Staurolite from a Metabasite and Its Paragenesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chemographic Exploration of Amphibole Assemblages from Central Massachusetts and Southwestern New Hampshire
Mineral. Soc. Amer, Spec. Pap. 2, 251-274 (1969). CHEMOGRAPHIC EXPLORATION OF AMPHIBOLE ASSEMBLAGES FROM CENTRAL MASSACHUSETTS AND SOUTHWESTERN NEW HAMPSHIRE PETER ROBINSON AND HOWARD W. JAFFE Department of Geology, University of Massachusetts, Amherst, Massachusetts 01002 ABSTRACT Fourteen wet chemical and forty electron-probe analyses were made of amphiboles from critical assemblages in the kyanite and sillimanite zones of central Massachusetts and southwestern New Hampshire. The rocks studied in- clude plagioclase amphibolites that are metamorphosed mafic lavas and tuffs, aluminous anthophyllite rocks of uncertain derivation, quartz-garnet-amphibole granulites that are metamorphosed ferruginous cherts, and pods of ultramafic amphibolite. The rocks contain the following associations: hornblende-anthophyllite, hornblende-cummingtonite, anthophyllite-cummingtonite, hornblende-anthophyllite-cummingtonite, anthophyllite-cordierite, and anthophyllite- kyanite-sillimanite-staurolite_garnet. The following generalizations are made: 1) The cummingtonites are compositionally simple, containing neither sig- nificant AI/AI, NaJAI, nor Ca substitution. 2) The hornblendes are high in AI/AI substitution. Those coexisting with cummingtonite in the kyanite zone or in retrograded rocks have a higher Al content than those coexisting with cum- mingtonite in the sillimanite zone, in close agreement with the prograde reaction tschermakitic hornblende -7 cumming- tonite + plagioclase + H20 proposed by Shido. The Na content of hornblende is considerably less than that of the theoretical edenite end member and is relatively insensitive to variation in the Na content of coexisting plagioclase. 3) Anthophyllites coexisting with hornblende contain about 1as much AI/AI substitution and 1as much Na substitution as coexisting hornblendes. Ca is negligible. Anthophyllites with cordierite, aluminosilicates, or garnet equal or surpass hornblende in AI/AI and Na substitution. -
Activity 2: Crystal Form and Habit: Measuring Crystal Faces
WARD'S GEO-logic®: Name:. Crystal Form Group: Activity Set Date: ACTIVITY 2: CRYSTAL FORM AND HABIT: MEASURING CRYSTAL FACES OBJECTIVE: To verify the relationship between interfacial angles and crystal form. BACKGROUND INFORMATION: The repeated patterns of the atomic structure for any mineral are re• flected by the consistency of certain features readily observed for that mineral. This similarity is exemplified by the constant angular relationship between similar sets of crystal faces on different specimens of any one mineral. Sample #105 is a representative of the hexagonal crystal system and thus exhibits a six-faced prismatic fomri. Although the faces on the crystal are of different sizes and shapes, the angles between them are al• ways exactly 120°. If you measure carefully, your readings should be accurate within ± 1 degree. MATERIALS: 6" ruler & protractor Sample #105 Sample #109 PROCEDURE: 1. Make a simple goniometer, the instrument used to measure the angle between crystal faces, by placing the ruler as shown over the protractor. Sample #105 2. Place the crystal of Sample #105 as shown. 3. Read the angle on the protractor that corresponds to the angle between crystal faces. 4. Measure each angle consecutively, holding the crystal against the protractor as shown, and record these angles below (you should have six readings). Angle #1 Angle #3 Angle #5 Angle #2 Angle #4 Angle #6 5. Compare and discuss your results with your classmates, and answer the Assessment questions that follow. Copymaster. Permission granted to make unlimited copies for use in any one © 2013 WARD'S Natural Science Establishment, Inc. school building. -
Optical Properties of Common Rock-Forming Minerals
AppendixA __________ Optical Properties of Common Rock-Forming Minerals 325 Optical Properties of Common Rock-Forming Minerals J. B. Lyons, S. A. Morse, and R. E. Stoiber Distinguishing Characteristics Chemical XI. System and Indices Birefringence "Characteristically parallel, but Mineral Composition Best Cleavage Sign,2V and Relief and Color see Fig. 13-3. A. High Positive Relief Zircon ZrSiO. Tet. (+) 111=1.940 High biref. Small euhedral grains show (.055) parallel" extinction; may cause pleochroic haloes if enclosed in other minerals Sphene CaTiSiOs Mon. (110) (+) 30-50 13=1.895 High biref. Wedge-shaped grains; may (Titanite) to 1.935 (0.108-.135) show (110) cleavage or (100) Often or (221) parting; ZI\c=51 0; brownish in very high relief; r>v extreme. color CtJI\) 0) Gamet AsB2(SiO.la where Iso. High Grandite often Very pale pink commonest A = R2+ and B = RS + 1.7-1.9 weakly color; inclusions common. birefracting. Indices vary widely with composition. Crystals often euhedraL Uvarovite green, very rare. Staurolite H2FeAI.Si2O'2 Orth. (010) (+) 2V = 87 13=1.750 Low biref. Pleochroic colorless to golden (approximately) (.012) yellow; one good cleavage; twins cruciform or oblique; metamorphic. Olivine Series Mg2SiO. Orth. (+) 2V=85 13=1.651 High biref. Colorless (Fo) to yellow or pale to to (.035) brown (Fa); high relief. Fe2SiO. Orth. (-) 2V=47 13=1.865 High biref. Shagreen (mottled) surface; (.051) often cracked and altered to %II - serpentine. Poor (010) and (100) cleavages. Extinction par- ~ ~ alleL" l~4~ Tourmaline Na(Mg,Fe,Mn,Li,Alk Hex. (-) 111=1.636 Mod. biref. -
Transition from Staurolite to Sillimanite Zone, Rangeley Quadrangle, Maine
CHARLES V. GUIDOTTI Department of Geology and Geophysics, University of Wisconsin, Madison, Wisconsin 53706 Transition from Staurolite to Sillimanite Zone, Rangeley Quadrangle, Maine ABSTRACT GENERAL GEOLOGICAL SETTING Ordovician and Silurian to Devonian pelitic schist, conglomerate, quartzite, calc-silicate Study of pelitic schists in the Rangeley Figure 1 shows the location of the area granulite, and biotite schist. Post-tectonic, area, Maine, by means of petrographic, and a generalized geologic map of the shallow-dipping, adamellite sheets intrude x-ray, and electron-microprobe techniques southwestern third of the Rangeley quad- the metamorphosed strata. As illustrated in enables definition of the isogradic reaction rangle based upon Moench (1966, 1969, Figure 1, the isograds have a clear spacial relating the staurolite and lower sillimanite 1970a, 1970b, 1971). The rocks in this area relation to the distribution of the adamel- zones. The reaction is a discontinuous one consist of tightly folded, northeast-trending lites; but in a few cases, the adamellite and can be shown on an AFM projection as the tie line change from staurolite + chlorite to sillimanite 4- biotite. This topology change, in conjunction with the min- eralogical data provides the equation: Staur + Mg-Chte + Na-Musc + (Gam?) Sill + Bio + K-richer Muse + Ab + Qtz + H20. This reaction should result in a sharp isograd in the field but in fact is found to be spread out over a zone which is called the transition zone. It is proposed that this zene results from buffering of fH20 by means of the equation above. Buffering of fH.,o by continuous reactions also appears to be taking place in the lower sillimanite zone. -
Geologic Evolution of Trail Ridge Eommn
Geologic Evolution of Trail Ridge EoMmn Peat, Northern Florida AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the cur rent-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Sur vey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated month ly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL D , OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, Circulars, publications of general in- Books of the U.S. Geological Survey are available over the terest (such as leaflets, pamphlets, booklets), single copies of Earthquakes counter at the following Geological Survey Public Inquiries Offices, all & Volcanoes, Preliminary Determination of Epicenters, and some mis- of which are authorized agents of the Superintendent of Documents: cellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are obtainable by mail from WASHINGTON, D.C.-Main Interior Bldg., 2600 corridor, 18th and CSts.,NW. -
A Systematic Nomenclature for Metamorphic Rocks
A systematic nomenclature for metamorphic rocks: 1. HOW TO NAME A METAMORPHIC ROCK Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: Web version 1/4/04. Rolf Schmid1, Douglas Fettes2, Ben Harte3, Eleutheria Davis4, Jacqueline Desmons5, Hans- Joachim Meyer-Marsilius† and Jaakko Siivola6 1 Institut für Mineralogie und Petrographie, ETH-Centre, CH-8092, Zürich, Switzerland, [email protected] 2 British Geological Survey, Murchison House, West Mains Road, Edinburgh, United Kingdom, [email protected] 3 Grant Institute of Geology, Edinburgh, United Kingdom, [email protected] 4 Patission 339A, 11144 Athens, Greece 5 3, rue de Houdemont 54500, Vandoeuvre-lès-Nancy, France, [email protected] 6 Tasakalliontie 12c, 02760 Espoo, Finland ABSTRACT The usage of some common terms in metamorphic petrology has developed differently in different countries and a range of specialised rock names have been applied locally. The Subcommission on the Systematics of Metamorphic Rocks (SCMR) aims to provide systematic schemes for terminology and rock definitions that are widely acceptable and suitable for international use. This first paper explains the basic classification scheme for common metamorphic rocks proposed by the SCMR, and lays out the general principles which were used by the SCMR when defining terms for metamorphic rocks, their features, conditions of formation and processes. Subsequent papers discuss and present more detailed terminology for particular metamorphic rock groups and processes. The SCMR recognises the very wide usage of some rock names (for example, amphibolite, marble, hornfels) and the existence of many name sets related to specific types of metamorphism (for example, high P/T rocks, migmatites, impactites). -
List of Abbreviations
List of Abbreviations Ab albite Cbz chabazite Fa fayalite Acm acmite Cc chalcocite Fac ferroactinolite Act actinolite Ccl chrysocolla Fcp ferrocarpholite Adr andradite Ccn cancrinite Fed ferroedenite Agt aegirine-augite Ccp chalcopyrite Flt fluorite Ak akermanite Cel celadonite Fo forsterite Alm almandine Cen clinoenstatite Fpa ferropargasite Aln allanite Cfs clinoferrosilite Fs ferrosilite ( ortho) Als aluminosilicate Chl chlorite Fst fassite Am amphibole Chn chondrodite Fts ferrotscher- An anorthite Chr chromite makite And andalusite Chu clinohumite Gbs gibbsite Anh anhydrite Cld chloritoid Ged gedrite Ank ankerite Cls celestite Gh gehlenite Anl analcite Cp carpholite Gln glaucophane Ann annite Cpx Ca clinopyroxene Glt glauconite Ant anatase Crd cordierite Gn galena Ap apatite ern carnegieite Gp gypsum Apo apophyllite Crn corundum Gr graphite Apy arsenopyrite Crs cristroballite Grs grossular Arf arfvedsonite Cs coesite Grt garnet Arg aragonite Cst cassiterite Gru grunerite Atg antigorite Ctl chrysotile Gt goethite Ath anthophyllite Cum cummingtonite Hbl hornblende Aug augite Cv covellite He hercynite Ax axinite Czo clinozoisite Hd hedenbergite Bhm boehmite Dg diginite Hem hematite Bn bornite Di diopside Hl halite Brc brucite Dia diamond Hs hastingsite Brk brookite Dol dolomite Hu humite Brl beryl Drv dravite Hul heulandite Brt barite Dsp diaspore Hyn haiiyne Bst bustamite Eck eckermannite Ill illite Bt biotite Ed edenite Ilm ilmenite Cal calcite Elb elbaite Jd jadeite Cam Ca clinoamphi- En enstatite ( ortho) Jh johannsenite bole Ep epidote -
First Report and Significance of the Staurolite Metabasites Associated To
Rev. Acad. Colomb. Cienc. 38(149):418-29, octubre-diciembre de 2014 Ciencias de la tierra First report and significance of the staurolite metabasites associated to a sequence of calc-silicate rocks from the Silgará Formation at the central Santander Massif, Colombia Carlos A. Ríos1,*, Oscar M. Castellanos2 1Grupo de Investigación en Geología Básica y Aplicada (GIGBA), Escuela de Geología, Universidad Industrial de Santander, Bucaramanga, Colombia 2Grupo de Investigación en Geofísica y Geología (PANGEA), Programa de Geología, Universidad de Pamplona, Pamplona, Colombia Abstract The Silgará Formation metamorphic rocks have been affected by a Barrovian-type of metamorphism, which has occurred under medium-pressure and high-temperature conditions. Scarce intercalations of metabasites from millimeter up to centimeter scale occur in reaction bands observed in the gradational contact between garnet-bearing pelitic and calc-silicate rocks. In this study, we report for the first time the presence of staurolite metabasites in the Santander Massif (Colombian Andes), which is of particular interest since it is an unusual occurrence, taking into account that staurolite is most commonly regarded as an index mineral in metapelites and is not very well known from other bulk compositions and pressure and temperature conditions. Staurolite metabasites contain plagioclase, hornblende and staurolite, suggesting a history of prograde metamorphism up to amphibolite facies conditions. The origin of staurolite can be associated to aluminium-rich metabasites and, therefore, it is strongly affected by bulk rock chemistry. Taking into account mineral assemblages and geothermobarometric calculations in pelitic rocks, we suggest that the staurolite + hornblende association can be formed at least at 400 to 600 °C and 6 kbar at the peak of prograde metamorphism. -
Download the Scanned
NOTES AND NEWS VIRGINIA STAUROLITBSAS GEMS Josnrn K. RosBnrs, Uniaersity of Virgi.nia. In Virginia well over a quarter of a century ago people began wearing staurolite crystals as watch charms, and pendants for neck- laces. This custom has grown until at the present time nearly every town in the state has one or more placeswhere the staurolites are for sale, some of which are genuine and some artificial. During the summers ol 1922 and 1923, the writer visited the better localities for collecting in Henry and Patrick Counties, Virginia. In the sum- mer of 1916 a collection was made at Ducktown, Tennessee,and in l9l7 a collection in Fannin County, Georgia. Being somewhat familiar with the mineral in its occurrence,and after seeingso many on the market, and some of the ways they are prepared, the pur- pose of this brief article is to call attention to the Virginia localities, and some of the ways the artificial stone is made and sold. Practi- cally all of the socalled staurolites sold as gems are of the right angle pattern. In Henry and Patrick Counties this form of twinning is rare compared to others, and since the cross of about 90 degrees is sold almost exclusively, the writer ofiers an explanation. The main locality in Virginia extends from near the city of Lynchburg southwestwardly into North Carolina, the better por- tion for collecting being in Henry and Patrick Counties. This belt lies in the portion of Virginia known as the Piedmont province, one of the natural divisions of the state. Its extent in Virginia is ap- proximately 60 miles with a maximum width of about 10 miles in the vicinity of Sanville, near the Patrick-Henry County line. -
The Effects of Composition Upon the High-Pressure Behaviour of Amphiboles: Compression of Gedrite to 7 Gpa and a Comparison with Anthophyllite and Proto-Amphibole
Mineralogical Magazine, August 2012, Vol. 76(4), pp. 987–995 The effects of composition upon the high-pressure behaviour of amphiboles: compression of gedrite to 7 GPa and a comparison with anthophyllite and proto-amphibole 1,2, 1 3 4 F. NESTOLA *, D. PASQUAL ,M.D.WELCH AND R. OBERTI 1 Dipartimento di Geoscienze, Universita`di Padova, via Gradenigo 6, 35131 Padova, Italy 2 CNR Istituto di Geoscienze e Georisorse, UOS Padova, via Gradenigo 6, 35131 Padova, Italy 3 Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD, UK 4 CNR Istituto di Geoscienze e Georisorse, UOS Pavia, via Ferrata 1, 27100 Pavia, Italy [Received 10 February 2012; Accepted 23 March 2012; Associate Editor: G. Diego Gatta] ABSTRACT A single-crystal X-ray diffraction study of a sample of natural gedrite from North Carolina, USA, with A B 2+ C 2+ 4+ the crystal-chemical formula Na0.47 (Na0.03Mg0.97Fe0.94Mn0.02Ca0.04) (Mg3.52Fe0.28Al1.15Ti0.05) T W (Si6.31Al1.69)O22 (OH)2, up to a maximum pressure of 7 GPa, revealed the following bulk and axial moduli and their pressure derivatives: K0T = 91.2(6) GPa [K0T’ = 6.3(2)]; K0T(a) = 60.5(6) GPa [K0T(a)’ = 6.1(2)]; K0T(b) = 122.8(2.6) GPa [K0T(b)’ = 5.7(8)]; K0T(c) = 119.7(1.5) GPa [K0T(c)’ = 5.1(5)]. Gedrite has a much higher bulk modulus than anthophyllite (66 GPa) and proto-amphibole (64 GPa). All of the three axial moduli of gedrite are higher than those of these two other ortho- amphiboles. -
Staurolite|Bearing Gneiss and Re|Examination of Metamorphic
Staurolite-bearingJournal gneiss of Mineralogical and re-examination and Petrological of metamorphic Sciences, zonal Volume mapping 99 ,of page the Higo1─ 18, metamorphic2004 terrane 1 Staurolite-bearing gneiss and re-examination of metamorphic zonal mapping of the Higo metamorphic terrane in the Kosa area, central Kyushu, Japan * * ** Kenshi MAKI , Yoshihisa ISHIZAKA and Tadao NISHIYAMA *Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan **Department of Earth Sciences, Faculty of Science, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan This paper describes the finding of staurolite-bearing gneiss from the Higo metamorphic terrane and proposes new mineral zones in the Kosa area, Kumamoto Prefecture. Previous mineral zones of the Higo metamorphic terrane proposed by Obata et al. (1994) consist of five zones: Zone A characterized by Chl + Ms, Zone B by Bt + Ms + And, Zone C by Kfs + Sil + Bt, Zone D by Grt + Crd + Bt, and Zone E by Opx in metapelites. They identified three zones from B to D in the Kosa area. However, we found that sillimanite appears together with Grt + Crd, hence this paper shows that Zone C is absent in the Kosa area. New finding of Opx in the southern- most part of the area made it possible to define three mineral zones; Bt zone, Grt-Crd zone, and Opx zone, in the order of increasing grade from north to south in the Kosa area. Analysis of staurolite-bearing assemblage in a KFMASH system together with textural evidence reveals that the following reactions occurred in the stauro- - lite bearing gneiss in the excess of Kfs, Qtz and H2O: [Sil] Str + Bt = Grt + Crd [Bt] Str = Grt + Crd + Sil Chemographic analysis of these reactions together with Grt-Bt geothermometers shows the metamorphic condition of P = 200 MPa and T = 600-620°C, which is much lower in pressure than that estimated by Osanai et al. -
Minerals Found in Michigan Listed by County
Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,