Establishing the Role of the Mississippi-Alabama Barrier Islands in Mississippi Sound and Bight Circulation Using Observational Data Analysis and a Coastal Model

Total Page:16

File Type:pdf, Size:1020Kb

Establishing the Role of the Mississippi-Alabama Barrier Islands in Mississippi Sound and Bight Circulation Using Observational Data Analysis and a Coastal Model The University of Southern Mississippi The Aquila Digital Community Dissertations Fall 2019 Establishing the Role of the Mississippi-Alabama Barrier Islands in Mississippi Sound and Bight Circulation Using Observational Data Analysis and a Coastal Model Laura Hode University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/dissertations Part of the Oceanography Commons Recommended Citation Hode, Laura, "Establishing the Role of the Mississippi-Alabama Barrier Islands in Mississippi Sound and Bight Circulation Using Observational Data Analysis and a Coastal Model" (2019). Dissertations. 1737. https://aquila.usm.edu/dissertations/1737 This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. ESTABLISHING THE ROLE OF THE MISSISSIPPI-ALABAMA BARRIER ISLANDS IN MISSISSIPPI SOUND AND BIGHT CIRCULATION USING OBSERVATIONAL DATA ANALYSIS AND A COASTAL MODEL by Laura Elizabeth Hode A Dissertation Submitted to the Graduate School, the College of Arts and Sciences and the School of Ocean Science and Engineering at The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Approved by: Dr. Stephan D. Howden, Committee Chair Dr. Dmitri A. Nechaev Dr. Jeremy D. Wiggert Dr. Patrick J. Fitzpatrick Dr. Davin J. Wallace ____________________ ____________________ ____________________ Dr. Stephan D. Howden Dr. Jeremy D. Wiggert Dr. Karen S. Coats Committee Chair Associate Director of Dean of the Graduate School School December 2019 COPYRIGHT BY Laura Elizabeth Hode 2019 Published by the Graduate School ABSTRACT The Mississippi-Alabama barrier islands restrict exchange between the Mississippi Sound and Mississippi Bight in the northern Gulf of Mexico. The islands also act as storm breaks for tropical cyclones, so their continued existence sustains marine ecosystems and protects coastal communities. However, the chain has undergone extensive segmentation, erosion, and westward migration in the past two hundred years. The islands are now more susceptible to further erosion (Pendleton et al., 2013; Morton, 2007). Additional reduction in island subaerial land extent would alter circulation in the Mississippi Sound and Bight. Consequently, this study targeted the two most vulnerable barrier islands in the chain for removal in an ocean model to understand how circulation might change in an island loss scenario. A multiplatform data analysis assessed patterns in existing circulation over a four year period. Circulation varied both seasonally and on short time scales ranging from hours to days. Additionally, storm-induced changes to circulation were examined for the hurricane seasons of the same four year period to gauge how non- periodic events impacted the Mississippi Sound and Bight. Circulation response to tropical cyclones that entered the Gulf of Mexico varied storm to storm. Prior to initiating the island removal scenarios, validation of the oceanic and atmospheric models was completed to deduce model skill using the observational data. Finally, the response of Mississippi Sound and Bight circulation to island loss was examined under time-invariant and time-variant conditions. Analysis of model output found island removal weakened currents in existing island passes but created new water exchange pathways where the islands had been removed. The new pathways increased ii salinity within the Mississippi Sound by as much as 2 near the removed islands. However, the island chosen for removal dictated the extent of circulation changes and which half of the Sound saw larger salinity increases. Seasonality played a role in how the Mississippi Sound and Bight responded to island loss. Results suggest permanent changes to circulation which would impact the resiliency of the remaining barrier islands and substantially shift distributions of hydrographic properties. These changes would have ecological and economic consequences throughout the Mississippi Sound. iii ACKNOWLEDGMENTS This research was made possible in part by a grant from the Gulf of Mexico Research Initiative. High frequency radar data are publicly available through the Gulf of Mexico Research Initiative Information & Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org (https://doi.org/ 10.7266/N77D2SJ5D5RBW). Funding was also provided by the Shelf-Slope Interactions and Carbon Transformation and Transport in the Northern Gulf of Mexico: Platform Proof of Concept for the Ocean Observing System in the Northern Gulf of Mexico project as part of the Northern Gulf Institute and the National Oceanic and Atmospheric Administration. The design and implementation of this project would not have been possible without the assistance and dedication of multiple individuals. I would like to acknowledge the exemplary efforts of Dr. Stephan Howden, Dr. Arne Diercks, Kevin Martin, James Davis, and Richard Slaughter in establishing and maintaining the Central Gulf of Mexico Ocean Observing System high frequency radar network. The support staff at CODAR Ocean Sensors also deserve thanks. The coastal ocean model used in the study was created as part of the CONsortium for oil spill exposure pathways in COastal River-Dominated Ecosystems efforts. Model development was led by Dr. Jeremy Wiggert. Many thanks are due to Dr. Wiggert as well as to current and former members of the modeling group including Mike Dinniman, Dr. Kemal Cambazoglu, Dr. Stephan O’Brien, and Dr. Chudong Pan for their efforts in the creation and development of the coastal ocean model. Additionally, Dr. Patrick Fitzpatrick and Yee Lau developed a Mississippi Bight region-specific atmospheric product for use in the model. Thank you. iv Several persons provided invaluable input on the study region’s dynamics and on equipment that supplied data used in this study. I would like to thank Dr. Ervin Otvos and Dr. Gregory Carter for discussions on the history of the Mississippi-Alabama barrier islands. I would especially like to thank Dr. Davin Wallace for insights into the barrier islands’ vulnerability. Thanks are due as well to Dr. Dmitri Nechaev for discussion on model skill assessment and output analysis. Robert Moss Jr. and Mike Runner supplied details on the Mississippi Department of Marine Resource-US Geological Survey hydrological stations needed for model validation. Thank you. Several current and former graduate students aided in the research and troubleshooting of this project. Thank you to Robert Hollis, Dr. Stephan O’Brien, Dr. Sarah Epps, Uchenna Nwankwo, Shara Gremillion, and Courtney Bouchard. Thank you as well to Samuel Wright for his ArcGIS assistance. I am grateful to the University of Southern Mississippi for the opportunity to conduct this research. Finally, I would like to thank the members of my committee: Dr. Stephan Howden, Dr. Dmitri Nechaev, Dr. Jeremy Wiggert, Dr. Davin Wallace, and Dr. Patrick Fitzpatrick. Thank you for your assistance and dedication. v DEDICATION I would like to dedicate this work to my grandfather, Emil Handzel, and my father, Phillip Handzel. Growing up, my father told stories about how my grandfather immigrated to the United States as a child. He never finished high school, so his dream for his children was that they graduate high school. They all received their diplomas. My father carried that dream forward. He wanted my brother and me to attend and finish college. We both have bachelor’s degrees, and I have had the pleasure and opportunity to move forward onto graduate studies. To both of them, I owe a heartfelt thanks for dreaming of more for the generations that come after. My grandfather and father instilled a dream of higher achievements in me, and this work would not have been possible without their vision and the support of my friends and family. vi TABLE OF CONTENTS ABSTRACT ........................................................................................................................ ii ACKNOWLEDGMENTS ................................................................................................. iv DEDICATION ................................................................................................................... vi LIST OF TABLES ............................................................................................................. xi LIST OF ILLUSTRATIONS ............................................................................................ xii LIST OF ABBREVIATIONS ........................................................................................ xxiii CHAPTER I - INTRODUCTION ...................................................................................... 1 1.1 Study Area ................................................................................................................ 2 1.2 Barrier Island Formation and Evolution ................................................................... 4 1.3 Mississippi Sound and Bight Circulation Drivers .................................................... 7 1.3.1 Tides ................................................................................................................... 7 1.3.2 Rivers ................................................................................................................. 9 1.3.3 Winds ................................................................................................................
Recommended publications
  • Historical Changes in the Mississippi-Alabama Barrier Islands and the Roles of Extreme Storms, Sea Level, and Human Activities
    HISTORICAL CHANGES IN THE MISSISSIPPI-ALABAMA BARRIER ISLANDS AND THE ROLES OF EXTREME STORMS, SEA LEVEL, AND HUMAN ACTIVITIES Robert A. Morton 88∞46'0"W 88∞44'0"W 88∞42'0"W 88∞40'0"W 88∞38'0"W 88∞36'0"W 88∞34'0"W 88∞32'0"W 88∞30'0"W 88∞28'0"W 88∞26'0"W 88∞24'0"W 88∞22'0"W 88∞20'0"W 88∞18'0"W 30∞18'0"N 30∞18'0"N 30∞20'0"N Horn Island 30∞20'0"N Petit Bois Island 30∞16'0"N 30∞16'0"N 30∞18'0"N 30∞18'0"N 2005 2005 1996 Dauphin Island 1996 2005 1986 1986 30∞16'0"N Kilometers 30∞14'0"N 0 1 2 3 4 5 1966 30∞16'0"N 1950 30∞14'0"N 1950 Kilometers 1917 0 1 2 3 4 5 1917 1848 1849 30∞14'0"N 30∞14'0"N 30∞12'0"N 30∞12'0"N 30∞12'0"N 30∞12'0"N 30∞10'0"N 30∞10'0"N 88∞46'0"W 88∞44'0"W 88∞42'0"W 88∞40'0"W 88∞38'0"W 88∞36'0"W 88∞34'0"W 88∞32'0"W 88∞30'0"W 88∞28'0"W 88∞26'0"W 88∞24'0"W 88∞22'0"W 88∞20'0"W 88∞18'0"W 89∞10'0"W 89∞8'0"W 89∞6'0"W 89∞4'0"W 88∞58'0"W 88∞56'0"W 88∞54'0"W 88∞52'0"W 30∞16'0"N Cat Island Ship Island 30∞16'0"N 2005 30∞14'0"N 1996 30∞14'0"N 1986 Kilometers 1966 0 1 2 3 30∞14'0"N 1950 30∞14'0"N 1917 1848 Fort 2005 Massachusetts 1995 1986 Kilometers 1966 0 1 2 3 30∞12'0"N 1950 30∞12'0"N 1917 30∞12'0"N 30∞12'0"N 1848 89∞10'0"W 89∞8'0"W 89∞6'0"W 89∞4'0"W 88∞58'0"W 88∞56'0"W 88∞54'0"W 88∞52'0"W Open-File Report 2007-1161 U.S.
    [Show full text]
  • Eastern Mississippi Sound
    ~-T-85-001 C2 V 0<'~" SEDIMENTATION,DISPERSALAND PARTITIONING LQAN CO~ OF TRACEMETAI.S IN COASTALMISSISSIPPI- ALAEAMA.ESTUARINE SEDIMENTS F INAL TECHNICAL REPORT gmt'.NIPS<>"': QayneC. Isphording, Ph.D. assQSA! g@QSlLNt Principal Invest igator George M. Lamb Associate Investigator Robert Helton, Sheri George, Robert Brown, Lysi Payne,Gary Slouat, GregoryIsphording Undergraduate Assistants University of South Alabama Mobile, AL 36688 NATIONALSEA GRANT D":P'j~!~OI"Y PELL Lliii .-',-Y !! ',3'..'..':;. URI, NARRA'.'iH:'-lihi Y '-='-;:i~"US January 1980 March 1984 NARRAGANSETT,R l 02882 January 1985 MISSISSIPPI-ALABAMA SEA GRANT CONSORTIUM Grant No.: NASlhh-~0050 Project No.: R/ER-4 MAStP-83-035 This «ork is a result of research sponsored in part by NOhhOffice of SeaGrant, Department of Commerceunder Grant No.: MSlhh-D-00050, the Mississippi-k.labamaSea Grant Consort ium and the University of SouthAlabama. The U,S. Governmentis authorisedto produceand distribute reprinta for governmentalpurposes notwithstandingany copyright notation that Cay appear hereon+ SEDIMENTATION,DISPERSAL ANDPARTITIONING OFTRACE METALS IN COASTALMISSISSIPPI- ALABAMAESTUARINE SEDIMENTS LOAN Cppy ONLy FINAL REPORT @ATION-ALSEA 'RP;8T D PDal108Y PLI ~i I '-' -'ll" Bl ~L", iG .URI, NAI i ni- .>:TT Bile' ii;liPUS HARIiAGnhSETT,R I 0288? PRINCIPALINVESTIGATOR - Wayne C. Isphording ASSOCIATEINVESTIGATOR George M. Lamb UNDERGRADUATEASSISTANTS- Robert Helton, Sheri George, Robert Brown, Lyal Payne, GaryBlount, GregoryIsphording Project NumberR/ER-4 SubmiFinal ttedReport to: Mississippi-Alabama SEAGRANT Consortium Gulf Coast ResearchLaboratory OceanSprings, h1S39564 PURPOSEOF INVESTIGATION Thepurpose of this investigation wasto documentthechemistry, mineralogy andlithology of thebottom sediments of Lake Borgne andMississippi Sound. A secondobjective was to determinethemanner bywhich var ious metals were site partitionedin these sediments.
    [Show full text]
  • 4. the TROPICS—HJ Diamond and CJ Schreck, Eds
    4. THE TROPICS—H. J. Diamond and C. J. Schreck, Eds. Pacific, South Indian, and Australian basins were a. Overview—H. J. Diamond and C. J. Schreck all particularly quiet, each having about half their The Tropics in 2017 were dominated by neutral median ACE. El Niño–Southern Oscillation (ENSO) condi- Three tropical cyclones (TCs) reached the Saffir– tions during most of the year, with the onset of Simpson scale category 5 intensity level—two in the La Niña conditions occurring during boreal autumn. North Atlantic and one in the western North Pacific Although the year began ENSO-neutral, it initially basins. This number was less than half of the eight featured cooler-than-average sea surface tempera- category 5 storms recorded in 2015 (Diamond and tures (SSTs) in the central and east-central equatorial Schreck 2016), and was one fewer than the four re- Pacific, along with lingering La Niña impacts in the corded in 2016 (Diamond and Schreck 2017). atmospheric circulation. These conditions followed The editors of this chapter would like to insert two the abrupt end of a weak and short-lived La Niña personal notes recognizing the passing of two giants during 2016, which lasted from the July–September in the field of tropical meteorology. season until late December. Charles J. Neumann passed away on 14 November Equatorial Pacific SST anomalies warmed con- 2017, at the age of 92. Upon graduation from MIT siderably during the first several months of 2017 in 1946, Charlie volunteered as a weather officer in and by late boreal spring and early summer, the the Navy’s first airborne typhoon reconnaissance anomalies were just shy of reaching El Niño thresh- unit in the Pacific.
    [Show full text]
  • Piping Plover Comprehensive Conservation Strategy
    Cover graphic: Judy Fieth Cover photos: Foraging piping plover - Sidney Maddock Piping plover in flight - Melissa Bimbi, USFWS Roosting piping plover - Patrick Leary Sign - Melissa Bimbi, USFWS Comprehensive Conservation Strategy for the Piping Plover in its Coastal Migration and Wintering Range in the Continental United States INTER-REGIONAL PIPING PLOVER TEAM U.S. FISH AND WILDLIFE SERVICE Melissa Bimbi U.S. Fish and Wildlife Service Region 4, Charleston, South Carolina Robyn Cobb U.S. Fish and Wildlife Service Region 2, Corpus Christi, Texas Patty Kelly U.S. Fish and Wildlife Service Region 4, Panama City, Florida Carol Aron U.S. Fish and Wildlife Region 6, Bismarck, North Dakota Jack Dingledine/Vince Cavalieri U.S. Fish and Wildlife Service Region 3, East Lansing, Michigan Anne Hecht U.S. Fish and Wildlife Service Region 5, Sudbury, Massachusetts Prepared by Terwilliger Consulting, Inc. Karen Terwilliger, Harmony Jump, Tracy M. Rice, Stephanie Egger Amy V. Mallette, David Bearinger, Robert K. Rose, and Haydon Rochester, Jr. Comprehensive Conservation Strategy for the Piping Plover in its Coastal Migration and Wintering Range in the Continental United States Comprehensive Conservation Strategy for the Piping Plover in its Coastal Migration and Wintering Range in the Continental United States PURPOSE AND GEOGRAPHIC SCOPE OF THIS STRATEGY This Comprehensive Conservation Strategy (CCS) synthesizes conservation needs across the shared coastal migration and wintering ranges of the federally listed Great Lakes (endangered), Atlantic Coast (threatened), and Northern Great Plains (threatened) piping plover (Charadrius melodus) populations. The U.S. Fish and Wildlife Service’s 2009 5-Year Review recommended development of the CCS to enhance collaboration among recovery partners and address widespread habitat loss and degradation, increasing human disturbance, and other threats in the piping plover’s coastal migration and wintering range.
    [Show full text]
  • Mobile Weather & Marine Almanac 2018
    2018 Mobile Weather and Marine Almanac 2017: A Year of Devastating Hurricanes Prepared by Assisted by Dr. Bill Williams Pete McCarty Coastal Weather Coastal Weather Research Center Research Center www.mobileweatheralmanac.com Christmas Town & Village Collectibles RobertMooreChristmasTown.com • 251-661-3608 4213 Halls Mill Road Mobile, Alabama Mon.-Sat. 10-5 Closed Sunday 2018 Mobile Weather and Marine Almanac© 28th Edition Dr. Bill Williams Pete McCarty TABLE OF CONTENTS Astronomical Events for 2018 ....................................................................... 2 Astronomical and Meteorological Calendar for 2018 .................................. 3 2017 Mobile Area Weather Highlights ........................................................ 15 2017 National Weather Highlights .............................................................. 16 2017 Hurricane Season ............................................................................... 17 2018 Hurricane Tracking Chart ................................................................... 18 2017 Hurricane Season in Review .............................................................. 20 Harvey and Irma - Structurally Different, but Major Impacts .................... 22 Tropical Storms and Hurricanes 1990-2017 .............................................. 24 World Weather Extremes ............................................................................ 26 Mobile Weather Extremes ........................................................................... 28 Alabama Deep Sea
    [Show full text]
  • COMMON BOTTLENOSE DOLPHIN (Tursiops Truncatus Truncatus) Mississippi Sound, Lake Borgne, Bay Boudreau Stock
    May 2015 COMMON BOTTLENOSE DOLPHIN (Tursiops truncatus truncatus) Mississippi Sound, Lake Borgne, Bay Boudreau Stock NOTE – NMFS is in the process of writing individual stock assessment reports for each of the 31 bay, sound and estuary stocks of common bottlenose dolphins in the Gulf of Mexico. Until this effort is completed and 31 individual reports are available, some of the basic information presented in this report will also be included in the report: “Northern Gulf of Mexico Bay, Sound and Estuary Stocks”. STOCK DEFINITION AND GEOGRAPHIC RANGE Common bottlenose dolphins are distributed throughout the bays, sounds and estuaries of the northern Gulf of Mexico (Mullin 1988). Long-term (year-round, multi-year) residency by at least some individuals has been reported from nearly every site where photographic identification (photo-ID) or tagging studies have been conducted in the Gulf of Mexico (e.g., Irvine and Wells 1972; Shane 1977; Gruber 1981; Irvine et al. 1981; Wells 1986; Wells et al. 1987; Scott et al. 1990; Shane 1990; Wells 1991; Bräger 1993; Bräger et al. 1994; Fertl 1994; Wells et al. 1996a,b; Wells et al. 1997; Weller 1998; Maze and Wrsig 1999; Lynn and Wrsig 2002; Wells 2003; Hubard et al. 2004; Irwin and Wrsig 2004; Shane 2004; Balmer et al. 2008; Urian et al. 2009; Bassos-Hull et al. 2013). In many cases, residents predominantly use the bay, sound or estuary waters, with limited movements through passes to the Gulf of Mexico (Shane 1977; Shane 1990; Gruber 1981; Irvine et al. 1981; Shane 1990; Maze and Würsig 1999; Lynn and Würsig 2002; Fazioli et al.
    [Show full text]
  • ANNUAL SUMMARY Atlantic Hurricane Season of 2005
    MARCH 2008 ANNUAL SUMMARY 1109 ANNUAL SUMMARY Atlantic Hurricane Season of 2005 JOHN L. BEVEN II, LIXION A. AVILA,ERIC S. BLAKE,DANIEL P. BROWN,JAMES L. FRANKLIN, RICHARD D. KNABB,RICHARD J. PASCH,JAMIE R. RHOME, AND STACY R. STEWART Tropical Prediction Center, NOAA/NWS/National Hurricane Center, Miami, Florida (Manuscript received 2 November 2006, in final form 30 April 2007) ABSTRACT The 2005 Atlantic hurricane season was the most active of record. Twenty-eight storms occurred, includ- ing 27 tropical storms and one subtropical storm. Fifteen of the storms became hurricanes, and seven of these became major hurricanes. Additionally, there were two tropical depressions and one subtropical depression. Numerous records for single-season activity were set, including most storms, most hurricanes, and highest accumulated cyclone energy index. Five hurricanes and two tropical storms made landfall in the United States, including four major hurricanes. Eight other cyclones made landfall elsewhere in the basin, and five systems that did not make landfall nonetheless impacted land areas. The 2005 storms directly caused nearly 1700 deaths. This includes approximately 1500 in the United States from Hurricane Katrina— the deadliest U.S. hurricane since 1928. The storms also caused well over $100 billion in damages in the United States alone, making 2005 the costliest hurricane season of record. 1. Introduction intervals for all tropical and subtropical cyclones with intensities of 34 kt or greater; Bell et al. 2000), the 2005 By almost all standards of measure, the 2005 Atlantic season had a record value of about 256% of the long- hurricane season was the most active of record.
    [Show full text]
  • The Crisis Informatics of Online Hurricane Risk Communication
    The Crisis Informatics of Online Hurricane Risk Communication by Melissa J. Bica B.S., Santa Clara University, 2014 M.S., University of Colorado Boulder, 2017 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Computer Science 2019 This thesis entitled: The Crisis Informatics of Online Hurricane Risk Communication written by Melissa J. Bica has been approved for the Department of Computer Science Prof. Leysia Palen (chair) Prof. Kenneth M. Anderson Dr. Julie L. Demuth Prof. Brian C. Keegan Prof. Clayton Lewis Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. IRB protocol #19-0077, 19-0109 iii Bica, Melissa J. (Ph.D., Computer Science) The Crisis Informatics of Online Hurricane Risk Communication Thesis directed by Prof. Leysia Palen Social media are increasingly used by both the public and emergency management in disasters. In disasters arising from weather-related hazards such as hurricanes, social media are especially used for communicating about risk in the pre-disaster period when the nature of the hazard is uncertain. This dissertation explores the sociotechnical aspects of hurricane risk communication, especially information diffusion, interpretation, and reaction, as it occurs on social media between members of the public and authoritative weather experts. I first investigate the kinds of hurricane risk information that were shared by authoritative sources on social media during the 2017 Atlantic hurricane season and how different kinds of infor- mation diffuse temporally.
    [Show full text]
  • Educator Resource and Activity Guide
    Educator Resource and Activity Guide introduction The Gulf Islands National Seashore is a protected region of barrier islands along the Gulf of Mexico and features historic resources and recreational opportunities spanning a 12-unit park in Florida and Mississippi. The Mississippi section encompasses Cat Island, Petit Bois Island, Horn Island, East and West Ship Islands, and the Davis Bayou area. Barrier islands, long and narrow islands made up of sand deposits created by waves and currents, run parallel to the coast line and serve to protect the coast from erosion. They also provide refuge for wildlife by harboring their habitats. From sandy-white beaches to wildlife sanctuaries, Mississippi’s wilderness shore is a natural and historic treasure. This guide provides an introduction to Ship Island, including important people, places, and events, and also features sample activities for usage in elementary, middle and high school classrooms. about the documentary The Gulf Islands: Mississippi’s Wilderness Shore is a Mississippi Public Broadcasting production showcasing the natural beauty of The Gulf Islands National Seashore Park, specifically the barrier islands in Mississippi – Cat Island, East and West Ship Islands, Horn Island, and Petit Bois Island – and the Davis Bayou area in Ocean Springs. The Gulf Islands National Seashore Park stretches 160 miles from Cat Island to the Okaloosa area near Fort Walton, Florida. The Gulf Islands documentary presents the islands’ history, natural significance, their role to protect Mississippi’s coast from hurricanes and the efforts to further protect and restore them. horn island in mississippi -2- ship island people n THE HISTORY -3- Ship Island, Mississippi has served as a crossroads through 300 years of American history.
    [Show full text]
  • Statewide Summary for Mississippi
    Statewide Summary for Mississippi By Cynthia A. Moncreiff1 Background this information, total discharge of fresh water into Mississippi Sound averages 882.4 m3/s (30,806 ft3/s), excluding inflow Although the coastline of Mississippi spans only 113 from Mobile Bay, Ala. linear kilometers (70 mi), the estuaries within its borders Areas that support seagrasses within Mississippi’s constitute a much larger area, roughly 594 km (369 mi) coastal waters include the Gulf Islands National Seashore (fig. 1). The primary body of water within the State’s (GINS), specifically Ship, Horn, and Petit Bois Islands, and boundaries that supports seagrasses is Mississippi Sound, Cat Island, which was partially purchased as an addition to which covers 175,412 ha (433,443 acres) at mean low tide the GINS. Two additional areas along the immediate coast, (Christmas, 1973). This body of water is immediately bounded one at the margins of the Grand Bay National Estuarine by the coast of Mississippi to the north; Mobile Bay, Ala., to Research Reserve at the eastern boundary of the State and the the east; a series of barrier islands that make up most of the other at the western edge adjacent to Buccaneer State Park, Gulf Islands National Seashore to the south; and Lake Borgne, complete the list of estuarine and marine areas within the La., to the west (fig. 1). State that support seagrasses. All of these areas fall within the Mississippi Sound is fed from the north by eight coastal boundaries of a single water body, the Mississippi Sound. mainland watersheds and drainage systems and from the south by tidal exchange with the Gulf of Mexico (through a series of five barrier island–bounded passes).
    [Show full text]
  • MASARYK UNIVERSITY BRNO Diploma Thesis
    MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION DEPARTMENT OF ENGLISH LANGUAGE AND LITERATURE Presentation Sentences in Wikipedia: FSP Analysis Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský Declaration I declare that I have worked on this thesis independently, using only the primary and secondary sources listed in the bibliography. I agree with the placing of this thesis in the library of the Faculty of Education at the Masaryk University and with the access for academic purposes. Brno, 30th March 2018 …………………………………………. Bc. Lukáš Opavský Acknowledgements I would like to thank my supervisor, doc. Mgr. Martin Adam, Ph.D. for his kind help and constant guidance throughout my work. Bc. Lukáš Opavský OPAVSKÝ, Lukáš. Presentation Sentences in Wikipedia: FSP Analysis; Diploma Thesis. Brno: Masaryk University, Faculty of Education, English Language and Literature Department, 2018. XX p. Supervisor: doc. Mgr. Martin Adam, Ph.D. Annotation The purpose of this thesis is an analysis of a corpus comprising of opening sentences of articles collected from the online encyclopaedia Wikipedia. Four different quality categories from Wikipedia were chosen, from the total amount of eight, to ensure gathering of a representative sample, for each category there are fifty sentences, the total amount of the sentences altogether is, therefore, two hundred. The sentences will be analysed according to the Firabsian theory of functional sentence perspective in order to discriminate differences both between the quality categories and also within the categories.
    [Show full text]
  • Mississippi Sound and the Gulf Islands
    Mississippi Sound and the Gulf Islands By Cynthia A. Moncreiff1 Background effects of human activities in the coastal marine environment. These activities include historical commercial uses and Seagrasses in Mississippi Sound were likely first present-day recreational uses of seagrass habitat in addition documented by H.J. Humm (1956), though there are earlier to a number of other factors which may directly or indirectly descriptions of marine angiosperms associated with the barrier impact seagrasses. Development may be a major factor, as islands of Louisiana and Mississippi (Loyd and Tracy, 1901). it often results in higher sediment loads, introductions of Prior to Humm’s work, it was believed that seagrasses, with contaminants, and elevated nutrient levels, which all can the exception of wigeon grass (Ruppia maritima), occurred contribute to a loss of water quality, thus affecting seagrass only very rarely between Bay County, Fla., and Aransas communities (see watershed of area in fig. 1). County, Tex. (Thorne, 1954). Humm (1956) described Land use and land-use changes in the eight watersheds extensive beds of seagrasses along the northern margins feeding into the Mississippi Sound which may have an effect of Mississippi’s barrier islands, dominated by turtle grass on seagrass resources include (1) a shift from the historical (Thalassia testudinum), and indicated that turtle grass was the focus on agriculture and forestry for the paper and lumber dominant seagrass in Mississippi Sound. He also documented industries to urban development related to the casino industry the presence of manatee grass (Syringodium filiforme), and (2) a shift in the State’s focus to port development, shoal grass (Halodule wrightii), and star grass (Halophila plastics, and chemicals as regional industries.
    [Show full text]