Insights Into Planet Formation from Debris Disks: II. Giant Impacts In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FY08 Technical Papers by GSMTPO Staff
AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................ -
Protoplanetary Disks and Debris Disks
Protoplanetary Disks and Debris Disks David J. Wilner Harvard-Smithsonian Center for Astrophysics Sean Andrews Meredith Hughes Chunhua Qi June 12, 2009 Millimeter and Submillimeter Astronomy, Taipei Image: NASA/JPL-Caltech/T. Pyle (SSC) Circumstellar Disks • inevitable consequence of gravity + angular momentum • integral part of star and planet formation paradigm 4 10 yr 105 yr 7 10 yr 108 yr 100 AU cloud collapse protostar protoplanetary disk planetary system and debris disk Marrois et al. 2008 J. Jørgensen Isella et al. 2007 Alves et al. 2001 2 This Talk • context: “protoplanetary” and “debris” disks • tool: submillimeter dust continuum emission • some recent SMA studies and implications 1. high resolution ρ Oph disk imaging survey - S. Andrews, D. Wilner, A.M. Hughes, C. Qi, K. Dullemond (arxiv:0906.0730) 2. resolved disk polarimetry: TW Hya, HD 163296 - A.M. Hughes, D. Wilner, J. Cho, D. Marrone, A. Lazarian, S. Andrews, R. Rao 3. debris disk imaging: HD 107146 - D. Wilner, J. Williams, S. Andrews, A.M. Hughes, C. Qi 3 “Protoplanetary” → “Debris” McCaughrean et al. 1995; Burrows et al. 1996 Corder et al 2009; Greaves et al. 2005 V. Pietu; Isella et al. 2007 Kalas et al. 2008; Marois et al. 2008 • age ~1 to 10 Myr • age up to Gyrs • gas and trace dust • dust and trace gas • dust particles are sticking, • planetesimals are colliding, growing into planetesimals creating new dust particles • mass 0.001 to 0.1 M • mass <1 Mmoon • mass distribution? • dust distribution → planets? • accretion/dispersal physics? • dynamical history? 4 Submillimeter Dust Emission x-ray uv optical infrared submm cm hot gas/accr. -
Astro2020 Science White Paper Modeling Debris Disk Evolution
Astro2020 Science White Paper Modeling Debris Disk Evolution Thematic Areas Planetary Systems Formation and Evolution of Compact Objects Star and Planet Formation Cosmology and Fundamental Physics Galaxy Evolution Resolved Stellar Populations and their Environments Stars and Stellar Evolution Multi-Messenger Astronomy and Astrophysics Principal Author András Gáspár Steward Observatory, The University of Arizona [email protected] 1-(520)-621-1797 Co-Authors Dániel Apai, Jean-Charles Augereau, Nicholas P. Ballering, Charles A. Beichman, Anthony Boc- caletti, Mark Booth, Brendan P. Bowler, Geoffrey Bryden, Christine H. Chen, Thayne Currie, William C. Danchi, John Debes, Denis Defrère, Steve Ertel, Alan P. Jackson, Paul G. Kalas, Grant M. Kennedy, Matthew A. Kenworthy, Jinyoung Serena Kim, Florian Kirchschlager, Quentin Kral, Sebastiaan Krijt, Alexander V. Krivov, Marc J. Kuchner, Jarron M. Leisenring, Torsten Löhne, Wladimir Lyra, Meredith A. MacGregor, Luca Matrà, Dimitri Mawet, Bertrand Mennes- son, Tiffany Meshkat, Amaya Moro-Martín, Erika R. Nesvold, George H. Rieke, Aki Roberge, Glenn Schneider, Andrew Shannon, Christopher C. Stark, Kate Y. L. Su, Philippe Thébault, David J. Wilner, Mark C. Wyatt, Marie Ygouf, Andrew N. Youdin Co-Signers Virginie Faramaz, Kevin Flaherty, Hannah Jang-Condell, Jérémy Lebreton, Sebastián Marino, Jonathan P. Marshall, Rafael Millan-Gabet, Peter Plavchan, Luisa M. Rebull, Jacob White Abstract Understanding the formation, evolution, diversity, and architectures of planetary systems requires detailed knowledge of all of their components. The past decade has shown a remarkable increase in the number of known exoplanets and debris disks, i.e., populations of circumstellar planetes- imals and dust roughly analogous to our solar system’s Kuiper belt, asteroid belt, and zodiacal dust. -
Curriculum Vitae - 24 March 2020
Dr. Eric E. Mamajek Curriculum Vitae - 24 March 2020 Jet Propulsion Laboratory Phone: (818) 354-2153 4800 Oak Grove Drive FAX: (818) 393-4950 MS 321-162 [email protected] Pasadena, CA 91109-8099 https://science.jpl.nasa.gov/people/Mamajek/ Positions 2020- Discipline Program Manager - Exoplanets, Astro. & Physics Directorate, JPL/Caltech 2016- Deputy Program Chief Scientist, NASA Exoplanet Exploration Program, JPL/Caltech 2017- Professor of Physics & Astronomy (Research), University of Rochester 2016-2017 Visiting Professor, Physics & Astronomy, University of Rochester 2016 Professor, Physics & Astronomy, University of Rochester 2013-2016 Associate Professor, Physics & Astronomy, University of Rochester 2011-2012 Associate Astronomer, NOAO, Cerro Tololo Inter-American Observatory 2008-2013 Assistant Professor, Physics & Astronomy, University of Rochester (on leave 2011-2012) 2004-2008 Clay Postdoctoral Fellow, Harvard-Smithsonian Center for Astrophysics 2000-2004 Graduate Research Assistant, University of Arizona, Astronomy 1999-2000 Graduate Teaching Assistant, University of Arizona, Astronomy 1998-1999 J. William Fulbright Fellow, Australia, ADFA/UNSW School of Physics Languages English (native), Spanish (advanced) Education 2004 Ph.D. The University of Arizona, Astronomy 2001 M.S. The University of Arizona, Astronomy 2000 M.Sc. The University of New South Wales, ADFA, Physics 1998 B.S. The Pennsylvania State University, Astronomy & Astrophysics, Physics 1993 H.S. Bethel Park High School Research Interests Formation and Evolution -
Exep Science Plan Appendix (SPA) (This Document)
ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 1 of 61 Created By: David A. Breda Date Program TDEM System Engineer Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology Dr. Nick Siegler Date Program Chief Technologist Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology Concurred By: Dr. Gary Blackwood Date Program Manager Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology EXOPDr.LANET Douglas Hudgins E XPLORATION PROGRAMDate Program Scientist Exoplanet Exploration Program ScienceScience Plan Mission DirectorateAppendix NASA Headquarters Karl Stapelfeldt, Program Chief Scientist Eric Mamajek, Deputy Program Chief Scientist Exoplanet Exploration Program JPL CL#19-0790 JPL Document No: 1735632 ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 2 of 61 Approved by: Dr. Gary Blackwood Date Program Manager, Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory Dr. Douglas Hudgins Date Program Scientist Exoplanet Exploration Program Science Mission Directorate NASA Headquarters Created by: Dr. Karl Stapelfeldt Chief Program Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology Dr. Eric Mamajek Deputy Program Chief Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. © 2018 California Institute of Technology. Government sponsorship acknowledged. Exoplanet Exploration Program JPL CL#19-0790 ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 3 of 61 Table of Contents 1. -
Solar System Debris Disk - S2D2
Solar System Debris Disk - S2D2 Image credit: NASA/JPL-Caltech Proposal for Science Themes of ESA's L2 and L3 Missions Ralf Srama Universität Stuttgart, Institut für Raumfahrtsysteme Raumfahrtzentrum Baden Württemberg Pfaffenwaldring 29, 70569 Stuttgart [email protected] Tel. +49 711 6856 2511, Fax +49 711 685 63596 http://www.irs.uni-stuttgart.de 2 Solar System Debris Disk - S2D2 Contributors Eberhard Grün, Max-Planck-Institut für Kernphysik, Heidelberg, Germany Alexander Krivov, Astrophysikalisches Institut, Univ. Jena, Germany Rachel Soja, Institut für Raumfahrtsysteme, Univ. Stuttgart, Germany Veerle Sterken, Institut für Raumfahrtsysteme, Univ. Stuttgart, Germany Zoltan Sternovsky, LASP, Univ. of Colorado, Boulder, USA. Supporters listed at http://www.dsi.uni-stuttgart.de/cosmicdust/missions/debrisdisk/index.html 3 Solar System Debris Disk - S2D2 Summary from direct observations of the parent bodies. The sizes of these parent bodies range from Understanding the conditions for planet Near Earth Asteroids with sizes of a few 10 m, formation is the primary theme of ESA's to km-sized comet nuclei, to over 1000 km- Cosmic Vision plan. Planets and left-over sized Trans-Neptunian Objects. The inner small solar system bodies are witnesses and zodiacal dust cloud has been probed by remote samples of the processing in different regions sensing instruments at visible and infrared of the protoplanetary disk. Small bodies fill the wavelengths, micro crater counts, in situ dust whole solar system from the surface of the analyzers, meteor observations and recent sun, to the fringes of the solar system, and to sample return missions. Nevertheless, the the neighboring stellar system. This is covered dynamical and compositional interrelations by the second theme of Cosmic Vision. -
Debris Dust Around Main Sequence Stars
Debris Dust Around Main Sequence Stars et al. (2013) Kalas Chris5ne H. Chen STScI, September 2016 1 Exoplanetary Systems Exoplanet Observaons Debris Disk Observaons 2 Outline • The HR 4796 System • Training Students Using the KecK LWS • Spitzer GTO Programs – A Search for Terrestrial Planetary Debris Systems and Other Planetary Debris DisKs – Spectroscopy of Protostellar, Protoplanetary and Debris DisKs – Dust Around Main Sequence A-type Stars – The Fabulous Four Debris DisKs 3 Early Debris DisK WorK Timeline • 1983 IRAS launches • 1984 Smith & Terrile spaally resolve the β Pic disK in scaered light using a coronagraph • 1986 Gille] accurately measures “infrared excess” toward Vega, Fomalhaut and β Pic from pointed IRAS observaons • 1991 Jura discovers HR 4796 IRAS infrared excess • 1991 Telesco and KnacKe discover spectroscopic evidence for silicates around β Pic • 1993 BacKman review ar5cle “Main Sequence Stars with Circumstellar Solid Material: The Vega Phenomenon” is published in Protostars and Planets III • 1998 Koerner and Jayawardhana resolve the HR 4796A disK in thermal emission using KecK/MIRLIN and Blanco/OSCIR • 2003 Spitzer launches • 2014 Gemini Planet Imager commissioning HR 4796A Infrared Excess Discovery HR 4796B Secondary Star Discovery • First es5mate for the grain temperature based on simple blacK body modeling, Tgr = 110 K with a predic5on for the distance of the grains from the star, ~40 AU • First grain size constrain (> 10 μm) based on the upper limit for the size of the system (<5” at 20 μm) • First calculaon of the Poyn5ng-Robertson drag life5me for this disK demonstrang that it must be a debris disK HR 4796A Planetary Companion Constraints • Central clearing may be created by a planetary mass object • SpecKle observaons constrain the mass to be < 0.125 M¤ The HR 4796A DisK Resolved! (Leo) HST NICMOS F1600W and F1100W coronagraphic images showing discovery of the light scaered from the dust (Schneider et al. -
Planets and Debris Disks
Planets and Debris disks F. Marzari, S. Desidera, C. Lazzoni Dept. Of Physics and Astronomy and INAF, Padova, Italy What can PLATO tell us about this complex coexistence? Some facts about debris disks About 20% of solar type stars host debris disks (Eiroa et al. 2013 with DUNES-Herschel). They are signature in most cases of planetesimal belts leftover of planet formation. Many systems harbour cold and warm components possibly related to inner (asteroidal) and outer (Kuiper Belt like) planetesimal belts. Possible ambiguity in interpretation and radial distance location. Relavant possible correlations of debris disks with: Stellar age. Some mild decline with age but small number statistics (Wyatt 2008) Metallicity or spectral type. Too poor statistics Presence of exoplanets. Some correlation but weak (in particular with small planets). Correlation with external planets discovered by direct imaging. Formation of spirals and warping if the disk is directly imaged. Epsilon Eridani: Planetesimal belts: 1 or 2 in between 1-20 AU and another one beyond 64 AU. Need of a one or more planets inside the outer belt (40 AU?) to explain the dust-free zone (debated planet at 3.5 AU) (Su et al. 2017) Moro-Martin et al. (2010) Warm dust typical location: 0-10/20 au Possible origins Mutual collisions (or giant impacts if the star is young) in a local planetesimal belt Outgassing of comets similar to JFC comets: it requires a complex dynamical configuration similar to the Patel et al. (2014): stars within 75 pc solar system PR-drag inward migration of dust from an outer belt. -
The Twofold Debris Disk Around HD 113766 A⋆
A&A 551, A134 (2013) Astronomy DOI: 10.1051/0004-6361/201220904 & c ESO 2013 Astrophysics The twofold debris disk around HD 113766 A? Warm and cold dust as seen with VLTI/MIDI and Herschel/PACS J. Olofsson1, Th. Henning1, M. Nielbock1, J.-C. Augereau2, A. Juhàsz3, I. Oliveira4, O. Absil5, and A. Tamanai6 1 Max Planck Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany e-mail: [email protected] 2 UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), UMR 5274, Grenoble, France 3 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands 4 Astronomy Department, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259, USA 5 Département d’Astrophysique, Géophysique et Océanographie, Université de Liège, 17 Allée du Six Août, 4000 Sart Tilman, Belgium 6 University Heidelberg, Kirchhoff-Institut für Physik, 69120 Heidelberg, Germany Received 13 December 2012 / Accepted 22 January 2013 ABSTRACT Context. Warm debris disks are a sub-sample of the large population of debris disks, and display excess emission in the mid-infrared. Around solar-type stars, very few objects (∼2% of all debris disks) show emission features in mid-IR spectroscopic observations that are attributed to small, warm silicate dust grains. The origin of this warm dust could be explained either by a recent catastrophic collision between several bodies or by transport from an outer belt similar to the Kuiper belt in the solar system. Aims. We present and analyze new far-IR Herschel/PACS photometric observations, supplemented by new and archival ground-based data in the mid-IR (VLTI/MIDI and VLT/VISIR), for one of these rare systems: the 10–16 Myr old debris disk around HD 113766 A. -
Debris Disks: the First 30 Years Where Will Herschel Take Us?
With thanks to M. Wyatt, P. Kalas, L. Churcher, G. Duchene, B. Sibthorpe, A. Roberge Debris Disks: the first 30 years Where will Herschel take us? Brenda Matthews Herzberg Institute of Astrophysics & University of Victoria Outline • Debris disk: definition and discovery • Incidence and evolution • Characterizing debris disks • Disks around low-mass stars (AU Mic) • Planetary connection • Herschel surveys “Debris” Disks • Debris disks are produced from the remnants of the planet formation process • Second generation dust is produced through collisional processes • The debris disk can include – Planetesimal population (though not directly observable) – Dust produced (detectable from optical centimetre) • Dust may lie in belts at various radii from the star Solar System Debris Disk Kuiper Belt Asteroid Belt Debris Disk Snapshot: Zodiacal Light Photo: Stefan Binnewies "The light at its brightest was considerably fainter than the brighter" portions of the milky way... The outline generally appeared of a " parabolic or probably elliptical form, and it would seem excentric" as regards the sun, and also inclined, though but slightly to the ecliptic."" "-- Captain Jacob 1859 Discovery: Vega Phenomenon IRAS finds excess around 20% of main sequence stars (Rhee et al. 2007) Backman & Paresce 1993" "The Big Three"" The discovery of excess emission from main sequence stars at IRAS wavelengths (Aumann et al. 1984). Circumstellar Dust Disks Smith & Terrile 1984 Beta Pic was the Rosetta Stone Debris Disk for 15 years >300 refereed papers Dust must be second generation •! Debris disks cannot be the remnants of the protoplanetary disks found around pre-main sequence stars (Backman & Paresce 1993): –! The stars are old (e.g., up to 100s of Myr, even Gyr) –! The dust is small (< 100 micron) (Harper et al. -
Astro-Ph 2006第2週
2020年 6月 第2週 新着論文サーベイ 6 月 8 日 (月曜日) [1] arxive:2006.03120 Title: ”Dual-Wavelength ALMA Observations of Dust Rings in Protoplanetary Disks” Author:Feng Long, Paola Pinilla, Gregory J. Herczeg, Sean M. Andrews, Daniel Harsono, Doug Johnstone, Enrico Ragusa, Ilaria Pascucci, David J. Wilner, Nathan Hendler, Jeff Jennings, Yao Liu, Giuseppe Lodato, Francois Menard, Gerrit van de Plas, Giovanni Dipierro Comments: accepted for publication in ApJ Subjects: Earth and Planetary Astrophysics (astro-ph.EP); Astrophysics of Galaxies (astro-ph.GA); Solar and Stellar Astrophysics (astro-ph.SR) [観測/ALMA] 原始惑星系円盤中にリング状の構造を持つDS Tau, GO Tau, DL Tau を 、ALMA で 観 測 し た 。波 長1.3 は mm と 2.9 mm の 2 バ ン ド で 、角 分 解 能 は と も0.1 に秒 角 。2 バ ン ド で リ ン グ の 端 の 位 置 は 同 じ で あ っ た 。こ の こ と を 、ダ ス ト 進化のモデルで説明した。 [2] arxive:2006.03113 Title: ”The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation” Author:J. L. Ortiz, P. Santos-Sanz, B. Sicardy, G. Benedetti-Rossi, D. Bérard, N. Morales, R. Duffard, F. Braga-Ribas, U. Hopp, C. Ries, V. Nascim- beni, F. Marzari, V. Granata, A. Pál, C. Kiss, T. Pribulla, R. Komžík, K. Hornoch, P. Pravec, P. Bacci, M. Maestripieri, L. Nerli, L. Mazzei, M. Bachini, F. Martinelli, G. Succi, F. Ciabattari, H. Mikuz, A. Carbog- nani, B. Gaehrken, S. Mottola, S. Hellmic, F. L. Rommel, E. Fernández- Valenzuela, A. Campo Bagatin, S. Cikota, A. -
Tidal Detachment and Evaporation Following an Exoplanet-Star Collision
MNRAS 000, 000–000 (0000) Preprint 24 June 2019 Compiled using MNRAS LATEX style file v3.0 Orphaned Exomoons: Tidal Detachment and Evaporation Following an Exoplanet-Star Collision Miguel Martinez1, Nicholas C. Stone1;2;3, Brian D. Metzger1 1Department of Physics and Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA 2Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel 3Department of Astronomy, University of Maryland, College Park, MD 20742, USA 24 June 2019 ABSTRACT Gravitational perturbations on an exoplanet from a massive outer body, such as the Kozai- Lidov mechanism, can pump the exoplanet’s eccentricity up to values that will destroy it via a collision or strong interaction with its parent star. During the final stages of this process, any exomoons orbiting the exoplanet will be detached by the star’s tidal force and placed into orbit around the star. Using ensembles of three and four-body simulations, we demonstrate that while most of these detached bodies either collide with their star or are ejected from the system, a substantial fraction, ∼ 10%, of such "orphaned" exomoons (with initial properties similar to those of the Galilean satellites in our own solar system) will outlive their parent exoplanet. The detached exomoons generally orbit inside the ice line, so that strong radiative heating will evaporate any volatile-rich layers, producing a strong outgassing of gas and dust, analogous to a comet’s perihelion passage. Small dust grains ejected from the exomoon may help generate an opaque cloud surrounding the orbiting body but are quickly removed by radiation blow-out.