(Symphurus Plagiusa) and the Offshore Tonguefish (S

Total Page:16

File Type:pdf, Size:1020Kb

(Symphurus Plagiusa) and the Offshore Tonguefish (S Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2003 The ecology of two estuarine-dependent tonguefishes, the blackcheek tonguefish (Symphurus plagiusa) and the offshore tonguefish (S. civitatium), in coastal Louisiana Theodore Scott wS itzer Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Oceanography and Atmospheric Sciences and Meteorology Commons Recommended Citation Switzer, Theodore Scott, "The ce ology of two estuarine-dependent tonguefishes, the blackcheek tonguefish (Symphurus plagiusa) and the offshore tonguefish (S. civitatium), in coastal Louisiana" (2003). LSU Doctoral Dissertations. 1305. https://digitalcommons.lsu.edu/gradschool_dissertations/1305 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. THE ECOLOGY OF TWO ESTUARINE-DEPENDENT TONGUEFISHES, THE BLACKCHEEK TONGUEFISH (SYMPHURUS PLAGIUSA) AND THE OFFSHORE TONGUEFISH (S. CIVITATIUM), IN COASTAL LOUISIANA A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College In partial fulfillment of the Requirements for the degree of Doctor of Philosophy in The Department of Oceanography and Coastal Sciences by Theodore S. Switzer B.S., Clarion University of Pennsylvania, 1995 M.Ap.Stat., Louisiana State University, 2002 August, 2003 ACKNOWLEDGEMENTS First of all I would like to thank my major professor, Don Baltz, for his guidance and support throughout the past several years, without which this dissertation would not have been possible. I also want to thank committee members Chuck Wilson and Ed Chesney for their meaningful advice on this research as well as access to laboratory space and materials. Committee member Jay Geaghan mentored my development as a statistician and his guidance through the statistical analyses was invaluable. Additionally, committee members Larry Rouse and Ken Brown offered insightful comments that greatly improved the quality of this dissertation. Thanks to Bob Allen for access to his flatfish collections. Tom Munroe provided stimulating comments regarding the ecology of tonguefishes in coastal Louisiana. Thanks to Andy Fischer and Lori Benson for instructing me in techniques for age and growth analysis. I would like to thank Hiram Li and Phil Rossignol for their informative tutorial on loop analysis. Thanks to John Fleeger for assisting with the identification of copepods collected from stomach contents. Several graduate students and research associates assisted in various stages in the field and laboratory: Guillermo Duque, Cara Miller, Alex Arrivillaga, Robert Jones, Mark Stead, Murt Verburg and Cody Short. Additional thanks to all the individuals involved in the various sampling studies from which I borrowed several data sets. The support staff at the Louisiana Universities Marine Consortium (LUMCON) was extremely helpful during my time in Cocodrie. Sarah Frias-Torres provided words of wisdom during the writing process of this dissertation. Thanks to the secretarial and administrative staff in the Coastal Fisheries Institute, the Department of Oceanography and Coastal Sciences and the Graduate School, for guiding me through all the paperwork and deadlines required for the completion of my degree. I also want to ii thank all of my friends from the Department of Oceanography and Coastal Sciences and the greater Louisiana State University community for making the past seven years truly enjoyable. Please forgive me for not mentioning each of you individually, but there are so many individuals that I would undoubtedly forget some of you. Finally I wish to acknowledge the support of my other friends and family, especially my parents Ted and Judy Switzer and my sister Robin Hanna. I could not have accomplished this without your love and support. Thank you all! iii TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ---------------------------------------------------------------------------------ii LIST OF TABLES -------------------------------------------------------------------------------------------vi LIST OF FIGURES ----------------------------------------------------------------------------------------viii ABSTRACT -------------------------------------------------------------------------------------------------xii CHAPTER I. INTRODUCTION: WETLAND DYNAMICS, NURSERY HABITAT AND THE ECOLOGY OF TONGUEFISHES ---------------------------------------------------------1 Literature Cited -------------------------------------------------------------------------------------10 CHAPTER II. HABITAT SELECTION BY SYMPATRIC TONGUEFISHES (SYMPHURUS: CYNOGLOSSIDAE) IN COASTAL LOUISIANA: UNRAVELING SEASONAL, SPATIAL, AND ONTOGENETIC PATTERNS IN RESOURCE UTILIZATION -------------------------------------------------------------------------------------13 Introduction ----------------------------------------------------------------------------------------13 Materials and Methods ---------------------------------------------------------------------------15 Results ----------------------------------------------------------------------------------------------22 Discussion -------------------------------------------------------------------------------------------37 Literature Cited -------------------------------------------------------------------------------------46 CHAPTER III. UTILIZATION OF MARSH-EDGE HABITAT BY TWO SYMPATRIC TONGUEFISHES (SYMPHURUS: CYNOGLOSSIDAE) IN COASTAL LOUISIANA ---------------------------------------------------------------------------------------51 Introduction ----------------------------------------------------------------------------------------51 Materials and Methods ---------------------------------------------------------------------------53 Results ----------------------------------------------------------------------------------------------60 Discussion -------------------------------------------------------------------------------------------70 Literature Cited -------------------------------------------------------------------------------------75 CHAPTER IV. AGE AND GROWTH OF YOUNG-OF-THE-YEAR TONGUEFISHES (SYMPHURUS: CYNOGLOSSIDAE) IN BARATARIA BAY, LOUISIANA -----------78 Introduction ----------------------------------------------------------------------------------------78 Materials and Methods ---------------------------------------------------------------------------80 Results ----------------------------------------------------------------------------------------------88 Discussion -------------------------------------------------------------------------------------------93 Literature Cited -----------------------------------------------------------------------------------100 iv CHAPTER V. COMPARATIVE PATTERNS OF RESOURCE UTILIZATION OF SYMPATRIC TONGUEFISHES (SYMPHURUS: CYNOGLOSSIDAE) WITHIN THE VERMILION AND BARATARIA ESTUARINE SYSTEMS, LOUISIANA -------------------------------------------------------------------------------------105 Introduction ----------------------------------------------------------------------------------------105 Materials and Methods ---------------------------------------------------------------------------108 Results ---------------------------------------------------------------------------------------------117 Discussion ----------------------------------------------------------------------------------------127 Literature Cited ----------------------------------------------------------------------------------132 CHAPTER VI. QUALITATIVE MODELING OF THE ECOLOGY OF TONGUEFISHES IN COASTAL LOUISIANA ------------------------------------------------------------------137 Introduction ---------------------------------------------------------------------------------------137 Materials and Methods --------------------------------------------------------------------------139 Results ---------------------------------------------------------------------------------------------148 Discussion ----------------------------------------------------------------------------------------156 Literature Cited -----------------------------------------------------------------------------------159 CHAPTER VII. CONCLUSION ------------------------------------------------------------------------162 Literature Cited ----------------------------------------------------------------------------------166 VITA -------------------------------------------------------------------------------------------------------169 v LIST OF TABLES Table 2.1. Seasonal patterns in resource availability estimated by least-square means (± SE) for six environmental variables. Significant differences (p ≤ 0.025) among seasons are indicated by different letters reading horizontally (NS indicates that differences were not significant). Seasonal ranges are reported below the mean for each variable. ---------------------23 Table 2.2. Spatial patterns in resource availability estimated by least-square means (± SE) for six environmental variables. Significant differences (p ≤ 0.047) among strata are indicated by different letters reading horizontally (NS indicates that differences were not significant). Spatial ranges are reported below the mean for each variable. ------------25
Recommended publications
  • Redalyc.A Review of the Flatfish Fisheries of the South Atlantic Ocean
    Revista de Biología Marina y Oceanografía ISSN: 0717-3326 [email protected] Universidad de Valparaíso Chile Díaz de Astarloa, Juan M. A review of the flatfish fisheries of the south Atlantic Ocean Revista de Biología Marina y Oceanografía, vol. 37, núm. 2, diciembre, 2002, pp. 113-125 Universidad de Valparaíso Viña del Mar, Chile Available in: http://www.redalyc.org/articulo.oa?id=47937201 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista de Biología Marina y Oceanografía 37 (2): 113 - 125, diciembre de 2002 A review of the flatfish fisheries of the south Atlantic Ocean Una revisión de las pesquerías de lenguados del Océano Atlántico sur Juan M. Díaz de Astarloa1 2 1CONICET, Departamento de Ciencias Marinas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata, Argentina. [email protected] 2 Current address: Laboratory of Marine Stock-enhancement Biology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, kitashirakawa-oiwakecho, sakyo-ku, Kyoto, 606-8502 Japan. [email protected] Resumen.- Se describen las pesquerías de lenguados del Abstract.- The flatfish fisheries of the South Atlantic Atlántico sur sobre la base de series de valores temporales de Ocean are described from time series of landings between desembarcos pesqueros entre los años 1950 y 1998, e 1950 and 1998 and available information on species life información disponible sobre características biológicas, flotas, history, fleets and gear characteristics, and economical artes de pesca e importancia económica de las especies importance of commercial species.
    [Show full text]
  • Pleuronectidae, Poecilopsettidae, Achiridae, Cynoglossidae
    1536 Glyptocephalus cynoglossus (Linnaeus, 1758) Pleuronectidae Witch flounder Range: Both sides of North Atlantic Ocean; in the western North Atlantic from Strait of Belle Isle to Cape Hatteras Habitat: Moderately deep water (mostly 45–330 m), deepest in southern part of range; found on mud, muddy sand or clay substrates Spawning: May–Oct in Gulf of Maine; Apr–Oct on Georges Bank; Feb–Jul Meristic Characters in Middle Atlantic Bight Myomeres: 58–60 Vertebrae: 11–12+45–47=56–59 Eggs: – Pelagic, spherical Early eggs similar in size Dorsal fin rays: 97–117 – Diameter: 1.2–1.6 mm to those of Gadus morhua Anal fin rays: 86–102 – Chorion: smooth and Melanogrammus aeglefinus Pectoral fin rays: 9–13 – Yolk: homogeneous Pelvic fin rays: 6/6 – Oil globules: none Caudal fin rays: 20–24 (total) – Perivitelline space: narrow Larvae: – Hatching occurs at 4–6 mm; eyes unpigmented – Body long, thin and transparent; preanus length (<33% TL) shorter than in Hippoglossoides or Hippoglossus – Head length increases from 13% SL at 6 mm to 22% SL at 42 mm – Body depth increases from 9% SL at 6 mm to 30% SL at 42 mm – Preopercle spines: 3–4 occur on posterior edge, 5–6 on lateral ridge at about 16 mm, increase to 17–19 spines – Flexion occurs at 14–20 mm; transformation occurs at 22–35 mm (sometimes delayed to larger sizes) – Sequence of fin ray formation: C, D, A – P2 – P1 – Pigment intensifies with development: 6 bands on body and fins, 3 major, 3 minor (see table below) Glyptocephalus cynoglossus Hippoglossoides platessoides Total myomeres 58–60 44–47 Preanus length <33%TL >35%TL Postanal pigment bars 3 major, 3 minor 3 with light scattering between Finfold pigment Bars extend onto finfold None Flexion size 14–20 mm 9–19 mm Ventral pigment Scattering anterior to anus Line from anus to isthmus Early Juvenile: Occurs in nursery habitats on continental slope E.
    [Show full text]
  • Extinction Risk and Overfishing: Reconciling Conservation And
    Extinction Risk and Overfishing: Reconciling Conservation and Fisheries SUBJECT AREAS: BIODIVERSITY Perspectives on the Status of Marine SUSTAINABILITY ECOLOGY Fishes BIOLOGICAL MODELS Trevor D. Davies1 & Julia K. Baum2 Received 1 2 30 April 2012 Department of Biology, Dalhousie University, Halifax, NS, Canada, Department of Biology, University of Victoria, Victoria, BC, Canada. Accepted 10 July 2012 Anthropogenic disturbances are ubiquitous in the ocean, but their impacts on marine species are hotly Published debated. We evaluated marine fish statuses using conservation (Red List threatened or not) and fisheries 7 August 2012 (above or below reference points) metrics, compared their alignment, and diagnosed why discrepancies arise. Whereas only 13.5% of Red Listed marine fishes (n52952) are threatened, 40% and 21% of populations with stock assessments (n5166) currently are below their more conservative and riskier reference points, respectively. Conservation and fisheries metrics aligned well (70.5% to 80.7%), despite Correspondence and their mathematical disconnect. Red Listings were not biased towards exaggerating threat status, and requests for materials egregious errors, where populations were categorized at opposite extremes of fisheries and conservation should be addressed to metrics, were rare. Our analyses suggest conservation and fisheries scientists will agree on the statuses of T.D.D. (tdavies@ exploited marine fishes in most cases, leaving only the question of appropriate management responses for mathstat.dal.ca) populations of mutual concern still unresolved. uman impacts on natural ecosystems are diverse and accelerating1,2. On land, where the primary threat to wildlife is habitat loss, recent comprehensive assessments of birds, mammals, and amphibians have revealed 13%, 21%, and 30% of these species to be threatened with a heightened risk of extinction, H 3 respectively .
    [Show full text]
  • For Summer Flounder Is Defined As
    FISHERY MANAGEMENT PLAN FOR THE SUMMER FLOUNDER FISHERY October 1987 Mid-Atlantic Fishery Management Council in cooperation with the National Marine Fisheries Service, the New England Fishery Management Council, and the South Atlantic Fishery Management Council Draft adopted by MAFMC: 29 October 1987 Final adopted by MAFMC: 16 April1988 Final approved by NOAA: 19 September 1988 3.14.89 FISHERY MANAGEMENT PLAN FOR THE SUMMER FLOUNDER FISHERY October 1987 Mid-Atlantic Fishery Management Council in cooperation with the National Marine Fisheries Service, the New England Fishery Management Council, and the South Atlantic Fishery Management Council See page 2 for a discussion of Amendment 1 to the FMP. Draft adopted by MAFMC: 21 October 1187 final adopted by MAFMC: 16 April1988 final approved by NOAA: 19 September 1988 1 2.27 91 THIS DOCUMENT IS THE SUMMER FLOUNDER FISHERY MANAGEMENT PLAN AS ADOPTED BY THE COUNCIL AND APPROVED BY THE NATIONAL MARINE FISHERIES SERVICE. THE REGULATIONS IN APPENDIX 6 (BLUE PAPER) ARE THE REGULATIONS CONTROLLING THE FISHERY AS OF THE DATE OF THIS PRINTING (27 FEBRUARY 1991). READERS SHOULD BE AWARE THAT THE COUNCIL ADOPTED AMENDMENT 1 TO THE FMP ON 31 OCTOBER 1990 TO DEFINE OVERFISHING AS REQUIRED BY 50 CFR 602 AND TO IMPOSE A 5.5" (DIAMOND MESH) AND 6" (SQUARE MESH) MINIMUM NET MESH IN THE TRAWL FISHERY. ON 15 FEBRUARY 1991 NMFS APPROVED THE OVERFISHING DEFINITION AND DISAPPROVED THE MINIMUM NET MESH. OVERFISHING FOR SUMMER FLOUNDER IS DEFINED AS FISHING IN EXCESS OF THE FMAX LEVEL. THIS ACTION DID NOT CHANGE THE REGULATIONS DISCUSSED ABOVE. 2 27.91 2 2.
    [Show full text]
  • Yellowtail Flounder (Limanda Ferruginea) Ageing Manual
    NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S) Northwest Atlantic Fisheries Organization Serial No. N4947 NAFO SCR Doc. 04/5 SCIENTIFIC COUNCIL MEETING – JUNE 2004 Yellowtail Flounder (Limanda ferruginea) Ageing Manual Karen Dwyer Northwest Atlantic Fisheries Centre Abstract This is a technical manual describing the methods and interpretations used for estimating age in yellowtail flounder (Limanda ferruginea). The paper gives a general overview of ageing, and then discusses how yellowtail flounder are presently being aged at the Northwest Atlantic Fisheries Centre (NAFC) in St. John’s, Newfoundland. It also provides information on the types of validation studies that are used to ensure accuracy of ageing, and attempts to troubleshoot any difficult aspects of ageing. The thin-sectioning method used to age this species is discussed, and includes detailed information on how it is carried out. The structure of the whole otolith were discussed, along with the limitations for ageing yellowtail flounder using this structure. This manual contains a glossary and high quality photos and diagrams for use when ageing yellowtail flounder. Introduction Age of marine fish can be determined by counting periodic markings on a variety of ‘hardparts’. Scales, vertebrae, spines and otoliths have been used to determine age in fish. In the case of flatfish otoliths are unique in that they have both symmetrical and asymmetrical sagittal otolith (Hunt, 1992). Age of fish is essential in fisheries management. Hence, accurate age determinations are a vital part of the scientific process of stock assessment and are critical for estimating mortality and growth rates (Chilton and Beamish, 1982; Penttila and Dery, 1988).
    [Show full text]
  • Occurrence of Hypomelanization in Cultured Yellowtail Flounder Limanda Ferruginea
    Aquaculture Research, 2002, 33, 1191±1193 SHORT COMMUNICATION Occurrence of hypomelanization in cultured yellowtail flounder Limanda ferruginea C F Purchase*, D L Boyce & J A Brown Ocean Sciences Centre, Memorial University of Newfoundland, St John's, Newfoundland, Canada Correspondence: J A Brown, Ocean Sciences Centre, Memorial University of Newfoundland, St John's, Newfoundland, A1C 5S7, Canada. E-mail: [email protected] *Present address: Department of Zoology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada. Flatfish often exhibit abnormal pigmentation under investigated for its potential as a cold-water cultured conditions, e.g. Japanese flounder Para- aquaculture species. Broodstock development along lichthys olivaceus (Temminck & Schlegel) (Seikai, with culture from the egg to the juvenile stage Watanabe & Shimozaki 1987). This is usually ex- have been successful. Current interest on this pressed as a lack of pigment, pseudo-albinism (hypo- species is being devoted to ongrowing of juveniles melanization), on the ocular side or, less often, as (e.g. Purchase, Boyce & Brown 2000). Here, we pigmentation on the blind side (hypermelanization), report the occurrence of hypomelanization in which is normally unpigmented (reviewed by juveniles of this species, which were produced at Venizelos & Benetti 1999). Abnormal pigmentation Memorial University of Newfoundland's Ocean Sci- may be a result of inadequate nutrition, light or ences Centre, near St John's, Newfoundland, Canada. stress during the larval stage (Matsumoto & Seikai Over a period of several years, yellowtail flounder 1992). Whether abnormal pigmentation is the result eggs were obtained from captive broodstock held at of more general metabolic problems is unclear.
    [Show full text]
  • NOAA Technical Report NMFS SSRF-691
    % ,^tH^ °^Co NOAA Technical Report NMFS SSRF-691 Seasonal Distributions of Larval Flatfishes (Pleuronectiformes) on the Continental Shelf Between Cape Cod, Massachusetts, and Cape Lookout, North Carolina, 1965-66 W. G. SMITH, J. D. SIBUNKA, and A. WELLS SEATTLE, WA June 1975 ATMOSPHERIC ADMINISTRATION / Fisheries Service NOAA TECHNICAL REPORTS National Marine Fisheries Service, Special Scientific Report—Fisheries Series The majnr responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for optimum use of the resources. NMFS is also charged with the development and implementation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, surveillance of foreign fishing off United States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through- marketing service and economic analysis programs, and mortgage insurance and vessel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry. The Special Scientific Report—Fisheries series was established in 1949. The series carries reports on scientific investigations that document long-term continuing programs of NMFS. or intensive scientific reports on studies of restricted scope. The reports may deal with applied fishery problems. The series is also used as a medium for the publica- tion of bibliographies of a specialized scientific nature. NOAA Technical Reports NMFS SSRF are available free in limited numbers to governmental agencies, both Federal and State. They are also available in exchange for other scientific and technical publications in the marine sciences.
    [Show full text]
  • Identification of the Sole Resources of the Gambia
    Identification of the Sole Resources of The Gambia Gambia-Senegal Sustainable Fisheries Program (Ba Nafaa) December 2011 This publication is available electronically on the Coastal Resources Center’s website at http://www.crc.uri.edu. For more information contact: Coastal Resources Center, University of Rhode Island, Narragansett Bay Campus, South Ferry Road, Narragansett, Rhode Island 02882, USA. Tel: 401) 874-6224; Fax: 401) 789-4670; Email: [email protected] The BaNafaa project is implemented by the Coastal Resources Center of the University of Rhode Island and the World Wide Fund for Nature-West Africa Marine Ecoregion (WWF-WAMER) in partnership with the Department of Fisheries and the Ministry of Fisheries, Water Resources and National Assembly Matters. Citation: Coastal Resources Center, 2011. Identification of the Sole Resources of The Gambia. Coastal Resources Center, University of Rhode Island, pp.11 Disclaimer: This report was made possible by the generous support of the American people through the United States Agency for International Development (USAID). The contents are the responsibility of the authors and do not necessarily reflect the views of USAID or the United States Government. Cooperative Agreement # 624-A-00-09- 00033-00. Cover Photo: Coastal Resources Center/URI Fisheries Center Photo Credit: Coastal Resources Center/URI Fisheries Center 2 The Sole Resources Proper identification of the species is critical for resource management. There are four major families of flatfish with representative species found in the Gambian nearshore waters: Soleidae, Cynoglossidae, Psettododae and Paralichthyidae. The species below have been confirmed through literature review, and through discussions with local fishermen, processors and the Gambian Department of Fisheries.
    [Show full text]
  • Intrinsic Vulnerability in the Global Fish Catch
    The following appendix accompanies the article Intrinsic vulnerability in the global fish catch William W. L. Cheung1,*, Reg Watson1, Telmo Morato1,2, Tony J. Pitcher1, Daniel Pauly1 1Fisheries Centre, The University of British Columbia, Aquatic Ecosystems Research Laboratory (AERL), 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada 2Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-862 Horta, Portugal *Email: [email protected] Marine Ecology Progress Series 333:1–12 (2007) Appendix 1. Intrinsic vulnerability index of fish taxa represented in the global catch, based on the Sea Around Us database (www.seaaroundus.org) Taxonomic Intrinsic level Taxon Common name vulnerability Family Pristidae Sawfishes 88 Squatinidae Angel sharks 80 Anarhichadidae Wolffishes 78 Carcharhinidae Requiem sharks 77 Sphyrnidae Hammerhead, bonnethead, scoophead shark 77 Macrouridae Grenadiers or rattails 75 Rajidae Skates 72 Alepocephalidae Slickheads 71 Lophiidae Goosefishes 70 Torpedinidae Electric rays 68 Belonidae Needlefishes 67 Emmelichthyidae Rovers 66 Nototheniidae Cod icefishes 65 Ophidiidae Cusk-eels 65 Trachichthyidae Slimeheads 64 Channichthyidae Crocodile icefishes 63 Myliobatidae Eagle and manta rays 63 Squalidae Dogfish sharks 62 Congridae Conger and garden eels 60 Serranidae Sea basses: groupers and fairy basslets 60 Exocoetidae Flyingfishes 59 Malacanthidae Tilefishes 58 Scorpaenidae Scorpionfishes or rockfishes 58 Polynemidae Threadfins 56 Triakidae Houndsharks 56 Istiophoridae Billfishes 55 Petromyzontidae
    [Show full text]
  • Guide to the Coastal Marine Fishes of California
    STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF FISH AND GAME FISH BULLETIN 157 GUIDE TO THE COASTAL MARINE FISHES OF CALIFORNIA by DANIEL J. MILLER and ROBERT N. LEA Marine Resources Region 1972 ABSTRACT This is a comprehensive identification guide encompassing all shallow marine fishes within California waters. Geographic range limits, maximum size, depth range, a brief color description, and some meristic counts including, if available: fin ray counts, lateral line pores, lateral line scales, gill rakers, and vertebrae are given. Body proportions and shapes are used in the keys and a state- ment concerning the rarity or commonness in California is given for each species. In all, 554 species are described. Three of these have not been re- corded or confirmed as occurring in California waters but are included since they are apt to appear. The remainder have been recorded as occurring in an area between the Mexican and Oregon borders and offshore to at least 50 miles. Five of California species as yet have not been named or described, and ichthyologists studying these new forms have given information on identification to enable inclusion here. A dichotomous key to 144 families includes an outline figure of a repre- sentative for all but two families. Keys are presented for all larger families, and diagnostic features are pointed out on most of the figures. Illustrations are presented for all but eight species. Of the 554 species, 439 are found primarily in depths less than 400 ft., 48 are meso- or bathypelagic species, and 67 are deepwater bottom dwelling forms rarely taken in less than 400 ft.
    [Show full text]
  • Pilot Production of Hatchery-Reared Summer Flounder Paralichthys Dentatus in a Marine Recirculating Aquaculture System: the Effe
    JOURNAL OF THE Volume 36, No. 1 WORLD AQUACULTURE SOCIETY March 2005 Pilot Production of Hatchery-RearedSummer Flounder Purulichthys dentutus in a Marine Recirculating Aquaculture System: The Effects of Ration Level on Growth, Feed Conversion, and Survival PATRICKM. CARROLLAND WADE0. WATANABE University of North Carolina at Wilmington, Centerfor Marine Science, 7205 WrightsvilleAvenue, Wilmington, North Carolina 28403 USA THOMASM. LOSORDO Department of Zoology, North Carolina State University, Raleigh, North Carolina 27695 USA Abstract-Pilot-scale trials were conducted to suggests increased competition for a restricted ration evaluate growout performance of hatchery-reared led to a slower growth with more growth variation. The summer flounder fingerlings in a state-of-the-art decrease in growth in phases 2 and 3 was probably related recirculating aquaculture system (RAS). The outdoor to a high percentage of slower growing male fish in the RAS consisted of four 4.57-m dia x 0.69-111 deep (vol. population and the onset of sexual maturity. = 11.3 m’) covered, insulated tanks and associated water This study demonstrated that under commercial treatment components. Fingerlings (85.1 g mean initial scale conditions, summer flounder can be successfully weight) supplied by a commercial hatchery were stocked grown to a marketable size in a recirculating aquaculture into two tanks at a density of 1,014 fishhank (7.63 kg/mg). system. Based on these results, it is recommended that a Fish were fed an extruded dry floating diet consisting farmer feed at a satiation rate to minimize growout time. of 50% protein and 12% lipid. The temperature was More research is needed to maintain high growth rates maintained between 20 C and 23 C and the salinity was through marketable sizes through all-female production 34 ppt.
    [Show full text]
  • Flounders, Halibuts, Soles Capture Production by Species, Fishing Areas
    101 Flounders, halibuts, soles Capture production by species, fishing areas and countries or areas B-31 Flets, flétans, soles Captures par espèces, zones de pêche et pays ou zones Platijas, halibuts, lenguados Capturas por especies, áreas de pesca y países o áreas Species, Fishing area Espèce, Zone de pêche 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Especie, Área de pesca t t t t t t t t t t Mediterranean scaldfish Arnoglosse de Méditerranée Serrandell Arnoglossus laterna 1,83(01)001,01 MSF 34 Italy - - - - - - - 57 223 123 34 Fishing area total - - - - - - - 57 223 123 37 Italy ... ... ... ... ... ... 447 479 169 403 37 Fishing area total ... ... ... ... ... ... 447 479 169 403 Species total ... ... ... ... ... ... 447 536 392 526 Leopard flounder Rombou léopard Lenguado leopardo Bothus pantherinus 1,83(01)018,05 OUN 51 Bahrain 2 - - 1 1 4 4 F 4 F 4 F 4 F Saudi Arabia 77 80 77 75 74 83 71 79 80 F 74 51 Fishing area total 79 80 77 76 75 87 75 F 83 F 84 F 78 F Species total 79 80 77 76 75 87 75 F 83 F 84 F 78 F Lefteye flounders nei Arnoglosses, rombous nca Rodaballos, rombos, etc. nep Bothidae 1,83(01)XXX,XX LEF 21 USA 1 087 774 566 747 992 759 545 406 633 409 21 Fishing area total 1 087 774 566 747 992 759 545 406 633 409 27 Germany - - - - - - - - 0 - Portugal 136 103 143 125 105 102 87 76 84 105 Spain 134 116 96 56 29 8 12 12 6 5 27 Fishing area total 270 219 239 181 134 110 99 88 90 110 31 USA 59 38 71 45 41 128 117 133 99 102 31 Fishing area total 59 38 71 45 41 128 117 133 99 102 34 Greece - - - - - - - 71 45 - Portugal 15 46 ..
    [Show full text]