RESEARCH ARTICLE The Arabidopsis KH-Domain RNA-Binding Protein ESR1 Functions in Components of Jasmonate Signalling, Unlinking Growth Restraint and Resistance to Stress Louise F. Thatcher1*, Lars G. Kamphuis1,2, James K. Hane1¤a, Luis Oñate-Sánchez1¤b, Karam B. Singh1,2 1 CSIRO Agriculture Flagship, Centre for Environment and Life Sciences, Wembley, Western Australia, Australia, 2 The Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia a11111 ¤a Current address: Curtin Institute for Computation and Centre for Crop and Disease Management, Department of Environment & Agriculture, Curtin University, Bentley, Western Australia, Australia ¤b Current address: Centro de Biotecnología y Genómica de Plantas, UPM-INIA, and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain *
[email protected] OPEN ACCESS Abstract Citation: Thatcher LF, Kamphuis LG, Hane JK, Oñate-Sánchez L, Singh KB (2015) The Arabidopsis Glutathione S-transferases (GSTs) play important roles in the protection of cells against tox- KH-Domain RNA-Binding Protein ESR1 Functions in ins and oxidative damage where one Arabidopsis member, GSTF8, has become a com- Components of Jasmonate Signalling, Unlinking Growth Restraint and Resistance to Stress. PLoS monly used marker gene for early stress and defense responses. A GSTF8 promoter ONE 10(5): e0126978. doi:10.1371/journal. fragment fused to the luciferase reporter gene was used in a forward genetic screen for Ara- pone.0126978 bidopsis mutants with up-regulated GSTF8 promoter activity. This identified the esr1-1 (en- Academic Editor: Ramamurthy Mahalingam, hanced stress response 1) mutant which also conferred increased resistance to the fungal Oklahoma State University, UNITED STATES pathogen Fusarium oxysporum.