Genetic and Biochemical Analysis of the Micrococcin Biosynthetic Pathway Philip Ross Bennallack Brigham Young University

Total Page:16

File Type:pdf, Size:1020Kb

Genetic and Biochemical Analysis of the Micrococcin Biosynthetic Pathway Philip Ross Bennallack Brigham Young University Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2016-11-01 Genetic and Biochemical Analysis of the Micrococcin Biosynthetic Pathway Philip Ross Bennallack Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Bennallack, Philip Ross, "Genetic and Biochemical Analysis of the Micrococcin Biosynthetic Pathway" (2016). All Theses and Dissertations. 6182. https://scholarsarchive.byu.edu/etd/6182 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Genetic and Biochemical Analysis of the Micrococcin Biosynthetic Pathway Philip Ross Bennallack A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Richard A. Robison, Co-Chair Joel S. Griffitts, Co-Chair Julianne H. Grose Steven M. Johnson Bradley C. Bundy Department of Microbiology and Molecular Biology Brigham Young University Copyright © 2016 Philip Ross Bennallack All Rights Reserved ABSTRACT Genetic and Biochemical Analysis of the Micrococcin Biosynthetic Pathway Philip Ross Bennallack Department of Microbiology and Molecular Biology, BYU Doctor of Philosophy Declining antibiotic discovery and flourishing antibiotic resistance have led to a modern antibiotic crisis which threatens to compromise our ability to treat infectious disease. Consequently, there is significant interest in developing new antibiotics with novel modes of action and chemical properties. Ribosomally synthesized and post- translationally modified peptides (RiPPs) are natural compounds with the appealing attributes of being derived directly from a genetic template while possessing numerous exotic chemical features that contribute to stability and antimicrobial activity. Abundant in nature, their diverse range of biological activities makes them excellent prospects for antibiotic development. Thiopeptides, a RiPP family rich in chemical complexity, represent a particularly promising example. Characterized by post-translationally formed sulfur- and nitrogen-containing heterocycles, more than 100 different thiopeptides have been identified from various cultivable bacterial producers, and the mining of genomic and metagenomic data promises to uncover many more chemical species that have eluded discovery by conventional means. These peptides are potent inhibitors of bacterial protein synthesis and have been shown effective against many drug-resistant pathogens. Despite these attractive properties, therapeutic applications have been limited by the lack of an efficient synthetic route and poor aqueous solubility. Both of these challenges would be greatly alleviated by a more complete understanding of thiopeptide biosynthesis and improved systems for analysis and engineering. Here we describe the characterization of a new thiopeptide gene cluster, which encodes the archetypal thiopeptide micrococcin P1. We describe the identification of the bioactive product and detail the mechanism of immunity in the producing strain. We also describe efforts to engineer this pathway for heterologous expression in Bacillus subtilis. Using this platform, we have been able to dissect this intricate biosynthetic pathway and parse the order and timing of the processing events involved in peptide maturation. The knowledge gained from these studies will inform future efforts to adapt thiopeptides for therapeutic use, and guide efforts to engineer unnatural compounds using the exotic enzymology employed by thiopeptide producing bacteria. Keywords: RiPPs, thiopeptides, micrococcin, peptide engineering, Bacillus subtilis ACKNOWLEDGEMENTS This work would not have been possible without the tremendous support of my two incredible advisors: Joel Griffitts and Richard Robison. Joel has been a phenomenal mentor, example and friend. His curious mind, enthusiasm for conquering the unknown and sense of humor has truly made this experience a joy and a thrill. Richard Robison has also been a fantastic mentor and tremendous source of encouragement. Rich has been one of the biggest champions of my successes, and I have appreciated the intellectual freedoms he has granted me whilst always making himself available for professional and personal advice. I feel truly honored to have been mentored by both of these great men but more importantly, to call them my friends. I also wish to acknowledge the many others who have contributed to this work. Members of my graduate committee — which also includes Steve Johnson, Julianne Grose and Brad Bundy — have provided invaluable insight and advice and been very influential in my academic development. Our collaborators at UCSF, Susan Miller and Kathryn Bewley have been amazing colleagues. Sue has provided a wealth of scientific insight and has been a true master of the literature. Kathryn has likewise been a great source of ideas and tremendous experimentalist. The assistance of these two remarkable scientists has been invaluable and has accelerated the pace and quality of my research. Many others in the department have contributed to my academic and personal development. From the multitude of undergraduate students who have assisted on this project to my fellow graduate students for their ideas and friendship, I express appreciation. To Kim O’Neill, Brad Berges, Don Breakwell, and other lunchroom companions I say “hello stupid!” Thanks for the laughs and friendly hallway greetings. These interactions have made this experience truly enjoyable and have made me feel at home in this department. I am eternally indebted to my parents for their unconditional support. My dear parents, Paul and Andrea Bennallack, have been my biggest advocates and have always supported all of my goals and decisions, even when they take me across the world. Ken and Carrie Perucca have treated me like their own son and have likewise supported our family in all aspects of life. With such wonderful people behind me, it has often felt impossible to fail. Finally, to my sweet girls Kaylee, Jayne and Elle, I dedicate this work. Kaylee has provided endless love, encouragement and (when needed) assistance at the bench. Never shy to embark on a new adventure, her faith in me and her optimism has provided clarity and motivation during good times and challenging times. Jayne and Elle, always so excited to visit Daddy at work, have helped me realize how blessed I am to work in such a friendly and intellectually stimulating environment. Knowing I have such a wonderful family to support is the best motivation to succeed. I will always cherish this incredible time in our lives. TABLE OF CONTENTS TITLE PAGE ................................................................................................................................... i ABSTRACT .................................................................................................................................... ii ACKNOWLEDGEMENTS ........................................................................................................... iii TABLE OF CONTENTS ................................................................................................................ v LIST OF TABLES .......................................................................................................................... x LIST OF FIGURES ....................................................................................................................... xi ABBREVIATIONS ..................................................................................................................... xiv Chapter 1. Introduction ................................................................................................................... 1 1.1 The need for new antibiotics ................................................................................................. 1 The antibiotic resistance crisis. ............................................................................................... 1 A brief history of antibiotics. .................................................................................................. 3 A return to antibiotic discovery. ............................................................................................. 4 Nature is the best chemist. ...................................................................................................... 5 Classes of natural products. .................................................................................................... 5 1.2 RiPPs: a new class of natural products ................................................................................. 8 Overview of RiPPs. ................................................................................................................. 8 Structure and classification. .................................................................................................... 9 Therapeutic potential. ........................................................................................................... 10 Peptide engineering and diversification. ............................................................................... 12 1.3 Thiopeptides: biosynthesis and engineering potential .......................................................
Recommended publications
  • Identification and Characterization of Andalusicin: N-Terminally Dimethylated Class III Lantibiotic from Bacillus Thuringiensis Sv
    Identification and characterization of andalusicin: N-terminally dimethylated class III lantibiotic from Bacillus thuringiensis sv. andalousiensis Anastasiia Grigoreva, Julia Andreeva, Dmitry Bikmetov, Anastasiia Rusanova, Marina Serebryakova, Andrea Hernandez Garcia, Darya Slonova, Satish Nair, Guy Lippens, Konstantin Severinov, et al. To cite this version: Anastasiia Grigoreva, Julia Andreeva, Dmitry Bikmetov, Anastasiia Rusanova, Marina Serebryakova, et al.. Identification and characterization of andalusicin: N-terminally dimethylated class III lantibiotic from Bacillus thuringiensis sv. andalousiensis. iScience, Elsevier, 2021, 24 (5), 10.1016/j.isci.2021.102480. hal-03270626 HAL Id: hal-03270626 https://hal.inrae.fr/hal-03270626 Submitted on 25 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License iScience ll OPEN ACCESS Article Identification and characterization of andalusicin: N-terminally dimethylated class III lantibiotic from Bacillus thuringiensis sv. andalousiensis
    [Show full text]
  • Plantazolicin Manuscript OA
    Total Synthesis of the Post-translationally Modified Polyazole Peptide Antibiotic Plantazolicin A Hiroki Wada, Huw E. L. Williams and Christopher J. Moody*[a] School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K. E-mail: [email protected] Abstract: The power of rhodium carbene methodology in chemistry is demonstrated by the synthesis of a structurally complex polyazole antibiotic. Plantazolicin A, a novel soil bacterium metabolite, comprises a linear array of 10 five-membered rings in two pentacyclic regions that derive from ribosomal peptide synthesis followed by extensive post-translational modification. The compound possesses potent antimicrobial activity, and is selectively active against the anthrax causing organism. A conceptually different synthesis of plantazolicin A is reported in which the key steps are the use of rhodium(II)-catalyzed reactions of diazocarbonyl compounds to generate up to six of the seven oxazole rings of the antibiotic. NMR Spectroscopic studies and molecular modeling, reveal a likely dynamic hairpin conformation with a hinge region around the two isoleucine residues. The compound has modest activity against methicillin-resistant Staphylococcus aureus (MRSA). In the one and a half centuries since August Kekulé and Archibald Scott Couper independently proposed that a carbon atom could form four bonds to other atoms (including other carbons),[1,2] the existence of divalent carbons species with a 6-electron valence shell has intrigued chemists. Once regarded as mechanistic curiosities
    [Show full text]
  • Anew Drug Design Strategy in the Liht of Molecular Hybridization Concept
    www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 “Drug Design strategy and chemical process maximization in the light of Molecular Hybridization Concept.” Subhasis Basu, Ph D Registration No: VB 1198 of 2018-2019. Department Of Chemistry, Visva-Bharati University A Draft Thesis is submitted for the partial fulfilment of PhD in Chemistry Thesis/Degree proceeding. DECLARATION I Certify that a. The Work contained in this thesis is original and has been done by me under the guidance of my supervisor. b. The work has not been submitted to any other Institute for any degree or diploma. c. I have followed the guidelines provided by the Institute in preparing the thesis. d. I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the Institute. e. Whenever I have used materials (data, theoretical analysis, figures and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references. Further, I have taken permission from the copyright owners of the sources, whenever necessary. IJCRT2012039 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 284 www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 f. Whenever I have quoted written materials from other sources I have put them under quotation marks and given due credit to the sources by citing them and giving required details in the references. (Subhasis Basu) ACKNOWLEDGEMENT This preface is to extend an appreciation to all those individuals who with their generous co- operation guided us in every aspect to make this design and drawing successful.
    [Show full text]
  • Data of Read Analyses for All 20 Fecal Samples of the Egyptian Mongoose
    Supplementary Table S1 – Data of read analyses for all 20 fecal samples of the Egyptian mongoose Number of Good's No-target Chimeric reads ID at ID Total reads Low-quality amplicons Min length Average length Max length Valid reads coverage of amplicons amplicons the species library (%) level 383 2083 33 0 281 1302 1407.0 1442 1769 1722 99.72 466 2373 50 1 212 1310 1409.2 1478 2110 1882 99.53 467 1856 53 3 187 1308 1404.2 1453 1613 1555 99.19 516 2397 36 0 147 1316 1412.2 1476 2214 2161 99.10 460 2657 297 0 246 1302 1416.4 1485 2114 1169 98.77 463 2023 34 0 189 1339 1411.4 1561 1800 1677 99.44 471 2290 41 0 359 1325 1430.1 1490 1890 1833 97.57 502 2565 31 0 227 1315 1411.4 1481 2307 2240 99.31 509 2664 62 0 325 1316 1414.5 1463 2277 2073 99.56 674 2130 34 0 197 1311 1436.3 1463 1899 1095 99.21 396 2246 38 0 106 1332 1407.0 1462 2102 1953 99.05 399 2317 45 1 47 1323 1420.0 1465 2224 2120 98.65 462 2349 47 0 394 1312 1417.5 1478 1908 1794 99.27 501 2246 22 0 253 1328 1442.9 1491 1971 1949 99.04 519 2062 51 0 297 1323 1414.5 1534 1714 1632 99.71 636 2402 35 0 100 1313 1409.7 1478 2267 2206 99.07 388 2454 78 1 78 1326 1406.6 1464 2297 1929 99.26 504 2312 29 0 284 1335 1409.3 1446 1999 1945 99.60 505 2702 45 0 48 1331 1415.2 1475 2609 2497 99.46 508 2380 30 1 210 1329 1436.5 1478 2139 2133 99.02 1 Supplementary Table S2 – PERMANOVA test results of the microbial community of Egyptian mongoose comparison between female and male and between non-adult and adult.
    [Show full text]
  • The Genera Staphylococcus and Macrococcus
    Prokaryotes (2006) 4:5–75 DOI: 10.1007/0-387-30744-3_1 CHAPTER 1.2.1 ehT areneG succocolyhpatS dna succocorcMa The Genera Staphylococcus and Macrococcus FRIEDRICH GÖTZ, TAMMY BANNERMAN AND KARL-HEINZ SCHLEIFER Introduction zolidone (Baker, 1984). Comparative immu- nochemical studies of catalases (Schleifer, 1986), The name Staphylococcus (staphyle, bunch of DNA-DNA hybridization studies, DNA-rRNA grapes) was introduced by Ogston (1883) for the hybridization studies (Schleifer et al., 1979; Kilp- group micrococci causing inflammation and per et al., 1980), and comparative oligonucle- suppuration. He was the first to differentiate otide cataloguing of 16S rRNA (Ludwig et al., two kinds of pyogenic cocci: one arranged in 1981) clearly demonstrated the epigenetic and groups or masses was called “Staphylococcus” genetic difference of staphylococci and micro- and another arranged in chains was named cocci. Members of the genus Staphylococcus “Billroth’s Streptococcus.” A formal description form a coherent and well-defined group of of the genus Staphylococcus was provided by related species that is widely divergent from Rosenbach (1884). He divided the genus into the those of the genus Micrococcus. Until the early two species Staphylococcus aureus and S. albus. 1970s, the genus Staphylococcus consisted of Zopf (1885) placed the mass-forming staphylo- three species: the coagulase-positive species S. cocci and tetrad-forming micrococci in the genus aureus and the coagulase-negative species S. epi- Micrococcus. In 1886, the genus Staphylococcus dermidis and S. saprophyticus, but a deeper look was separated from Micrococcus by Flügge into the chemotaxonomic and genotypic proper- (1886). He differentiated the two genera mainly ties of staphylococci led to the description of on the basis of their action on gelatin and on many new staphylococcal species.
    [Show full text]
  • Supplement of Biogeographical Distribution of Microbial Communities Along the Rajang River–South China Sea Continuum
    Supplement of Biogeosciences, 16, 4243–4260, 2019 https://doi.org/10.5194/bg-16-4243-2019-supplement © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Supplement of Biogeographical distribution of microbial communities along the Rajang River–South China Sea continuum Edwin Sien Aun Sia et al. Correspondence to: Moritz Müller ([email protected]) The copyright of individual parts of the supplement might differ from the CC BY 4.0 License. Supp. Fig. S1: Monthly Mean Precipitation (mm) from Jan 2016 to Sep 2017. Relevant months are highlighted red (Aug 2016), blue (Mar 2017) and dark blue (Sep 2017). Monthly precipitation for the period in between the cruises (August 2016 to September 2017) were obtained from the Tropical Rainfall Measuring Mission website (NASA 2019) in order to gauge the seasonality (wet or dry). As the rainfall data do not correlate with the monsoonal periods, the seasons in which the sampling cruises coincide with were classified based on the mean rainfall that occurred for each month. The August 2016 cruise (colored red) is classified as the dry season based on the lower mean rainfall value as compared to the other two (March 2017 and September 2017), in which the both are classified as the wet season. Supp. Fig. S2: Non-metric Multi-dimensional Scaling (NMDS) diagram of seasonal (August 2016, March 2017 and September 2017) and particle association (particle-attached or free-living) Seasonality was observed within the three cruises irrespective of the particle association (Supp. Fig. 3). The August 2016 cruise was found to cluster with the September 2017 whereas the March 2017 cruise clustered separately from the other two cruises.
    [Show full text]
  • Identification and Classification of Known and Putative Antimicrobial Compounds Produced by a Wide Variety of Bacillales Species Xin Zhao1,2 and Oscar P
    Zhao and Kuipers BMC Genomics (2016) 17:882 DOI 10.1186/s12864-016-3224-y RESEARCH ARTICLE Open Access Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species Xin Zhao1,2 and Oscar P. Kuipers1* Abstract Background: Gram-positive bacteria of the Bacillales are important producers of antimicrobial compounds that might be utilized for medical, food or agricultural applications. Thanks to the wide availability of whole genome sequence data and the development of specific genome mining tools, novel antimicrobial compounds, either ribosomally- or non-ribosomally produced, of various Bacillales species can be predicted and classified. Here, we provide a classification scheme of known and putative antimicrobial compounds in the specific context of Bacillales species. Results: We identify and describe known and putative bacteriocins, non-ribosomally synthesized peptides (NRPs), polyketides (PKs) and other antimicrobials from 328 whole-genome sequenced strains of 57 species of Bacillales by using web based genome-mining prediction tools. We provide a classification scheme for these bacteriocins, update the findings of NRPs and PKs and investigate their characteristics and suitability for biocontrol by describing per class their genetic organization and structure. Moreover, we highlight the potential of several known and novel antimicrobials from various species of Bacillales. Conclusions: Our extended classification of antimicrobial compounds demonstrates that Bacillales provide a rich source of novel antimicrobials that can now readily be tapped experimentally, since many new gene clusters are identified. Keywords: Antimicrobials, Bacillales, Bacillus, Genome-mining, Lanthipeptides, Sactipeptides, Thiopeptides, NRPs, PKs Background (bacteriocins) [4], as well as non-ribosomally synthesized Most of the species of the genus Bacillus and related peptides (NRPs) and polyketides (PKs) [5].
    [Show full text]
  • Antibiotic Resistance and Biofilm Production in Catalase-Positive Gram-Positive Cocci Isolated from Brazilian Pasteurized Milk M.A.A
    Journal of Food Quality and Hazards Control 7 (2020) 67-74 Antibiotic Resistance and Biofilm Production in Catalase-Positive Gram-Positive Cocci Isolated from Brazilian Pasteurized Milk M.A.A. Machado 1, W.A. Ribeiro 1, V.S. Toledo 1, G.L.P.A. Ramos 2, H.C. Vigoder 1, J.S. Nascimento 1* 1. Laboratório de Microbiologia, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil 2. Laboratório de Higiene e Microbiologia de Alimentos, Faculdade de Farmácia, Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil HIGHLIGHTS Kocuria varians, Macrococcus caseolyticus, and Staphylococcus epidermidis were detected in pasteurized milk samples. Four isolates of K. varians exhibited multidrug resistant phenotype. Five isolates of K. varians and one isolate of S. epidermidis were biofilm producers. Antibiotic-resistance of the isolates highlights the possible role of milk as a reservoir of resistance genes. Article type ABSTRACT Original article Background: Milk is a reservoir for several groups of microorganisms, which may pose Keywords health risks. The aim of this work was to assess the antibiotic resistance and biofilm pro- Gram-Positive Cocci duction in catalase-positive Gram-positive cocci isolated from Brazilian pasteurized milk. Drug Resistance, Microbial Biofilms Methods: The bacteria were isolated using Baird-Parker agar and identified by Matrix- Milk Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF) mass spectrometer. Brazil Disk diffusion technique was used to evaluate antimicrobial susceptibility. For qualitative evaluation of biofilm production, the growth technique was used on Congo Red Agar. Article history Received: 16 Apr 2020 Results: Totally, 33 out of 64 isolates were identified, including Staphylococcus Revised: 18 May 2020 epidermidis (n=3; 4.7%), Macrococcus caseolyticus (n=14; 21.9%), and Kocuria varians Accepted: 22 May 2020 (n=16; 25%).
    [Show full text]
  • The Porcine Nasal Microbiota with Particular Attention to Livestock-Associated Methicillin-Resistant Staphylococcus Aureus in Germany—A Culturomic Approach
    microorganisms Article The Porcine Nasal Microbiota with Particular Attention to Livestock-Associated Methicillin-Resistant Staphylococcus aureus in Germany—A Culturomic Approach Andreas Schlattmann 1, Knut von Lützau 1, Ursula Kaspar 1,2 and Karsten Becker 1,3,* 1 Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; [email protected] (A.S.); [email protected] (K.v.L.); [email protected] (U.K.) 2 Landeszentrum Gesundheit Nordrhein-Westfalen, Fachgruppe Infektiologie und Hygiene, 44801 Bochum, Germany 3 Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany * Correspondence: [email protected]; Tel.: +49-3834-86-5560 Received: 17 March 2020; Accepted: 2 April 2020; Published: 4 April 2020 Abstract: Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) remains a serious public health threat. Porcine nasal cavities are predominant habitats of LA-MRSA. Hence, components of their microbiota might be of interest as putative antagonistically acting competitors. Here, an extensive culturomics approach has been applied including 27 healthy pigs from seven different farms; five were treated with antibiotics prior to sampling. Overall, 314 different species with standing in nomenclature and 51 isolates representing novel bacterial taxa were detected. Staphylococcus aureus was isolated from pigs on all seven farms sampled, comprising ten different spa types with t899 (n = 15, 29.4%) and t337 (n = 10, 19.6%) being most frequently isolated. Twenty-six MRSA (mostly t899) were detected on five out of the seven farms. Positive correlations between MRSA colonization and age and colonization with Streptococcus hyovaginalis, and a negative correlation between colonization with MRSA and Citrobacter spp.
    [Show full text]
  • Genome Diversity of Spore-Forming Firmicutes MICHAEL Y
    Genome Diversity of Spore-Forming Firmicutes MICHAEL Y. GALPERIN National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 ABSTRACT Formation of heat-resistant endospores is a specific Vibrio subtilis (and also Vibrio bacillus), Ferdinand Cohn property of the members of the phylum Firmicutes (low-G+C assigned it to the genus Bacillus and family Bacillaceae, Gram-positive bacteria). It is found in representatives of four specifically noting the existence of heat-sensitive vegeta- different classes of Firmicutes, Bacilli, Clostridia, Erysipelotrichia, tive cells and heat-resistant endospores (see reference 1). and Negativicutes, which all encode similar sets of core sporulation fi proteins. Each of these classes also includes non-spore-forming Soon after that, Robert Koch identi ed Bacillus anthracis organisms that sometimes belong to the same genus or even as the causative agent of anthrax in cattle and the species as their spore-forming relatives. This chapter reviews the endospores as a means of the propagation of this orga- diversity of the members of phylum Firmicutes, its current taxon- nism among its hosts. In subsequent studies, the ability to omy, and the status of genome-sequencing projects for various form endospores, the specific purple staining by crystal subgroups within the phylum. It also discusses the evolution of the violet-iodine (Gram-positive staining, reflecting the pres- Firmicutes from their apparently spore-forming common ancestor ence of a thick peptidoglycan layer and the absence of and the independent loss of sporulation genes in several different lineages (staphylococci, streptococci, listeria, lactobacilli, an outer membrane), and the relatively low (typically ruminococci) in the course of their adaptation to the saprophytic less than 50%) molar fraction of guanine and cytosine lifestyle in a nutrient-rich environment.
    [Show full text]
  • Aerobic Gram-Positive Bacteria
    Aerobic Gram-Positive Bacteria Abiotrophia defectiva Corynebacterium xerosisB Micrococcus lylaeB Staphylococcus warneri Aerococcus sanguinicolaB Dermabacter hominisB Pediococcus acidilactici Staphylococcus xylosusB Aerococcus urinaeB Dermacoccus nishinomiyaensisB Pediococcus pentosaceusB Streptococcus agalactiae Aerococcus viridans Enterococcus avium Rothia dentocariosaB Streptococcus anginosus Alloiococcus otitisB Enterococcus casseliflavus Rothia mucilaginosa Streptococcus canisB Arthrobacter cumminsiiB Enterococcus durans Rothia aeriaB Streptococcus equiB Brevibacterium caseiB Enterococcus faecalis Staphylococcus auricularisB Streptococcus constellatus Corynebacterium accolensB Enterococcus faecium Staphylococcus aureus Streptococcus dysgalactiaeB Corynebacterium afermentans groupB Enterococcus gallinarum Staphylococcus capitis Streptococcus dysgalactiae ssp dysgalactiaeV Corynebacterium amycolatumB Enterococcus hiraeB Staphylococcus capraeB Streptococcus dysgalactiae spp equisimilisV Corynebacterium aurimucosum groupB Enterococcus mundtiiB Staphylococcus carnosusB Streptococcus gallolyticus ssp gallolyticusV Corynebacterium bovisB Enterococcus raffinosusB Staphylococcus cohniiB Streptococcus gallolyticusB Corynebacterium coyleaeB Facklamia hominisB Staphylococcus cohnii ssp cohniiV Streptococcus gordoniiB Corynebacterium diphtheriaeB Gardnerella vaginalis Staphylococcus cohnii ssp urealyticusV Streptococcus infantarius ssp coli (Str.lutetiensis)V Corynebacterium freneyiB Gemella haemolysans Staphylococcus delphiniB Streptococcus infantarius
    [Show full text]
  • The Evolution of a Gene Cluster Containing a Plant-Like Protein In
    EVOLUTION OF A PLANT-LIKE GENE ANCIENTLY ACQUIRED AS PART OF A GENOMIC ISLAND IN XANTHOMONAS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MᾹNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MOLECULAR BIOSCIENCES AND BIOENGINEERING May 2012 BY KEVIN SCHNEIDER DISSERTATION COMMITTEE GERNOT PRESTING, CHAIRPERSON ANNE ALVAREZ YANGRAE CHO GUYLAINE POISSON SEAN CALLAHAN Dedicated to my Parents! i Acknowledgments I want to give my biggest thanks to Dr Gernot Presting for providing me with so many opportunities during my career at UH Manoa. The teaching assistantship I received on an unexpected short notice that began my PhD to working and publishing on exciting and interesting topics from corn centromeres to bacterial genomes. I am forever grateful for the time, patience, and energy he has spent mentoring me. This work would not have been possible without Dr Anne Alvarez. She has provided not only her knowledge of plant pathology, but also her collection of bacterial strains that the majority of my research required. Also, I thank Asoka Da Silva whom has provided his expertise and skills to culture and purify the hundreds of strains used in this study. The analysis in this work would not have begun without the initial phylogenomic analysis of Arabidopsis completed by Aren Ewing. His work laid the foundation to stick with studying bacterial genomic evolution in light of all of the wonderful work to study the genomic evolution of the centromeres of Zea mays in our lab. I also thank all of my lab mates Anupma Sharma, Thomas Wolfgruber, Jamie Allison, Jeffrey Lai, Megan Nakashima, Ronghui Xu, Zidian Xie, Grace Kwan, Margaret Ruzicka, Krystle Salazar and Erin Mitsunaga from the past and the present for their advice, help, discussions and their friendship and casual chit-chat.
    [Show full text]