proteins as a novel Gt fold.