Publication List (25 June 2015)

Total Page:16

File Type:pdf, Size:1020Kb

Publication List (25 June 2015) Prof. Dr. Th. Henning, Max Planck Institute for Astronomy, Heidelberg Publication list (25 June 2015) Papers in refereed journals 1. Henning, Th.: The Analytical Calculation of the Second Spherical Exponential In- tegral, Astron. Nachr. 303 (1982), 125-126. 2. Henning, Th.: A Model of the 10 Micrometer Silicate Feature in the Spectra of BN-like IR-Point Sources, Astron. Nachr. 303 (1982), 117-124. 3. Henning, Th., G¨urtler,J., Dorschner, J.: Observationally-Based Infrared Efficiencies and Planck Means for Circumstellar Dust Grains, Astr. Space Sci. 94 (1983), 333- 349. 4. Henning, Th.: The Nature of the 10 and 20 Micrometer Features in Circumstellar Dust Shells, Astr. Space Sci. 97 (1983), 405-419. 5. Henning, Th., Friedemann, C., G¨urtler,J., Dorschner, J.: A Catalogue of Extremely Young Massive and Compact Infrared Objects, Astron. Nachr. 305 (1984), 67-78. 6. Henning, Th.: Parameters of Very Young and Massive Stars with Dust Shells, Astr. Space Sci. 114 (1985), 401-411. 7. G¨urtler,J., Henning, Th., Dorschner, J., Friedemann, C.: On the Properties of Very Young Massive Infrared Sources, Astron. Nachr. 306 (1985), 311-327. 8. Henning, Th., Svatos, J.: Stability of Amorphous Circumstellar Silicate Grains, Astron. Nachr. 307 (1986), 49-52. 9. Henning, Th.: Mass Loss from Very Young Massive Stars, Astron. Nachr. 307 (1986), 119-127. 10. Dorschner, J., Friedemann, C., G¨urtler,J., Henning, Th., Wagner, H.: Amorphous Bronzite { A Silicate of Astronomical Importance, MNRAS 218 (1986), 37-40. 11. Henning, Th., G¨urtler,J.: BN Objects { A Class of Very Young and Massive Stars, Astr. Space Sci. 128 (1986), 199-216. 12. Henning, Th., Stecklum, B.: Self-Regulated Star Formation and the Evolution of Stellar Systems, Astr. Space Sci. 128 (1986), 237-252. 13. Dorschner, J., Henning, Th.: Experimental Investigation of Astronomically Impor- tant Interstellar Silicates, Astr. Space Sci. 128 (1986), 47-69. 1 14. G¨urtler,J., Henning, Th.: Circumstellar Dust Shells around Very Young and Massive Stars, Astr. Space Sci. 128 (1986), 163-177. 15. Dorschner, J., Friedemann, C., Guertler, J., Henning, Th.: Optical Properties of Glassy Bronzite and the Interstellar Silicate Bands, Astron. Astrophys. 198 (1988), 223-232. 16. Henning, Th., Weidlich, U.: Temperature of Cometary Dust, Earth Moon and Plan- ets 41 (1988), 197-200. 17. Dorschner, J., Guertler, J., Henning, Th., Wagner, H.: Pyroxene Glasses { Can- didates for the Interstellar Silicate Dust Component, Astron. Nachr. 310 (1989), 303-309. 18. Henning, Th.: The Influence of Molecular Outflows from Young Stellar Objects on Molecular Clouds, Astron. Nachr. 310 (1989), 363-366. 19. Henning, Th., Pfau, W., Altenhoff, W.J.: Infrared and Radio Emission from Very Young and Massive Stellar Objects, Astron. Astrophys. 227 (1990), 542-552. 20. Chini, R., Henning, Th., Pfau, W.: Submillimetre/Millimetre Observations of AFGL 490, Astron. Astrophys. 247 (1991), 157-162. 21. G¨urtler,J., Henning, Th., Kr¨ugel,E., Chini, R.: Dust Continuum Radiation from Luminous Young Stellar Objects, Astron. Astrophys. 252 (1991), 801-811. 22. Henning, Th., Cesaroni, R., Walmsley, M., Pfau, W.: Maser Search towards Young Stellar Objects, Astron. Astrophys. Suppl. Ser. 93 (1992), 525-538. 23. Henning, Th., Chini, R., Pfau, W.: Submm/mm Observations of the Monoceros R2 Cloud Core, Astron. Astrophys. 263 (1992), 285-291. 24. Ossenkopf, V., Henning, Th., Mathis, J.S.: Constraints on Cosmic Silicates, Astron. Astrophys. 261 (1992), 567-578. 25. Preibisch, Th., Ossenkopf, V., Yorke, H.W., Henning, Th.: The Influence of Ice- Coated Grains on Protostellar Spectra, Astron. Astrophys. 279 (1993), 577-588. 26. Henning, Th., Pfau, W., Zinnecker, H., Prusti, T.: A 1.3 mm Survey for Circum- stellar Dust around Young Chamaeleon Objects, Astron. Astrophys. 276 (1993), 126-138. 27. Henning, Th., Stognienko, R.: Porous Grains and Polarization of Light: The Silicate Features, Astron. Astrophys. 280 (1993), 609-616. 28. Begemann, B., Dorschner, J., Henning, Th., Mutschke, H., Thamm, E.: A Labora- tory Approach to the Interstellar Sulfide Dust Problem, Astrophys. J. 423 (1994), L71-L74. 29. Fischer, O., Henning, Th., Yorke, H.W.: Simulation of Polarization Maps. I. Proto- stellar Envelopes, Astron. Astrophys. 284 (1994), 187-209. 2 30. Henning, Th., Launhardt, R., Steinacker, J., Thamm, E.: Cold Dust around South- ern Herbig Ae/Be Stars, Astron. Astrophys. 291 (1994), 546-556. 31. Henning, Th., Martin, K., Reimann, H.-J., Launhardt, R., Leisawitz, D., Zinnecker, H.: Multi-wavelength Study of NGC 281 A, Astron. Astrophys. 288 (1994), 282-292. 32. J¨ager,C., Mutschke, H., Begemann, B., Dorschner, J., Henning, Th.: Steps toward Interstellar Silicate Mineralogy. I. Laboratory Results of a Silicate Glass of Mean Cosmic Composition, Astron. Astrophys. 292 (1994), 641-655. 33. Mutschke, H., Begemann, B., Dorschner, J., Henning, Th.: Infrared Data of Sul- phides of Interstellar Dust Importance, Infrared Physics & Technology 35 (1994), 361-374. 34. Ossenkopf, V., Henning, Th.: Dust Opacities for Protostellar Cores, Astron. Astro- phys. 291 (1994), 943-959. 35. Stecklum, B., Henning, Th., Eckart, A., Hoffmann, R.: NIR High-Resolution Imaging of Young Stars, Infrared Physics & Technology 35 (1994), 487-492. 36. Thamm, E., Steinacker, J., Henning, Th.: Ambiguities of Parametrized Dust Disk Models for Young Stellar Objects, Astron. Astrophys. 287 (1994), 493-502. 37. Dorschner, J., Begemann, B., Henning, Th., J¨ager,C., Mutschke, H.: Steps to- ward Interstellar Silicate Mineralogy. II. Study of Mg-Fe-Silicate Glasses of Variable Composition, Astron. Astrophys. 300 (1995), 503-520. 38. Henning, Th., Sablotny, R.: Coagulation of Grains and Gas-Grain Interactions, Adv. Space Res. 16 (1995), (2)17-(2)20. 39. Henning, Th., Begemann, B., Mutschke, H., Dorschner, J.: Optical Properties of Oxide Dust Grains, Astron. Astrophys. Suppl. Ser. 112 (1995), 143-149. 40. Lenzuni, P., Gail, H.-P., Henning, Th.: Dust Evaporation in Protostellar Cores, Astrophys. J. 447 (1995), 848-862. 41. Mutschke, H., Dorschner, J., Henning, Th., J¨ager,C., Ott, U.: Facts and Artefacts in Interstellar Diamond Spectra, Astrophys. J. 454 (1995), L157-L160. 42. Sablotny, R., Kempf, S., Blum, J., Henning, Th.: Coagulation Simulations for Inter- stellar Dust Grains Using an N-particle Code, Adv. Space Res. 15 (1995), (10)55 - (10)58. 43. Stecklum, B., Eckart, A., Henning, Th., L¨owe, M.: The Companion of HR 5999 in the Near Infrared, Astron. Astrophys. 296 (1995), 463-466. 44. Stecklum, B., Henning, Th., Eckart, A., Howell, R.R., Hoare, M.G.: The Discovery of a Jetlike Feature from the Massive Star Herschel 36, Astrophys. J. 445 (1995), L153-L156. 45. Stognienko, R., Henning, Th., Ossenkopf, V.: Optical Properties of Coagulated Par- ticles, Astron. Astrophys. 296 (1995), 797-809. 3 46. Ageorges, N., Fischer, O., Stecklum, B., Eckart, A., Henning, Th.: The Chamaeleon Infrared Nebula: A Polarization Study with High Angular Resolution, Astrophys. J. 463 (1996), L101-L104. 47. Begemann, B., Dorschner, J., Henning, Th., Mutschke, H.: Optical Properties of Glassy SiS2 and the 21-µm Feature, Astrophys. J. 464 (1996), L195-L198. 48. Blum, J., Wurm, G., Kempf, S., Henning, Th.: The Brownian Motion of Dust Particles in the Solar Nebula { An Experimental Approach to the Problem of Pre- planetary Dust Aggregation, Icarus 124 (1996), 441-451. 49. Chan, J.S., Henning, Th., Schreyer, K.: A Catalogue of Massive Young Stellar Ob- jects, Astron. Astrophys. Suppl. Ser. 115 (1996), 285-294. 50. Fischer, O., Henning, Th., Yorke, H.W.: Simulation of Polarization Maps. II. The Circumstellar Environment of Pre-main Sequence Objects, Astron. Astrophys. 308 (1996), 863-885. 51. G¨urtler,J., K¨ompe, C., Henning, Th.: Observing and Modelling Envelopes of Post- AGB Stars, Astron. Astrophys. 305 (1996), 878-886. 52. G¨urtler,J., Henning, Th., K¨ompe, C., Pfau, W., Kr¨atschmer, W., Lemke, D.: De- tection of an Absorption Feature at the Position of the 4.27-µm Band of Solid CO2, Astron. Astrophys. 315 (1996), L189-L192. 53. Henning, Th., Stognienko, R.: Dust Opacities for Protoplanetary Accretion Disks { Influence of Dust Aggregates, Astron. Astrophys. 311 (1996), 291-303. 54. Henning, Th., Chan, S.J., Assendorp, R.: The Nature of Objects with a 21 µm Feature, Astron. Astrophys. 312 (1996), 511-520. 55. Kozasa, T., Dorschner, J., Henning, Th., Stognienko, R.: Formation of SiC Grains and the 11.3 µm Feature in Circumstellar Envelopes of Carbon Stars, Astron. As- trophys. 307 (1996), 551-560. 56. Michel, B., Henning, Th., Stognienko, R., Rouleau, F.: Extinction Properties of Dust Grains: A New Computational Technique, Astrophys. J. 468 (1996), 834-841. 57. Schnaiter, M., Mutschke, H., Henning, Th., Lindackers, D., Strecker, M., Roth, P.: Ultraviolet Spectroscopy of Matrix-Isolated Amorphous Carbon Particles, Astrophys. J. 464 (1996), L187-L190. + 58. Schreyer, K., Henning, Th., K¨ompe, C., Harjunp¨a¨a,P.: NH3 and HCO towards Luminous IRAS Sources, Astron. Astrophys. 306 (1996), 267-277. 59. Begemann, B., Dorschner, J., Henning, Th., Mutschke, H., G¨urtler,J., K¨ompe, C., Nass, R.: Aluminum Oxide and the Opacity of Oxygen-rich Circumstellar Dust in the 12-17-µm Range, Astrophys. J. 476 (1997), 199-208. 60. Menshchikov, A.B., Henning, Th.: Radiative Transfer in Circumstellar Disks, Astron. Astrophys. 318 (1997), 879-907. 4 61. Osterloh, M., Henning, Th., Launhardt, R.: Infrared Images and Millimeter Data of Cold Southern IRAS Sources, Astrophys. J. Suppl. Ser. 110 (1997), 71-114. 62. Rouleau, F., Henning, Th., Stognienko, R.: Constraints on the Properties of the 2175 A˚ Interstellar Feature Carrier, Astron. Astrophys. 322 (1997), 633-645. 63. Zinchenko, I., Henning, Th., Schreyer, K.: Studies of Dense Cores in Regions of Massive Star Formation. V. Structure and Kinematics of Dense Cores from Ammonia Observations, Astron. Astrophys. Suppl. Ser. 124 (1997), 385-395. 64. Bell, K.R., Cassen, P., Klahr, H.H., Henning, Th.: The Structure and Appearance of Protostellar Accretion Disks: Limits on Disk Flaring, Astrophys. J. 486 (1997), 372-387. 65. Henning, Th., Mutschke, H.: Low-temperature Infrared Properties of Cosmic Dust Analogues, Astron.
Recommended publications
  • FY08 Technical Papers by GSMTPO Staff
    AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................
    [Show full text]
  • A Radio Continuum Study of the Magellanic Clouds
    ASTRONOMY & ASTROPHYSICS JUNE II 1998, PAGE 421 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 130, 421–440 (1998) A radio continuum study of the Magellanic Clouds VII. Discrete radio sources in the Magellanic Clouds? M.D. Filipovi´c1,2,3,R.F.Haynes3,1,G.L.White1, and P.A. Jones1 1 University of Western Sydney, Nepean, P.O. Box 10, Kingswood, NSW 2747, Australia e-mail: [email protected]; [email protected]; [email protected] 2 Max-Planck-Institut f¨ur extraterrestrische Physik, Giessenbachstraße, D-85740 Garching, Germany 3 Australia Telescope National Facility, CSIRO, P.O. Box 76, Epping, NSW 2121, Australia e-mail: mfi[email protected]; [email protected] Received November 28; accepted December 24, 1997 Abstract. We present a study of discrete radio sources in 1. Radio-continuum surveys of the Magellanic Clouds the Magellanic Clouds (MCs) using the latest large-scale radio surveys made with the Parkes radio telescope be- During the last few decades, the Magellanic Clouds (MCs) tween 1.4 and 8.55 GHz. These surveys achieved higher have been investigated over almost all of the electro- sensitivity then previous surveys done with the Parkes magnetic spectrum. Radio-continuum investigations of the telescope and so the number of discrete radio sources de- MCs started with the detection by Mills & Little (1953). tected towards the MCs has increased by factor of five. Since that time, numerous radio surveys have been un- Also, we have obtained improved positions, flux densities dertaken. These include: Mills (1955) at 85.5 MHz; Mills and radio spectral indices for all of these sources.
    [Show full text]
  • Arxiv:Astro-Ph/0605277V1 10 May 2006 Nttt Ftcnlg O NASA for Technology of Institute .H Chen H
    Spitzer IRS Spectroscopy of IRAS-Discovered Debris Disks1 C. H. Chen2,3, B. A. Sargent4, C. Bohac4, K. H. Kim4, E. Leibensperger5, M. Jura6, J. Najita2, W. J. Forrest4, D. M. Watson4, G. C. Sloan7, L. D. Keller5 ABSTRACT We have obtained Spitzer Space Telescope IRS 5.5 - 35 µm spectra of 59 main sequence stars that possess IRAS 60 µm excess. The spectra of five objects possess spectral features that are well-modeled using micron-sized grains and silicates with crystalline mass fractions 0% - 80%, consistent with T-Tauri and Herbig AeBe stars. With the exception of η Crv, these objects are young with ages 50 Myr. Our fits require the presence of a cool black body continuum, ≤ Tgr = 80 - 200 K, in addition to hot, amorphous and crystalline silicates, Tgr = 290 - 600 K, suggesting that multiple parent body belts are present in some debris disks, analogous to the asteroid and Kuiper belts in our solar system. The spectra for the majority of objects are featureless, suggesting that the emitting grains probably have radii a > 10 µm. We have modeled the excess continua using a continuous disk with a uniform surface density distribution, expected if Poynting-Robertson and stellar wind drag are the dominant grain removal processes, and using a single temperature black body, expected if the dust is located in a narrow ring around the star. The IRS spectra of many objects are better modeled with a single temperature black body, suggesting that the disks possess inner holes. The distribution of grain temperatures, based on our black body fits, peaks at Tgr = 110 - 120 K.
    [Show full text]
  • Curriculum Vitae - 24 March 2020
    Dr. Eric E. Mamajek Curriculum Vitae - 24 March 2020 Jet Propulsion Laboratory Phone: (818) 354-2153 4800 Oak Grove Drive FAX: (818) 393-4950 MS 321-162 [email protected] Pasadena, CA 91109-8099 https://science.jpl.nasa.gov/people/Mamajek/ Positions 2020- Discipline Program Manager - Exoplanets, Astro. & Physics Directorate, JPL/Caltech 2016- Deputy Program Chief Scientist, NASA Exoplanet Exploration Program, JPL/Caltech 2017- Professor of Physics & Astronomy (Research), University of Rochester 2016-2017 Visiting Professor, Physics & Astronomy, University of Rochester 2016 Professor, Physics & Astronomy, University of Rochester 2013-2016 Associate Professor, Physics & Astronomy, University of Rochester 2011-2012 Associate Astronomer, NOAO, Cerro Tololo Inter-American Observatory 2008-2013 Assistant Professor, Physics & Astronomy, University of Rochester (on leave 2011-2012) 2004-2008 Clay Postdoctoral Fellow, Harvard-Smithsonian Center for Astrophysics 2000-2004 Graduate Research Assistant, University of Arizona, Astronomy 1999-2000 Graduate Teaching Assistant, University of Arizona, Astronomy 1998-1999 J. William Fulbright Fellow, Australia, ADFA/UNSW School of Physics Languages English (native), Spanish (advanced) Education 2004 Ph.D. The University of Arizona, Astronomy 2001 M.S. The University of Arizona, Astronomy 2000 M.Sc. The University of New South Wales, ADFA, Physics 1998 B.S. The Pennsylvania State University, Astronomy & Astrophysics, Physics 1993 H.S. Bethel Park High School Research Interests Formation and Evolution
    [Show full text]
  • Annual Report 2005
    Max Planck Institute t für Astron itu o st m n ie -I k H c e n id la e l P b - e x r a g M M g for Astronomy a r x e b P l la e n id The Max Planck Society c e k H In y s m titu no Heidelberg-Königstuhl te for Astro The Max Planck Society for the Promotion of Sciences was founded in 1948. It operates at present 88 Institutes and other facilities dedicated to basic and applied research. With an annual budget of around 1.4 billion € in the year 2005, the Max Planck Society has about 12 400 employees, of which 4300 are scientists. In addition, annually about 11000 junior and visiting scientists are working at the Institutes of the Max Planck Society. The goal of the Max Planck Society is to promote centers of excellence at the fore- front of the international scientific research. To this end, the Institutes of the Society are equipped with adequate tools and put into the hands of outstanding scientists, who Annual Report have a high degree of autonomy in their scientific work. 2005 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. 2005 Public Relations Office Hofgartenstr. 8 80539 München Tel.: 089/2108-1275 or -1277 Annual Report Fax: 089/2108-1207 Internet: www.mpg.de Max Planck Institute for Astronomie K 4242 K 4243 Dossenheim B 3 D o s s E 35 e n h e N i eckar A5 m e r L a n d L 531 s t r M a a ß nn e he im B e e r r S t tr a a - K 9700 ß B e e n z - S t r a ß e Ziegelhausen Wieblingen Handschuhsheim K 9702 St eu b A656 e n s t B 37 r a E 35 ß e B e In de A5 r r N l kar ec i c M Ne k K 9702 n e a Ruprecht-Karls- ß lierb rh
    [Show full text]
  • A Statistically Significant Lack of Debris Discs in Medium Separation Binary Systems
    MNRAS 000,1{21 (2019) Preprint 12 July 2019 Compiled using MNRAS LATEX style file v3.0 A statistically significant lack of debris discs in medium separation binary systems Ben Yelverton1?, Grant M. Kennedy2;3, Kate Y. L. Su4 and Mark C. Wyatt1 1Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 2Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK 3Centre for Exoplanets and Habitability, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK 4Steward Observatory, University of Arizona, 933 N Cherry Avenue, Tucson, AZ 85721, USA Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We compile a sample of 341 binary and multiple star systems with the aim of searching for and characterising Kuiper belt-like debris discs. The sample is as- sembled by combining several smaller samples studied in previously published work with targets from two unpublished Herschel surveys. We find that 38 sys- tems show excess emission at 70 or 100 µm suggestive of a debris disc. While nine of the discs appear to be unstable to perturbations from their host binary based on a simple analysis of their inferred radii, we argue that the evidence for genuine instability is not strong, primarily because of uncertainty in the true disc radii, uncertainty in the boundaries of the unstable regions, and orbital projec- tion effects. The binary separation distributions of the disc-bearing and disc-free systems are different at a confidence level of 99:4%, indicating that binary sep- aration strongly influences the presence of detectable levels of debris.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Deep ALMA Search for CO Gas in the HD 95086 Debris Disc
    MNRAS 482, 3443–3452 (2019) doi:10.1093/mnras/sty2993 Advance Access publication 2018 November 3 Deep ALMA search for CO gas in the HD 95086 debris disc Mark Booth ,1‹ Luca Matra` ,2 Kate Y. L. Su,3,4 Quentin Kral ,5,6 Antonio S. Hales,7,8 William R. F. Dent,7 A. Meredith Hughes,9 Meredith A. MacGregor,10 Torsten Lohne¨ 1 and David J. Wilner2 1Astrophysikalisches Institut und Universitatssternwarte,¨ Friedrich-Schiller-Universitat¨ Jena, Schillergaßchen¨ 2-3, D-07745 Jena, Germany 2Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 3Steward Observatory, University of Arizona, 933 N Cherry Avenue, Tucson, AZ 85721, USA 4 Institute of Astronomy and Astrophysics, Academia Sinica, PO Box 23-141, Taipei 106, Taiwan Downloaded from https://academic.oup.com/mnras/article/482/3/3443/5159484 by guest on 30 September 2021 5Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 6LESIA, Observatoire de Paris, Universite´ PSL, CNRS, Sorbonne Universite,´ Univ. Paris Diderot, Sorbonne Paris Cite,´ 5 place Jules Janssen, F-92195 Meudon, France 7Joint ALMA Observatory, Alonso de Cordova´ 3107, Vitacura 763-0355, Santiago, Chile 8National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475, USA 9Department of Astronomy, Van Vleck Observatory, Wesleyan University, Middletown, CT 06459, USA 10Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road, Washington, DC 20015, USA Accepted 2018 October 31. Received 2018 October 30; in original form 2018 July 18 ABSTRACT One of the defining properties of debris discs compared to protoplanetary discs used to be their lack of gas, yet small amounts of gas have been found around an increasing number of debris discs in recent years.
    [Show full text]
  • A Planetary System from the Early Universe 27 March 2012
    A planetary system from the early Universe 27 March 2012 This suggests a key question: Originally, the universe contained almost no chemical elements other than hydrogen and helium. Almost all heavier elements have been produced, over time inside stars, and then flung into space as massive stars end their lives in giant explosions (supernovae). So what about planet formation under conditions like those of the very early universe, say: 13 billion years ago? If metal-rich stars are more likely to form planets, are there, conversely, stars with a metal content so low that they cannot form planets at all? And if the answer is yes, then when, throughout cosmic history, should we expect the Artist's impression of HIP 11952 and its two Jupiter-like very first planets to form? planets. Image: Timotheos Samartzidis Now a group of astronomers, including researchers from the Max-Planck-Institute for Astronomy in Heidelberg, Germany, has discovered a planetary A group of European astronomers has discovered system that could help provide answers to those an ancient planetary system that is likely to be a questions. As part of a survey targeting especially survivor from one of the earliest cosmic eras, 13 metal-poor stars, they identified two giant planets billion years ago. The system consists of the star around a star known by its catalogue number as HIP 11952 and two planets, which have orbital HIP 11952, a star in the constellation Cetus ("the periods of 290 and 7 days, respectively. Whereas whale" or "the sea monster") at a distance of about planets usually form within clouds that include 375 light-years from Earth.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • Stats2010 E Final.Pdf
    Imprint Publisher: Max-Planck-Institut für extraterrestrische Physik Editors and Layout: W. Collmar und J. Zanker-Smith Personnel 1 PERSONNEL 2010 Directors Min. Dir. J. Meyer, Section Head, Federal Ministry of Prof. Dr. R. Bender, Optical and Interpretative Astronomy, Economics and Technology also Professorship for Astronomy/Astrophysics at the Prof. Dr. E. Rohkamm, Thyssen Krupp AG, Düsseldorf Ludwig-Maximilians-University Munich Prof. Dr. R. Genzel, Infrared- and Submillimeter- Scientifi c Advisory Board Astronomy, also Prof. of Physics, University of California, Prof. Dr. R. Davies, Oxford University (UK) Berkeley (USA) (Managing Director) Prof. Dr. R. Ellis, CALTECH (USA) Prof. Dr. Kirpal Nandra, High-Energy Astrophysics Dr. N. Gehrels, NASA/GSFC (USA) Prof. Dr. G. Morfi ll, Theory, Non-linear Dynamics, Complex Prof. Dr. F. Harrison, CALTECH (USA) Plasmas Prof. Dr. O. Havnes, University of Tromsø (Norway) Prof. Dr. G. Haerendel (emeritus) Prof. Dr. P. Léna, Université Paris VII (France) Prof. Dr. R. Lüst (emeritus) Prof. Dr. R. McCray, University of Colorado (USA), Prof. Dr. K. Pinkau (emeritus) Chair of Board Prof. Dr. J. Trümper (emeritus) Prof. Dr. M. Salvati, Osservatorio Astrofi sico di Arcetri (Italy) Junior Research Groups and Minerva Fellows Dr. N.M. Förster Schreiber Humboldt Awardee Dr. S. Khochfar Prof. Dr. P. Henry, University of Hawaii (USA) Prof. Dr. H. Netzer, Tel Aviv University (Israel) MPG Fellow Prof. Dr. V. Tsytovich, Russian Academy of Sciences, Prof. Dr. A. Burkert (LMU) Moscow (Russia) Manager’s Assistant Prof. S. Veilleux, University of Maryland (USA) Dr. H. Scheingraber A. v. Humboldt Fellows Scientifi c Secretary Prof. Dr. D. Jaffe, University of Texas (USA) Dr.
    [Show full text]
  • A Blast Wave from the 1843 Eruption of Eta Carinae
    1 A Blast Wave from the 1843 Eruption of Eta Carinae Nathan Smith* *Astronomy Department, University of California, 601 Campbell Hall, Berkeley, CA 94720-3411 Very massive stars shed much of their mass in violent precursor eruptions [1] as luminous blue variables (LBVs) [2] before reaching their most likely end as supernovae, but the cause of LBV eruptions is unknown. The 19th century eruption of Eta Carinae, the prototype of these events [3], ejected about 12 solar masses at speeds of 650 km/s, with a kinetic energy of almost 1050ergs[4]. Some faster material with speeds up to 1000-2000 km/s had previously been reported [5,6,7,8] but its full distribution was unknown. Here I report observations of much faster material with speeds up to 3500-6000 km/s, reaching farther from the star than the fastest material in earlier reports [5]. This fast material roughly doubles the kinetic energy of the 19th century event, and suggests that it released a blast wave now propagating ahead of the massive ejecta. Thus, Eta Carinae’s outer shell now mimics a low-energy supernova remnant. The eruption has usually been discussed in terms of an extreme wind driven by the star’s luminosity [2,3,9,10], but fast material reported here suggests that it was powered by a deep-seated explosion rivalling a supernova, perhaps triggered by the pulsational pair instability[11]. This may alter interpretations of similar events seen in other galaxies. Eta Carinae [3] is the most luminous and the best studied among LBVs [1,2].
    [Show full text]