Conception Formelle

Total Page:16

File Type:pdf, Size:1020Kb

Conception Formelle Conception formelle Frédéric Herbreteau Slides by Igor Walukiewicz, thanks! Factorial(x) := if x=0 then 1 else x*Factorial(x-1) Is this program correct? Some examples where it matters Therac-25 Radiation Overdosing (1985-87) • Radiation machine for treatement of cancer patients • At least 6 cases of overdoses in period 1985-1987 • Three death cases • Source: Design error in the control software (race condition) AT&T Telephone Network Outage (1990) • 9 hours otage of large parts of US telephone network • Cost: several 100 million US$ • Source: software flaw (wrong interpretation of break statement in C) Ariane 5 Crash (1996) • Crash of Ariane 5 missle in June 1996 • Cost: more than 500 milion US$ • Source: software flaw • A data conversion from 64-bit floating to 16-bit signed integer Pentium FDIV Bug (1994) • FDIV= floating point division unit • 1 in 9 bilion floating point dividers would produce inacurate results • Cost: 500 million in replaced processors • Source flaw in a division table BOEING 737-MAX (2019) • 356 morts (2 crashes) • coût en dizaines de milliards de dollars • problème de design du “flight control software (MCAS)” (et autre) Why it is difficult to verify computer systems? •Analog systems are continuous •Digital systems are not •Big number of components interacting together Some analysis “The role of software in recent Aerospace Accidents” Nancy G. Leveson Aeronautic and Astronautic Department MIT Accidents analysed •Explosion of Ariane 5 •Loss of Mars Climate Orbiter •Destruction of Mars Polar Lander •Placing Milstar satellite in an incorrect orbit •American Airlines B-757 crash into a mountain near Cali •Collision of Lufthansa A320 into earth bank in Warsaw •Crash of China Airlines A320 near Nagoya •Overconfidence on digital •Flawed review process automation •Revision for undesired •Not understanding the risks behaviours is very productive associated to software •Inadequate safety engineering •Almost all errors were due to flaws in specification and not in •50%-70% safety decisions are coding made in early stages of development •Reliability techniques (like redundancy) not effective for •Software reuse without safety software analysis •Assuming the risk decreases •Unnecessary complexity of over time software •Inadequate specifications Formal verification at work The transputer project • T9000 transputer (still widely used: GPS) • Formal development of floating- point unit • Formalisation revealed problems with the standard • Diagnostic information should be propagated, but sometimes it was impossible. • Verification with Hoare logic revealed errors (on very small class of vectors) • Formal development turned out to be faster • Queen’s Award for Technology Achievement in 1990 Signalling system for RER • Increase traffic by 25% preserving safety levels • 21K of Modula-2 code have been formally specified and verified using B method • Later the same method has been used for line 14 and Roissy Shuttle • No unit test where preformed, just some global tests B method AAMP Microprocessor • AAMP5 widely used processor (Rockwell Collins) • .5 M transistors • Completely verified in PVS (300 hours per instruction) • Later verified AAMP-FV showing dramatic reduction in verification costs • National Security Agency certification for use in cryptographic applications. Airbus • Development of Level A controllers for A340/600 series (Esterel technologies) • 70% of code generated automatically • Quick management of requirements changes • Major productivity improvement (each new project requires twice as much software as its predecessor) • SCADE has been adopted for A380 for most of on-board computers. What are formal methods Specification + Analysis of the system Customer needs Requirements (safety,…) Specification Source code Machine code Specification Giving precise statement of what the system must do while avoiding constraints on how it is achieved Ex: Everybody should be happy Many observers have noticed that the process of developing a formal specification is often as effective for finding errors as the verification effort in which the specification is to be used. Analysing system properties Formal methods allow to reason about systems Formal specification is a mathematical object. One can analyse it, manipulate it, reason about it A model of the system that suppresses implementation detail allows the architect to concentrate on the analyses and decisions that are most crucial. Problem: formal specifications are typically large (thousands of lines) Verification is impossible (algorithmically) Halting problem for Turing machines Alain Turing (1912-1954) Mathematician, Logician, crypto-specialist Computational model: Turing machine Program termination is not decidable: There is no algorithm to decide if a TM stops on the empty input Methods of system verification Peer reviewing • Manual code inspection. • On average 60% of errors caught. • subtle errors (concurrency, algorithm defects) hard to catch. • Used in 80% of all software engineering projects. • Refinement of this method: parallel developpement Testing 30%-50% of development cost. Programmers have to provide insights what to test, and what should be system response. When to stop testing? Formal specifications help here: One of the most cost-effective uses of specifications New tools provide as good coverage as manual test cases. They avoid programming test cases Get them as soon as you can Theorem proving Doing large proofs semi-automatically Model Checking Model checking flow-graph Requiremen The ACM Turing Award in 2007 for model-checking Some Turing Award Winners •Edsger Dijkstra (1972) •Donald Knuth (1974) •Michael Rabin and Dana Scott (1976) •Tony Hoare (1980) •Thompson & Ritchie (1983) •Hopcroft & Trajan (1986) •Rivest, Shamir, Adleman (2002) The ACM Turing Award in 2007 Edmund M. Clarke Jr. (CMU USA) Allen E. Emerson (U. of Texas at Austin, USA) Joseph Sifakis (IMAG, Grenoble) Jury justification: For their roles in developing Model-Checking into a highly effective verification technology, widely adopted in the hardware and software industries Advantages Makes formal techniques available to broad audience Automatic procedure taking on an input: • a finite state model • and a set of required properties A transition system Properties The program terminates The program does not terminate The computed value is correct A sequence of events is correct Mutual exclusion No deadlock No starvation No starvation Model Checker Yes No Insufficient memory Counterexample Advantages •Widely applicable •Allows for partial verification •Automatic •Produces counterexamples •Sound and interesting mathematical foundations Disadvantages •Analyses an abstraction of the system •Focused on control an not data oriented applications •No guarantee about the completeness of the results •Impossible to generalise Milestones towards MC Mathematical program correctness: Turing, Church (1949) Syntax based technique for sequential programs Floyd Hoare (69) Dikstra, Hoare: invariant method and program refinement (70ties) Program logics •Algorithmic and dynamic logics •Hoare logics •Linear temporal logic Model checking using temporal logics Clarke Emersion 1981, Sifakis at the same time First appearance of MEC (Alaiwan, Arnold 1983) Who uses formal methods? • Microsoft Azure (cloud computing) • Amazon S3 (cloud computing) • Intel (processors) • Airbus (aircrafts & space) • Dassault (aircrafts, systems 3DS) • ConsenSys (blockchain, smart contracts) • Oracle (“Parfait” static analysis) • Framatome (nuclear reactors) • Bosch (automotive) • … Any verification using model-based techniques is only as good as the model of the system Conclusions Formal methods are not silver bullet to eliminate errors They are not beyond budget of system developers They are the only practical means to demonstrate the absence of undesired behaviour The process of developing a specification is often the most valuable phase Leading hardware developers continue to apply model chekcing and proof technology In spite of their successes, verification technology and formal methods have not seen widespread adoption as a routine part of systems development practice, except, arguably, in the development of critical systems in certain domains. Indeed, we expect diffusion of rigorous verification and design technology to take place gradually, and not result in their explicit adoption as a distinct technology Hoare's vision: computer software as a most reliable component in any system it controls, and no one can blame the software anymore Plan of the course 1. Test vs. Model-checking vs. Proof 2. Formal modelling 3. Linear Temporal Logic (LTL) 4. LTL model-checking algorithms 5. Verification of algorithms with TLA+ 6. Fairness 7. Incremental modelling 8. Verification of infinite state algorithms.
Recommended publications
  • Edsger Dijkstra: the Man Who Carried Computer Science on His Shoulders
    INFERENCE / Vol. 5, No. 3 Edsger Dijkstra The Man Who Carried Computer Science on His Shoulders Krzysztof Apt s it turned out, the train I had taken from dsger dijkstra was born in Rotterdam in 1930. Nijmegen to Eindhoven arrived late. To make He described his father, at one time the president matters worse, I was then unable to find the right of the Dutch Chemical Society, as “an excellent Aoffice in the university building. When I eventually arrived Echemist,” and his mother as “a brilliant mathematician for my appointment, I was more than half an hour behind who had no job.”1 In 1948, Dijkstra achieved remarkable schedule. The professor completely ignored my profuse results when he completed secondary school at the famous apologies and proceeded to take a full hour for the meet- Erasmiaans Gymnasium in Rotterdam. His school diploma ing. It was the first time I met Edsger Wybe Dijkstra. shows that he earned the highest possible grade in no less At the time of our meeting in 1975, Dijkstra was 45 than six out of thirteen subjects. He then enrolled at the years old. The most prestigious award in computer sci- University of Leiden to study physics. ence, the ACM Turing Award, had been conferred on In September 1951, Dijkstra’s father suggested he attend him three years earlier. Almost twenty years his junior, I a three-week course on programming in Cambridge. It knew very little about the field—I had only learned what turned out to be an idea with far-reaching consequences. a flowchart was a couple of weeks earlier.
    [Show full text]
  • Simula Mother Tongue for a Generation of Nordic Programmers
    Simula! Mother Tongue! for a Generation of! Nordic Programmers! Yngve Sundblad HCI, CSC, KTH! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Inspired by Ole-Johan Dahl, 1931-2002, and Kristen Nygaard, 1926-2002" “From the cold waters of Norway comes Object-Oriented Programming” " (first line in Bertrand Meyer#s widely used text book Object Oriented Software Construction) ! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Simula concepts 1967" •# Class of similar Objects (in Simula declaration of CLASS with data and actions)! •# Objects created as Instances of a Class (in Simula NEW object of class)! •# Data attributes of a class (in Simula type declared as parameters or internal)! •# Method attributes are patterns of action (PROCEDURE)! •# Message passing, calls of methods (in Simula dot-notation)! •# Subclasses that inherit from superclasses! •# Polymorphism with several subclasses to a superclass! •# Co-routines (in Simula Detach – Resume)! •# Encapsulation of data supporting abstractions! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Simula example BEGIN! REF(taxi) t;" CLASS taxi(n); INTEGER n;! BEGIN ! INTEGER pax;" PROCEDURE book;" IF pax<n THEN pax:=pax+1;! pax:=n;" END of taxi;! t:-NEW taxi(5);" t.book; t.book;" print(t.pax)" END! Output: 7 ! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad!
    [Show full text]
  • Submission Data for 2020-2021 CORE Conference Ranking Process International Symposium on Formal Methods (Was Formal Methods Europe FME)
    Submission Data for 2020-2021 CORE conference Ranking process International Symposium on Formal Methods (was Formal Methods Europe FME) Ana Cavalcanti, Stefania Gnesi, Lars-Henrik Eriksson, Nico Plat, Einar Broch Johnsen, Maurice ter Beek Conference Details Conference Title: International Symposium on Formal Methods (was Formal Methods Europe FME) Acronym : FM Rank: A Data and Metrics Google Scholar Metrics sub-category url: https://scholar.google.com.au/citations?view_op=top_venues&hl=en&vq=eng_theoreticalcomputerscienceposition in sub-category: 20+Image of top 20: ACM Metrics Not Sponsored by ACM Aminer Rank 1 Aminer Rank: 28Name in Aminer: World Congress on Formal MethodsAcronym or Shorthand: FMh-5 Index: 17CCF: BTHU: âĂŞ Top Aminer Cites: http://portal.core.edu.au/core/media/conf_submissions_citations/extra_info1804_aminer_top_cite.png Other Rankings Not aware of any other Rankings Conferences in area: 1. Formal Methods Symposium (FM) 2. Software Engineering and Formal Methods (SEFM), Integrated Formal Methods (IFM) 3. Fundamental Approaches to Software Engineering (FASE), NASA Formal Methods (NFM), Runtime Verification (RV) 4. Formal Aspects of Component Software (FACS), Automated Technology for Verification and Analysis (ATVA) 5. International Conference on Formal Engineering Methods (ICFEM), FormaliSE, Formal Methods in Computer-Aided Design (FMCAD), Formal Methods for Industrial Critical Systems (FMICS) 6. Brazilian Symposium on Formal Methods (SBMF), Theoretical Aspects of Software Engineering (TASE) 7. International Symposium On Leveraging Applications of Formal Methods, Verification and Validation (ISoLA) Top People Publishing Here name: Frank de Boer justification: h-index: 42 ( https://www.cwi.nl/people/frank-de-boer) Frank S. de Boer is senior researcher at the CWI, where he leads the research group on Formal Methods, and Professor of Software Correctness at Leiden University, The Netherlands.
    [Show full text]
  • The Standard Model for Programming Languages: the Birth of A
    The Standard Model for Programming Languages: The Birth of a Mathematical Theory of Computation Simone Martini Department of Computer Science and Engineering, University of Bologna, Italy INRIA, Sophia-Antipolis, Valbonne, France http://www.cs.unibo.it/~martini [email protected] Abstract Despite the insight of some of the pioneers (Turing, von Neumann, Curry, Böhm), programming the early computers was a matter of fiddling with small architecture-dependent details. Only in the sixties some form of “mathematical program development” will be in the agenda of some of the most influential players of that time. A “Mathematical Theory of Computation” is the name chosen by John McCarthy for his approach, which uses a class of recursively computable functions as an (extensional) model of a class of programs. It is the beginning of that grand endeavour to present programming as a mathematical activity, and reasoning on programs as a form of mathematical logic. An important part of this process is the standard model of programming languages – the informal assumption that the meaning of programs should be understood on an abstract machine with unbounded resources, and with true arithmetic. We present some crucial moments of this story, concluding with the emergence, in the seventies, of the need of more “intensional” semantics, like the sequential algorithms on concrete data structures. The paper is a small step of a larger project – reflecting and tracing the interaction between mathematical logic and programming (languages), identifying some
    [Show full text]
  • Compsci 6 Programming Design and Analysis
    CompSci 6 Programming Design and Analysis Robert C. Duvall http://www.cs.duke.edu/courses/cps006/fall04 http://www.cs.duke.edu/~rcd CompSci 6 : Spring 2005 1.1 What is Computer Science? Computer science is no more about computers than astronomy is about telescopes. Edsger Dijkstra Computer science is not as old as physics; it lags by a couple of hundred years. However, this does not mean that there is significantly less on the computer scientist's plate than on the physicist's: younger it may be, but it has had a far more intense upbringing! Richard Feynman http://www.wordiq.com CompSci 6 : Spring 2005 1.2 Scientists and Engineers Scientists build to learn, engineers learn to build – Fred Brooks CompSci 6 : Spring 2005 1.3 Computer Science and Programming Computer Science is more than programming The discipline is called informatics in many countries Elements of both science and engineering Elements of mathematics, physics, cognitive science, music, art, and many other fields Computer Science is a young discipline Fiftieth anniversary in 1997, but closer to forty years of research and development First graduate program at CMU (then Carnegie Tech) in 1965 To some programming is an art, to others a science, to others an engineering discipline CompSci 6 : Spring 2005 1.4 What is Computer Science? What is it that distinguishes it from the separate subjects with which it is related? What is the linking thread which gathers these disparate branches into a single discipline? My answer to these questions is simple --- it is the art of programming a computer.
    [Show full text]
  • Toward a Mathematical Semantics for Computer Languages
    (! 1 J TOWARD A MATHEMATICAL SEMANTICS FOR COMPUTER LANGUAGES by Dana Scott and - Christopher Strachey Oxford University Computing Laboratory Programming Research Group-Library 8-11 Keble Road Oxford OX, 3QD Oxford (0865) 54141 Oxford University Computing Laboratory Programming Research Group tI. cr• "';' """, ":.\ ' OXFORD UNIVERSITY COMPUTING LABORATORY PROGRAMMING RESEARCH GROUP ~ 4S BANBURY ROAD \LJ OXFORD ~ .. 4 OCT 1971 ~In (UY'Y L TOWARD A ~ATHEMATICAL SEMANTICS FOR COMPUTER LANGUAGES by Dana Scott Princeton University and Christopher Strachey Oxford University Technical Monograph PRG-6 August 1971 Oxford University Computing Laboratory. Programming Research Group, 45 Banbury Road, Oxford. ~ 1971 Dana Scott and Christopher Strachey Department of Philosophy, Oxford University Computing Laboratory. 1879 lIall, Programming Research Group. Princeton University, 45 Banbury Road. Princeton. New Jersey 08540. Oxford OX2 6PE. This pape r is also to appear in Fl'(.'ceedinBs 0;- the .';y-,;;;o:illT:: on ComputeT's and AutoJ7'ata. lo-licroloo'ave Research Institute Symposia Series Volume 21. Polytechnic Institute of Brooklyn. and appears as a Technical Monograph by special aJ"rangement ...·ith the publishers. RefeJ"~nces in the Ii terature should be:- made to the _"!'OL·,-,',~;r:gs, as the texts are identical and the Symposia Sl?ries is gcaerally available in libraries. ABSTRACT Compilers for high-level languages aTe generally constructed to give the complete translation of the programs into machme language. As machines merely juggle bit patterns, the concepts of the original language may be lost or at least obscured during this passage. The purpose of a mathematical semantics is to give a correct and meaningful correspondence between programs and mathematical entities in a way that is entirely independent of an implementation.
    [Show full text]
  • Why Mathematical Proof?
    Why Mathematical Proof? Dana S. Scott, FBA, FNAS University Professor Emeritus Carnegie Mellon University Visiting Scholar University of California, Berkeley NOTICE! The author has plagiarized text and graphics from innumerable publications and sites, and he has failed to record attributions! But, as this lecture is intended as an entertainment and is not intended for publication, he regards such copying, therefore, as “fair use”. Keep this quiet, and do please forgive him. A Timeline for Geometry Some Greek Geometers Thales of Miletus (ca. 624 – 548 BC). Pythagoras of Samos (ca. 580 – 500 BC). Plato (428 – 347 BC). Archytas (428 – 347 BC). Theaetetus (ca. 417 – 369 BC). Eudoxus of Cnidus (ca. 408 – 347 BC). Aristotle (384 – 322 BC). Euclid (ca. 325 – ca. 265 BC). Archimedes of Syracuse (ca. 287 – ca. 212 BC). Apollonius of Perga (ca. 262 – ca. 190 BC). Claudius Ptolemaeus (Ptolemy)(ca. 90 AD – ca. 168 AD). Diophantus of Alexandria (ca. 200 – 298 AD). Pappus of Alexandria (ca. 290 – ca. 350 AD). Proclus Lycaeus (412 – 485 AD). There is no Royal Road to Geometry Euclid of Alexandria ca. 325 — ca. 265 BC Euclid taught at Alexandria in the time of Ptolemy I Soter, who reigned over Egypt from 323 to 285 BC. He authored the most successful textbook ever produced — and put his sources into obscurity! Moreover, he made us struggle with proofs ever since. Why Has Euclidean Geometry Been So Successful? • Our naive feeling for space is Euclidean. • Its methods have been very useful. • Euclid also shows us a mysterious connection between (visual) intuition and proof. The Pythagorean Theorem Euclid's Elements: Proposition 47 of Book 1 The Pythagorean Theorem Generalized If it holds for one Three triple, Similar it holds Figures for all.
    [Show full text]
  • The Origins of Structural Operational Semantics
    The Origins of Structural Operational Semantics Gordon D. Plotkin Laboratory for Foundations of Computer Science, School of Informatics, University of Edinburgh, King’s Buildings, Edinburgh EH9 3JZ, Scotland I am delighted to see my Aarhus notes [59] on SOS, Structural Operational Semantics, published as part of this special issue. The notes already contain some historical remarks, but the reader may be interested to know more of the personal intellectual context in which they arose. I must straightaway admit that at this distance in time I do not claim total accuracy or completeness: what I write should rather be considered as a reconstruction, based on (possibly faulty) memory, papers, old notes and consultations with colleagues. As a postgraduate I learnt the untyped λ-calculus from Rod Burstall. I was further deeply impressed by the work of Peter Landin on the semantics of pro- gramming languages [34–37] which includes his abstract SECD machine. One should also single out John McCarthy’s contributions [45–48], which include his 1962 introduction of abstract syntax, an essential tool, then and since, for all approaches to the semantics of programming languages. The IBM Vienna school [42, 41] were interested in specifying real programming languages, and, in particular, worked on an abstract interpreting machine for PL/I using VDL, their Vienna Definition Language; they were influenced by the ideas of McCarthy, Landin and Elgot [18]. I remember attending a seminar at Edinburgh where the intricacies of their PL/I abstract machine were explained. The states of these machines are tuples of various kinds of complex trees and there is also a stack of environments; the transition rules involve much tree traversal to access syntactical control points, handle jumps, and to manage concurrency.
    [Show full text]
  • Principles of Computer Science I
    Computer Science and Programming Principles of Computer Science is more than programming – The discipline is called informatics in many countries Computer Science I – Elements of both science and engineering • Scientists build to learn, engineers learn to build – Fred Brooks – Elements of mathematics, physics, cognitive science, music, art, and many other fields Computer Science is a young discipline – Fiftieth anniversary in 1997, but closer to forty years of Prof. Nadeem Abdul Hamid research and development CSC 120A - Fall 2004 – First graduate program at CMU (then Carnegie Tech) in Lecture Unit 1 1965 To some programming is an art, to others a science CSC 120A - Berry College - Fall 2004 2 What is Computer Science? CSC 120 - Course Mechanics Syllabus on Viking Web (Handouts section) What is it that distinguishes it from the Class Meetings separate subjects with which it is related? – Lectures: Mon/Wed/Fri, 10–10:50AM, SCI 107 What is the linking thread which gathers these – Labs: Thu, 2:45–4:45 PM, SCI 228 disparate branches into a single discipline? Contact My answer to these questions is simple --- it is – Office phone: (706) 368-5632 – Home phone: (706) 234-7211 the art of programming a computer. It is the art – Email: [email protected] of designing efficient and elegant methods of Office Hours: SCI 354B getting a computer to solve problems, – Mon 11-12:30, 2:30-4 theoretical or practical, small or large, simple – Tue 9-11, 2:30-4 or complex. – Wed 11-12:30 – Thu 9-11 C.A.R. (Tony) Hoare – (or by appt) CSC 120A - Berry College - Fall 2004 3 CSC 120A - Berry College - Fall 2004 4 CSC 120 – Keys to Success CSC 120 – Materials & Resources Start early; work steadily; don’t fall behind.
    [Show full text]
  • Insight, Inspiration and Collaboration
    Chapter 1 Insight, inspiration and collaboration C. B. Jones, A. W. Roscoe Abstract Tony Hoare's many contributions to computing science are marked by insight that was grounded in practical programming. Many of his papers have had a profound impact on the evolution of our field; they have moreover provided a source of inspiration to several generations of researchers. We examine the development of his work through a review of the development of some of his most influential pieces of work such as Hoare logic, CSP and Unifying Theories. 1.1 Introduction To many who know Tony Hoare only through his publications, they must often look like polished gems that come from a mind that rarely makes false steps, nor even perhaps has to work at their creation. As so often, this impres- sion is a further compliment to someone who actually adds to very hard work and many discarded attempts the final polish that makes complex ideas rel- atively easy for the reader to comprehend. As indicated on page xi of [HJ89], his ideas typically go through many revisions. The two authors of the current paper each had the honour of Tony Hoare supervising their doctoral studies in Oxford. They know at first hand his kind and generous style and will count it as an achievement if this paper can convey something of the working style of someone big enough to eschew competition and point scoring. Indeed it will be apparent from the following sections how often, having started some new way of thinking or exciting ideas, he happily leaves their exploration and development to others.
    [Show full text]
  • 1. with Examples of Different Programming Languages Show How Programming Languages Are Organized Along the Given Rubrics: I
    AGBOOLA ABIOLA CSC302 17/SCI01/007 COMPUTER SCIENCE ASSIGNMENT ​ 1. With examples of different programming languages show how programming languages are organized along the given rubrics: i. Unstructured, structured, modular, object oriented, aspect oriented, activity oriented and event oriented programming requirement. ii. Based on domain requirements. iii. Based on requirements i and ii above. 2. Give brief preview of the evolution of programming languages in a chronological order. 3. Vividly distinguish between modular programming paradigm and object oriented programming paradigm. Answer 1i). UNSTRUCTURED LANGUAGE DEVELOPER DATE Assembly Language 1949 FORTRAN John Backus 1957 COBOL CODASYL, ANSI, ISO 1959 JOSS Cliff Shaw, RAND 1963 BASIC John G. Kemeny, Thomas E. Kurtz 1964 TELCOMP BBN 1965 MUMPS Neil Pappalardo 1966 FOCAL Richard Merrill, DEC 1968 STRUCTURED LANGUAGE DEVELOPER DATE ALGOL 58 Friedrich L. Bauer, and co. 1958 ALGOL 60 Backus, Bauer and co. 1960 ABC CWI 1980 Ada United States Department of Defence 1980 Accent R NIS 1980 Action! Optimized Systems Software 1983 Alef Phil Winterbottom 1992 DASL Sun Micro-systems Laboratories 1999-2003 MODULAR LANGUAGE DEVELOPER DATE ALGOL W Niklaus Wirth, Tony Hoare 1966 APL Larry Breed, Dick Lathwell and co. 1966 ALGOL 68 A. Van Wijngaarden and co. 1968 AMOS BASIC FranÇois Lionet anConstantin Stiropoulos 1990 Alice ML Saarland University 2000 Agda Ulf Norell;Catarina coquand(1.0) 2007 Arc Paul Graham, Robert Morris and co. 2008 Bosque Mark Marron 2019 OBJECT-ORIENTED LANGUAGE DEVELOPER DATE C* Thinking Machine 1987 Actor Charles Duff 1988 Aldor Thomas J. Watson Research Center 1990 Amiga E Wouter van Oortmerssen 1993 Action Script Macromedia 1998 BeanShell JCP 1999 AngelScript Andreas Jönsson 2003 Boo Rodrigo B.
    [Show full text]
  • The Birth of a Mathematical Theory of Computation
    The Standard Model for Programming Languages: The Birth of a Mathematical Theory of Computation Simone Martini Universit`adi Bologna and INRIA Sophia-Antipolis Bologna, 27 November 2020 Happy birthday, Maurizio! 1 / 58 This workshop: Recent Developments of the Design and Implementation of Programming Languages Well, not so recent: we go back exactly 60 years! It's more a revisionist's tale. 2 / 58 This workshop: Recent Developments of the Design and Implementation of Programming Languages Well, not so recent: we go back exactly 60 years! It's more a revisionist's tale. 3 / 58 viewpoints VDOI:10.1145/2542504 Thomas Haigh Historical Reflections HISTORY AND PHILOSOPHY OF LOGIC, 2015 Actually, Turing Vol. 36, No. 3, 205–228, http://dx.doi.org/10.1080/01445340.2015.1082050 Did Not Invent Edgar G. Daylight the Computer Separating the origins of computer science and technology.Towards a Historical Notion of ‘Turing—the Father of Computer Science’ viewpoints HE 100TH ANNIVERSARY of the birth of Alan Turing was cel- EDGAR G. DAYLIGHT ebrated in 2012. The com- viewpointsputing community threw its Utrecht University, The Netherlands biggest ever birthday party. [email protected]:10.1145/2658985V TMajor events were organized around the world, including conferences or festi- vals in Princeton, Cambridge, Manches- Viewpoint Received 14 January 2015 Accepted 3 March 2015 ter, and Israel. There was a concert in Seattle and an opera in Finland. Dutch In the popular imagination, the relevance of Turing’s theoretical ideas to people producing actual machines was and French researchers built small Tur- Why Did Computer ing Machines out of Lego Mindstorms significant and appreciated by everybody involved in computing from the moment he published his 1936 paper kits.
    [Show full text]