Chemical Approaches to Glycobiology

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Approaches to Glycobiology ANRV413-BI79-22 ARI 27 April 2010 21:25 Chemical Approaches to Glycobiology Laura L. Kiessling1,2 and Rebecca A. Splain1 1Department of Chemistry, 2Department of Biochemistry, University of Wisconsin–Madison, Wisconsin 53706; email: [email protected] Annu. Rev. Biochem. 2010. 79:619–53 Key Words First published online as a Review in Advance on array, glycan, glycomimetic, glycosylation, lectin, multivalency April 8, 2010 The Annual Review of Biochemistry is online at Abstract biochem.annualreviews.org Glycans are ubiquitous components of all organisms. Efforts to This article’s doi: elucidate glycan function and to understand how they are assembled 10.1146/annurev.biochem.77.070606.100917 and disassembled can reap benefits in fields ranging from bioenergy by University of Wisconsin - Madison on 07/29/10. For personal use only. Copyright c 2010 by Annual Reviews. to human medicine. Significant advances in our knowledge of glycan All rights reserved biosynthesis and function are emerging, and chemical biology ap- Annu. Rev. Biochem. 2010.79:619-653. Downloaded from arjournals.annualreviews.org 0066-4154/10/0707-0619$20.00 proaches are accelerating the pace of discovery. Novel strategies for assembling oligosaccharides, glycoproteins, and other glycoconjugates are providing access to critical materials for interrogating glycan function. Chemoselective reactions that facilitate the synthesis of glycan-substituted imaging agents, arrays, and materials are yielding compounds to interrogate and perturb glycan function and dysfunction. To complement these advances, small molecules are being generated that inhibit key glycan-binding proteins or biosynthetic enzymes. These examples illustrate how chemical glycobiology is providing new insight into the functional roles of glycans and new opportunities to interfere with or exploit these roles. 619 ANRV413-BI79-22 ARI 27 April 2010 21:25 that approximately 1% of each genome, Contents from eubacteria to archea and eukaryotes, is dedicated to sugar-processing enzymes (2). INTRODUCTION .................. 620 Moreover, these genes can be highly conserved, GLYCAN SYNTHESIS .............. 622 as the components of few other biochemical Chemical Synthesis pathways are so invariant as those responsible of Oligosaccharides ............. 623 for glycan biosynthesis (3). The importance of Engineering Enzymes this conservation is underscored by data indi- for Glycan Synthesis ............ 626 cating that defects in the glycan biosynthetic Glycoprotein and machinery in humans, known as congenital dis- Glycopeptide Synthesis ......... 628 orders of glycosylation, are rare and generally Chemical Glycobiology of have severe deleterious consequences (4). Glycolipids ..................... 629 Genomic analysis is a powerful means to Chemoselective Reactions identify enzymes that generate or degrade gly- to Modify Glycans .............. 629 cans and the proteins that recognize the gly- INTERROGATION OF can products. Still, it does not reveal what GLYCAN RECOGNITION....... 632 glycans are present in a cell or organism be- Glycan Arrays ..................... 632 cause the synthesis of glycans is not template Lectin Arrays ...................... 634 directed. As a result, elucidating the molecu- PERTURBATION OF lar mechanisms that underlie glycan function GLYCAN FUNCTION ........... 634 has been a challenge. Nevertheless, researchers Perturbation of Protein-Glycan have uncovered numerous roles for glycans, Recognition with Monovalent including those in fertilization and develop- Ligands ........................ 635 ment, hormone function, cell proliferation and Perturbation of Protein-Glycan organization, host-pathogen interactions, and Recognition with Multivalent the inflammatory and immune responses (3). Ligands ........................ 637 These findings are providing additional impe- Perturbation of Glycan Assembly . 640 tus to devise new approaches that meet the chal- Exploiting Alternative Substrates lenges of elucidating and manipulating glycan in Glycan Biosynthesis .......... 643 function. Illuminating Glycan Biosynthesis . 644 The increased appreciation for the ubiquity CONCLUSION ..................... 646 of glycans and their importance to human health has spawned the field of chemical glycobiology. Because of the complexities of by University of Wisconsin - Madison on 07/29/10. For personal use only. Glycan: a generic glycans, their study has compelled researchers term referring to a INTRODUCTION to pursue interdisciplinary approaches. Since Annu. Rev. Biochem. 2010.79:619-653. Downloaded from arjournals.annualreviews.org monosaccharide, oligosaccharide, Glycans, which are compounds that include the pioneering contributions of 1902 Nobel polysaccharide, or its monosaccharides, oligosaccharides, polysac- Laureate Emil Fischer, it has been apparent conjugate (e.g., charides, and their conjugates, are critical that our understanding of glycan function glycolipid, constituents of all organisms. Members of a can be advanced using approaches that span glycoprotein, or other glycan subset, the polysaccharides, are the most biology and chemistry. The nucleation of the glycoconjugate) abundant organic compounds on Earth. Gly- discipline of chemical biology is yielding new Glycoconjugate: one coconjugates (e.g., peptidoglycan, glycolipids, and innovative strategies to probe glycan func- or more saccharide units (glycone) glycoproteins) also are prevalent. In humans, tion (5). Indeed, there has been an explosion covalently linked to a for example, half of all proteins are glycosy- of research in this area. As a result, this review noncarbohydrate lated (1). Consistent with glycan abundance in cannot provide comprehensive coverage of the moiety (aglycone) nature, data from genomic sequencing indicate field but rather offers an overview of select 620 Kiessling · Splain ANRV413-BI79-22 ARI 27 April 2010 21:25 advances that illustrate the unique contribu- agents can be used for purposes ranging from Glycobiology: the tions and exciting opportunities within the imaging glycans to cross-linking them to their study of sugars in field of chemical glycobiology. binding partners. Together, these chemical biological systems, The state of the art of chemical glycobiology strategies are illuminating the molecular including their is focused on key questions: How are glycans mechanisms that underlie glycan function. structures, made and degraded, what are their biological biosynthesis, and physiological roles roles once in place, and how can these roles be exploited? To address these questions, Interrogation researchers have employed the complementary a Glycan- b Cell strategies of interrogation and perturbation binding protein Lectin (Figure 1). The interrogation strategy strives to understand endogenous interactions between Antibody natural glycans and their cognate enzymes or Glycan binding partners. Access to naturally occurring array and novel glycans provides the means to examine protein-glycan or enzyme-glycan in- teractions. Arrays composed of glycoconjugates Surface (Figure 1a) or lectins (Figure 1b) are valuable tools for interrogating protein-binding speci- ficity or cellular glycosylation patterns. With Perturbation the complementary perturbation approach, in- c e hibitors, analogs, or other nonnatural substrates Lectin can serve as probes of both the biosynthesis and Inhibitor the biological roles of glycans. Indeed, novel nonnatural oligosaccharide mimics or syn- thetic glycoconjugates can inhibit or encourage specific biomolecular interactions within cells Glycosyl- transferase and organisms (Figure 1c,d ). Moreover, compounds have been identified that can block key steps within glycan biosynthetic pathways d Cell (Figure 1e). Finally, carbohydrate analogs can Normal Inhibitor sugar be incorporated into glycans using the cellular Lectin biosynthetic machinery (Figure 1f ). Such by University of Wisconsin - Madison on 07/29/10. For personal use only. −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ f Nonnatural sugar Figure 1 Annu. Rev. Biochem. 2010.79:619-653. Downloaded from arjournals.annualreviews.org Interrogation and perturbation in chemical glycobiology. (a) Glycan arrays have been developed to interrogate the binding specificities of lectins (blue), antibodies (green), and other glycan-binding proteins (orange). (b) Lectin arrays can be used to fingerprint cell-surface or pathogen glycosylation Multivalent ligand patterns. Monovalent (c) and multivalent (d ) ligands for glycan-binding proteins can perturb protein- glycan interactions. (e) Inhibitors can prevent key steps in glycan biosynthesis, thereby reducing the production of specific glycan structures. ( f ) Nonnatural monosaccharides can serve as substrates for biosynthetic enzymes and thereby be incorporated into glycans. www.annualreviews.org • Chemical Approaches to Glycobiology 621 ANRV413-BI79-22 ARI 27 April 2010 21:25 GLYCAN SYNTHESIS glycolipids, glycosylphosphatidylinositol an- Defined oligosaccharides and glycoconjugates chors, proteoglycans, and polysaccharides are are critical for unraveling the function of gly- influenced by accessibility of the nucleotide Lectin: a glycan- binding protein of cans. Obtaining these entities from natural donors, but the mechanisms governing the reg- nonimmune origin sources is difficult because their production ulation of these pathways are still being eluci- generally involves the participation of multiple dated. Thus, it is difficult to obtain sufficient transporters and enzymes (6). This complex- quantities of glycans
Recommended publications
  • Glycobiology Protocols M E T H O D S I N M O L E C U L a R B I O L O G Y™
    Glycobiology Protocols M E T H O D S I N M O L E C U L A R B I O L O G Y™ John M. Walker, SERIES EDITOR 384. Capillary Electrophoresis: Methods and Protocols, 357. Cardiovascular Proteomics: Methods and Protocols, edited by Philippe Schmitt-Kopplin, 2007 edited by Fernando Vivanco, 2006 383. Cancer Genomics and Proteomics: Methods and 356. High-Content Screening: A Powerful Approach Protocols, edited by Paul B. Fisher, 2007 to Systems Cell Biology and Drug Discovery, 382. Microarrays, Second Edition: Volume 2, Applications edited by D. Lansing Taylor, Jeffrey Haskins, and Data Analysis, edited by Jang B. Rampal, 2007 and Ken Guiliano, 2007 381. Microarrays, Second Edition: Volume 1, Synthesis 355. Plant Proteomics: Methods and Protocols, edited Methods, edited by Jang B. Rampal, 2007 by Hervé Thiellement, Michel Zivy, Catherine 380. Immunological Tolerance: Methods and Protocols, Damerval, and Valerie Mechin, 2006 edited by Paul J. Fairchild, 2007 354. Plant–Pathogen Interactions: Methods and 379. Glycovirology Protocols, edited by Richard J. Protocols, edited by Pamela C. Ronald, 2006 Sugrue, 2007 353. DNA Analysis by Nonradioactive Probes: Methods 378. Monoclonal Antibodies: Methods and Protocols, and Protocols, edited by Elena Hilario and John. F. edited by Maher Albitar, 2007 MacKay, 2006 377. Microarray Data Analysis: Methods and 3352.52 Protein Engineering Protocols, edited by Kristian Applications, edited by Michael J. Korenberg, 2007 Müller and Katja Arndt, 2006 376. Linkage Disequilibrium and Association 3351.51 C. elegans: Methods and Applications, edited by Mapping: Analysis and Application, edited by Kevin Strange, 2006 Andrew R. Collins, 2007 3350.50 Protein Folding Protocols, edited by Yawen Bai 375.
    [Show full text]
  • CHEM 537: Carbohydrate Biochemistry and Glycobiology Instructor: Professor Anthony S
    CHEM 537: Carbohydrate Biochemistry and Glycobiology Instructor: Professor Anthony S. Serianni Fall 2014 8:10-9:15 AM, MWF, 322 Jordan November 14 – December 12, 2014 PART A: Monosaccharides, Oligosaccharides and Polysaccharides Textbook Biochemistry, 4th Edition, Voet/Voet, Wiley, 2011 Chapter 11: Sugars and Polysaccharides Chapter 23: Other Pathways of Carbohydrate Metabolism Supplemental Text (useful for course; on reserve in Chem/Phys Library) M. E. Taylor and K. Drickamer, Introduction to Glycobiology, 3rd Ed., Oxford, 2011 Literature Reading: Distributed electronically Topics: Aldoses and ketoses: structures, nomenclature, absolute configuration Cyclization: furanose and pyranose ring forms; anomeric configuration Anomerization (implications for saccharide binding proteins) Relative stabilities of cyclic forms Acyclic forms: aldehydo and keto forms, and their hydrates Ring conformation: conformational averaging Exocyclic conformations (C-O, N-acetyl, CH2OH) Amphiphilic character of saccharides (implications for receptor binding) Saccharide solvation: H-bonding behaviors Monosaccharide derivatives: Phosphate esters Sulfate esters Aminosugars Deoxysugars Alditols Aldonic acids (lactones) Uronic acids Dicarbonyl sugars (osones) α-ketoacids (sialic acid, KDO) Aldose-ketose isomerization (chemical, biological) Di- and oligosaccharide nomenclature Formation of glycosidic bonds: disaccharides (chemical, biological)s Mechanisms of glycoside bond formation and hydrolysis Phi/psi plots for glycosidic linkages Factors affecting linkage conformation;
    [Show full text]
  • Total Synthesis of Zwitterionic Bacterial Polysaccharide (PS A1) Antigen Fragments
    A Dissertation Titled: Total Synthesis of Zwitterionic Bacterial Polysaccharide (PS A1) Antigen Fragments from B. fragilis ATCC 25285/NCTC 9343 with Alternating Charges on Adjacent Monosaccharides by Pradheep Eradi Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Chemistry ___________________________________________ Dr. Peter R. Andreana, PhD, Committee Chair ___________________________________________ Dr. Steve Sucheck, PhD, Committee Member ___________________________________________ Dr. Jianglong Zhu, PhD, Committee Member ___________________________________________ Dr. Amanda C. Bryant-Freidrich, PhD, Committee Member ___________________________________________ Dr. Cyndee Gruden, Dean College of Graduate Studies The University of Toledo May 2019 Copyright 2019 Pradheep Eradi This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Total Synthesis of Zwitterionic Bacterial Polysaccharide (PS A1) Antigen Fragments from B. fragilis ATCC 25285/NCTC 9343 with Alternating Charges on Adjacent Monosaccharides by Pradheep Eradi Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Chemistry The University of Toledo May 2019 Zwitterionic polysaccharides (ZPSs) are a relatively new class of carbohydrate antigens, with a paradigm shifting property; they can activate CD4+ T-cells in the absence of lipids, peptide(s) or protein(s) upon MHC class II presentation. Up until now, various anaerobic bacteria are known to express ZPSs, for example, PS A1, PS A2 and PS B (Bacteroides fragilis), Sp1 (Streptococcus pneumoniae), CP5 and CP8 (Staphylococcus aureus) and O-chain antigen (Morganella morgani). Among all the afore mentioned ZPSs, Sp1 and PS A1 polysaccharides were the prime focus of research for the past few decades and their biological properties are very well-understood.
    [Show full text]
  • A Versatile Glycosylation Strategy Via Au(III) Catalyzed Activation of Thioglycoside Donors† Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue A versatile glycosylation strategy via Au(III) catalyzed activation of thioglycoside donors† Cite this: Chem. Sci.,2016,7,4259 Amol M. Vibhute, Arun Dhaka, Vignesh Athiyarath and Kana M. Sureshan* Among various methods of chemical glycosylations, glycosylation by activation of thioglycoside donors using a thiophilic promoter is an important strategy. Many promoters have been developed for the activation of thioglycosides. However, incompatibility with substrates having alkenes and the requirement of a stoichiometric amount of promoters, co-promoters and extreme temperatures are some of the limitations. We have developed an efficient methodology for glycosylation via the activation of thioglycoside donors using a catalytic amount of AuCl3 and without any co-promoter. The reaction is Received 10th February 2016 very fast, high-yielding and very facile at room temperature. The versatility of this method is evident from Accepted 4th March 2016 the facile glycosylation with both armed and disarmed donors and sterically demanding substrates DOI: 10.1039/c6sc00633g (acceptors/donors) at ambient conditions, from the stability of the common protecting groups, and from www.rsc.org/chemicalscience the compatibility of alkene-containing substrates during the reaction. Creative Commons Attribution 3.0 Unported Licence. Introduction alkenes;8 and (iv) the requirement of extremely low temperatures for the reaction. Development of novel and milder methods of Various forms of carbohydrates play important biological roles thioglycoside activation that overcome these limitations is an 5 ,6 and hence the chemical synthesis of glycoconjugates and agenda of utmost importance among chemists. g a Pohl et al.
    [Show full text]
  • Effect of Glycosylation on Protein Folding: a Close Look at Thermodynamic Stabilization
    Effect of glycosylation on protein folding: A close look at thermodynamic stabilization Dalit Shental-Bechor and Yaakov Levy* Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel Edited by Jose´N. Onuchic, University of California at San Diego, La Jolla, CA, and approved May 1, 2008 (received for review February 10, 2008) Glycosylation is one of the most common posttranslational mod- ical functioning of proteins in the cell. Understanding the effects ifications to occur in protein biosynthesis, yet its effect on the of posttranslational modifications to the protein energy land- thermodynamics and kinetics of proteins is poorly understood. A scape is valuable in understanding protein function and how minimalist model based on the native protein topology, in which protein thermodynamics and kinetics can be modulated by the each amino acid and sugar ring was represented by a single bead, formation of a conjugate or through an external stimulus. In this was used to study the effect of glycosylation on protein folding. article, we explore the effects of glycosylation on the biophysical We studied in silico the folding of 63 engineered SH3 domain properties of proteins with the main goal of understanding variants that had been glycosylated with different numbers of folding mechanisms, thermodynamics, and kinetics in the conjugated polysaccharide chains at different sites on the protein’s context of the cell. surface. Thermal stabilization of the protein by the polysaccharide Glycosylation [i.e., the attachment of polysaccharide chains chains was observed in proportion to the number of attached (also termed ‘‘glycans’’) to proteins] is regarded as one of the chains.
    [Show full text]
  • A Thesis Entitled Thio-Arylglycosides with Various Aglycon Para-Substituents, a Useful Tool for Mechanistic Investigation Of
    A Thesis entitled Thio-arylglycosides with Various Aglycon Para-Substituents, a Useful Tool for Mechanistic Investigation of Chemical Glycosylations by Xiaoning Li Submitted as partial fulfillment of the requirements for the Master of Science Degree in Chemistry ___________________________ Advisor: Dr. Xuefei Huang ___________________________ College of Graduate Studies The University of Toledo August 2007 An Abstract of Thio-arylglycosides with Various Aglycon Para-Substituents, a Useful Tool for Mechanistic Investigation of Chemical Glycosylations by Xiaoning Li Submitted as partial fulfillment of the requirements for the Master of Science Degree in Chemistry The University of Toledo August 2007 Oligosaccharides are usually found as protein or lipid conjugates in cellular systems. They play crucial roles in many biological processes. Among many approaches, organic synthesis is a very important way to obtain the desired oligosaccharides for biological studies. To date, no general synthetic procedures are available for oligosaccharide synthesis. Laborious synthetic transformations are generally required in order to obtain the desired regio- and/or stereo-selective control in oligosaccharide synthesis, due to their diverse and complex structures and many chemical equivalent ii hydroxyl functional groups. To achieve a rapid synthetic routine with high yields, a key step - glycosylation in oligosaccharide synthesis needs to be well understood. Thus an insight into the mechanism of glycosylation will provide valuable information potentially leading to the development of generalized glycosylation method. In this work, kinetic properties of glycosylation were evaluated by model reactions between three different series of glycosyl donors and three different glycosyl acceptors. The glycosylation mechanism was analyzed in the context of a linear-free energy relationship.
    [Show full text]
  • Glycomics Hits the Big Time
    Leading Edge Essay Glycomics Hits the Big Time Gerald W. Hart1,* and Ronald J. Copeland1 1Department of Biological Chemistry, School of Medicine, Johns Hopkins University, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA *Correspondence: [email protected] DOI 10.1016/j.cell.2010.11.008 Cells run on carbohydrates. Glycans, sequences of carbohydrates conjugated to proteins and lipids, are arguably the most abundant and structurally diverse class of molecules in nature. Recent advances in glycomics reveal the scope and scale of their functional roles and their impact on human disease. By analogy to the genome, transcriptome, O-GlcNAc (Hart et al., 2007). Even though Dynamic Structural Complexity or proteome, the ‘‘glycome’’ is the the generic term ‘‘glycosylation’’ is often Underlies Glycan Functions complete set of glycans and glycoconju- used to categorize and lump all glycan Glycoconjugates provide dynamic struc- gates that are made by a cell or organism modifications of proteins into one bin, tural diversity to proteins and lipids that under specific conditions. Therefore, side by side with other posttranslational is responsive to cellular phenotype, to ‘‘glycomics’’ refers to studies that attempt modifications such as phosphorylation, metabolic state, and to the developmental to define or quantify the glycome of a cell, acetylation, ubiquitination, or methylation, stage of cells. Complex glycans play crit- tissue, or organism (Bertozzi and Sasise- such a view is not only inaccurate, but ical roles in intercellular and intracellular kharan, 2009). In eukaryotes, protein also is completely misleading. If one only processes, which are fundamentally glycosylation generally involves the cova- considers the linkage of the first glycan important to the development of multicel- lent attachment of glycans to serine, to the polypeptide in both prokaryotic lularity (Figure 1).
    [Show full text]
  • Characterization of Glycosyl Dioxolenium Ions and Their Role in Glycosylation Reactions
    ARTICLE https://doi.org/10.1038/s41467-020-16362-x OPEN Characterization of glycosyl dioxolenium ions and their role in glycosylation reactions Thomas Hansen 1,4, Hidde Elferink2,4, Jacob M. A. van Hengst1, Kas J. Houthuijs 2, Wouter A. Remmerswaal 1, Alexandra Kromm2, Giel Berden 3, Stefan van der Vorm 1, Anouk M. Rijs 3, Hermen S. Overkleeft1, Dmitri V. Filippov1, Floris P. J. T. Rutjes2, Gijsbert A. van der Marel1, Jonathan Martens3, ✉ ✉ ✉ Jos Oomens 3 , Jeroen D. C. Codée 1 & Thomas J. Boltje 2 1234567890():,; Controlling the chemical glycosylation reaction remains the major challenge in the synthesis of oligosaccharides. Though 1,2-trans glycosidic linkages can be installed using neighboring group participation, the construction of 1,2-cis linkages is difficult and has no general solution. Long-range participation (LRP) by distal acyl groups may steer the stereoselectivity, but contradictory results have been reported on the role and strength of this stereoelectronic effect. It has been exceedingly difficult to study the bridging dioxolenium ion intermediates because of their high reactivity and fleeting nature. Here we report an integrated approach, using infrared ion spectroscopy, DFT computations, and a systematic series of glycosylation reactions to probe these ions in detail. Our study reveals how distal acyl groups can play a decisive role in shaping the stereochemical outcome of a glycosylation reaction, and opens new avenues to exploit these species in the assembly of oligosaccharides and glycoconju- gates to fuel biological research. 1 Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands. 2 Radboud University Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
    [Show full text]
  • Glycosyltransferases: Mechanisms and Applications in Natural Product Development
    Chemical Society Reviews Glycosyltransferases: mechanisms and applications in natural product development Journal: Chemical Society Reviews Manuscript ID: CS-REV-07-2015-000600 Article Type: Review Article Date Submitted by the Author: 31-Jul-2015 Complete List of Authors: Liang, Dongmei; School of Chemical Engineering and Technology, Department of Pharmaceutical Engineering Liu, Jiaheng; School of Chemical Engineering and Technology, Department of Pharmaceutical Engineering Wu, Hao; School of Chemical Engineering and Technology, Department of Pharmaceutical Engineering Wang, Binbin; School of Chemical Engineering and Technology, Department of Pharmaceutical Engineering Zhu, Hongji; School of Chemical Engineering and Technology, Department of Pharmaceutical Engineering Qiao, Jianjun; School of Chemical Engineering and Technology, Tianjin University, Page 1 of 75 Chemical Society Reviews Glycosyltransferases: mechanisms and applications in natural product development Dong-Mei Liang ‡, Jia-Heng Liu ‡, Hao Wu, Bin-Bin Wang, Hong-Ji Zhu and Jian-Jun Qiao ∗ Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, China. ‡ Dong-Mei Liang and Jia-Heng Liu contributed equally to this work. ∗ Corresponding author. Tel: +86-022-8740-2107; Fax: +86-022-8740-2107. E-mail address: [email protected] Chemical Society Reviews Page 2 of 75 Abstract Glycosylation reactions mainly catalyzed by glycosyltransferases (Gts), occur almost everywhere in biosphere, and always play crucial roles in vital processes. In order to understand the full potential of Gts, the chemical and structural glycosylation mechanisms are systematically summarized in this review, including some new outlooks in inverting/retaining mechanisms and the overview of GT-C superfamily proteins as a novel Gt fold.
    [Show full text]
  • Fluoride Migration Catalysis Enables Simple, Stereoselective, and Iterative Glycosylation Girish C
    Fluoride Migration Catalysis Enables Simple, Stereoselective, and Iterative Glycosylation Girish C. Sati, Joshua L. Martin, Yishu Xu, Tanmay Malakar, Paul M. Zimmerman, and John Montgomery* Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA *Corresponding author. Email: [email protected] Abstract: Challenges in the assembly of glycosidic bonds pose a bottleneck in enabling the remarkable promise of advances in the glycosciences. We report a strategy that applies unique features of electrophilic boron catalysts in addressing current limitations of methods in glycoside synthesis. The strategy utilizes glycosyl fluoride donors and silyl ether acceptors while tolerating the Lewis basic environment found in carbohydrates. The method allows a simple setup at room temperature while utilizing catalyst loadings as low as 0.5 mol %, and air- and moisture stable forms of the catalyst are found to be effective. These characteristics enable a wide array of glycosylation patterns to be accessed, including all four C1-C2 stereorelationships, and the method allows one-pot, iterative glycosylations to generate oligosaccharides directly from monosaccharide building blocks. Main Text: Advances in the glycosciences present enormous promise in the understanding of disease and the development of strategies for improving human health.(1-3) The structural diversity and resulting biological properties of oligosaccharides and glycoconjugates are amplified by the stereochemical variations present within monosaccharide building blocks, the positioning (or absence) of oxygen and nitrogen functionality, and the multitude of possible points of connection between monosaccharide units. These features, paired with the multivalency of binding interactions, provide oligosaccharide chains with exquisite properties that govern many molecular recognition events in biology.
    [Show full text]
  • Intramolecular Glycosylation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Intramolecular glycosylation Xiao G. Jia and Alexei V. Demchenko* Review Open Access Address: Beilstein J. Org. Chem. 2017, 13, 2028–2048. Department of Chemistry and Biochemistry, University of Missouri – doi:10.3762/bjoc.13.201 St. Louis, One University Blvd., 434 Benton Hall (MC27), St. Louis, MO 63121, USA Received: 04 May 2017 Accepted: 13 September 2017 Email: Published: 29 September 2017 Alexei V. Demchenko* - [email protected] This article is part of the Thematic Series "The glycosciences". * Corresponding author Guest Editor: A. Hoffmann-Röder Keywords: carbohydrates; glycosylation; intramolecular reactions; © 2017 Jia and Demchenko; licensee Beilstein-Institut. oligosaccharides License and terms: see end of document. Abstract Carbohydrate oligomers remain challenging targets for chemists due to the requirement for elaborate protecting and leaving group manipulations, functionalization, tedious purification, and sophisticated characterization. Achieving high stereocontrol in glycosyla- tion reactions is arguably the major hurdle that chemists experience. This review article overviews methods for intramolecular glycosylation reactions wherein the facial stereoselectivity is achieved by tethering of the glycosyl donor and acceptor counterparts. Introduction With recent advances in glycomics [1,2], we now know that Arthur Michael and Emil Fischer in the late 1800’s, the glyco- half of the proteins in the human body are glycosylated [3], and sylation reaction remains challenging to chemists. cells display a multitude of glycostructures [4]. Since glycan and glycoconjugate biomarkers are present in all body fluids, Enzymatic glycosylation reactions are highly stereoselective they offer a fantastic opportunity for diagnostics.
    [Show full text]
  • Direct Dehydrative Glycosylation Catalyzed by Diphenylammonium Triflate
    molecules Communication Direct Dehydrative Glycosylation Catalyzed by Diphenylammonium Triflate 1,2,3, 1, 1,2,3 1 1 Mei-Yuan Hsu y , Sarah Lam y , Chia-Hui Wu , Mei-Huei Lin , Su-Ching Lin and Cheng-Chung Wang 1,2,* 1 Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; [email protected] (M.-Y.H.); [email protected] (S.L.); [email protected] (C.-H.W.); [email protected] (M.-H.L.); [email protected] (S.-C.L.) 2 Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 115, Taiwan 3 Department of Chemistry, National Taiwan University, Taipei 106, Taiwan * Correspondence: [email protected]; Tel.: +886-5572-8618 These authors contributed equally to this work. y Academic Editor: Richard A. Bunce Received: 7 February 2020; Accepted: 29 February 2020; Published: 2 March 2020 Abstract: Methods for direct dehydrative glycosylations of carbohydrate hemiacetals catalyzed by diphenylammonium triflate under microwave irradiation are described. Both armed and disarmed glycosyl-C1-hemiacetal donors were efficiently glycosylated in moderate to excellent yields without the need for any drying agents and stoichiometric additives. This method has been successfully applied to a solid-phase glycosylation. Keywords: carbohydrates; dehydration; glycosylation; homogeneous catalysis microwave chemistry 1. Introduction Glycosylation is one of the most important reactions in oligosaccharide synthesis [1]. Though monosaccharides in hemiacetal form are commercially available or easily prepared, use of them as glycosyl donors often requires prior elaboration of the anomeric hydroxyl to a good leaving group [2–7]. In contrast, direct dehydrative glycosylation is an atom economic and environmentally friendly method because only water is generated as a byproduct.
    [Show full text]