Circumstellar Dust Created by Terrestrial Planet Formation in HD 113766 C. M. Lisse1, C. H. Chen2, M. C. Wyatt3, and A. Morlok4 Submitted to the Astrophysical Journal, 10 April 2007; Accepted 07 September 2007 1 Planetary Exploration Group, Space Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, MD 20723
[email protected] 2NOAO, 950 North Cherry Avenue, Tucson, AZ 85719
[email protected] 3Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
[email protected] 4Department of Earth and Planetary Sciences, Faculty of Science, Kobe University, Nada, Kobe 657-8501, Japan
[email protected] 46 Pages, 7 Figures, 3 Tables Key Words: astrochemistry; infrared: stars; radiation mechanisms: thermal; techniques: spectroscopic; stars: planetary systems: formation, protoplanetary disks 1 Proposed Running Title: Terrestrial Planet Dust Around HD 113766A Please address all future correspondence, reviews, proofs, etc. to: Dr. Carey M. Lisse Planetary Exploration Group, Space Department Johns Hopkins University, Applied Physics Laboratory 11100 Johns Hopkins Rd Laurel, MD 20723 240-228-0535 (office) / 240-228-8939 (fax)
[email protected] 2 ABSTRACT We present an analysis of the gas-poor circumstellar material in the HD 113766 binary system (F3/F5, ~16Myr), recently observed by the Spitzer Space Telescope. For our study we have used the infrared mineralogical model derived from observations of the Deep Impact experiment. We find the dust dominated by warm, fine (~1 um) particles, abundant in Mg-rich olivine, crystalline pyroxenes, amorphous silicates, Fe-rich sulfides, amorphous carbon, and colder water-ice. The warm dust material mix is akin to an inner main belt asteroid of S-type composition.