The Effect of Recreational Fishing on Targeted Fishes and Trophic Structure, in a Coral Reef Marine Park

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of Recreational Fishing on Targeted Fishes and Trophic Structure, in a Coral Reef Marine Park Edith Cowan University Research Online Theses: Doctorates and Masters Theses 2003 The effect of recreational fishing on targeted fishes and trophic structure, in a coral reef marine park Mark B. Westera Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/theses Part of the Agriculture Commons Recommended Citation Westera, M. B. (2003). The effect of recreational fishing on targeted fishes and trophic structure, in a coral reef marine park. https://ro.ecu.edu.au/theses/1499 This Thesis is posted at Research Online. https://ro.ecu.edu.au/theses/1499 Theses Theses: Doctorates and Masters Edith Cowan University Year 2003 The Effect Of Recreational Fishing On Targeted Fishes And Trophic Structure, In A Coral Reef Marine Park Mark B. Westera Edith Cowan University This paper is posted at Research Online. http://ro.ecu.edu.au/theses/1499 Edith Cowan University Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author’s moral rights contained in Part IX of the Copyright Act 1968 (Cth). Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. USE OF THESIS The Use of Thesis statement is not included in this version of the thesis. The effect of recreational fishing on targeted fishes and trophic structure, in a coral reef marine park. This thesis is presented for the degree of Doctor of Philosophy at Edith Cowan University June 2003 Submitted by Mark Bernard Westera B. Sc. (Hons) Murdoch University, Western Australia EDITH COWAN UNIVERSITY LIBRARY 1 Abstract Recreational line fishing is highly targeted at predatory fishes, making them vulnerable to overfishing. These same fishes play a role in trophic structure by regulating prey species. Despite increasing numbers of fishers, few studies have investigated the potential effects of recreational fishing on fish populations and subsequent trophic effects. This project investigated whether there were differences in fishes and benthos between unfished and recreationally fished areas, and whether the removal of targeted fishes influenced trophic structure. The study was conducted at the Ningaloo Marine Park, Western Australia, which had Sanctuary (no-take) and Recreation (recreationally fished) Zones. Data were collected from three regions (Mandu, Osprey and Maud) and replicated over time. Fish assemblages, benthos and trophic interactions were compared between zones at each region. At Ningaloo the lethrinids (emperors) are a top-order predatory fish and the preferred target of recreational anglers. The algal-grazing urchin Echinometra mathaei comprised 51% of macroinvertebrate abundances and was heavily preyed upon by lethrinids, being recorded in 50% ofthe guts of sampled fish. In all regions, Sanctuary Zones had a greater biomass of lethrinids than Recreation Zones, but there were no differences in non-targeted fishes between zones. Despite the consistent effect on lethrinids, there were inconsistencies among regions in the predator-prey relationships. At Mandu, Echinometra mathaei abundances were inversely related to lethrinid biomass, suggesting a strong predator-prey interaction. In the Recreation Zone, the abundances of E. mathaei were four times greater, and macro-algal cover was half, that of the Sanctuary Zone. Furthermore, algal composition differed between zones, and this was driven by fucoid brown algae, which dominated the diets of E. mathaei. This was interpreted as evidence of a trophic cascade resulting from the removal of lethrinids at the Recreation Zone. At Maud, different results were recorded. Abundances of Echinometra mathaei and lethrinids were both higher in the Sanctuary Zone, than the adjacent Recreation Zone. E. mathaei reside in the crevices of rock, dead coral or Echinopora coral, which provided refuge from predation and this habitat was more available in the Sanctuary Zone. It is suggested that the availability of this habitat confounded the effects of predation. Macro-algal cover was lower in the Sanctuary Zone indicating a grazing effect from E. mathaei. At Osprey there was higher cover of E. mathaei habitat in the Sanctuary than the Recreation Zone. However, there were no differences in macro-algal cover, which was consistent with a lack of difference in E. mathaei abundances. The effect of E. mathaei grazing was unlikely to have been confounded by fishes that graze macro-algae, as they did not differ between zones at any region. 2 These results indicate that recreational fishing reduced fish populations below that of adjacent protected areas at Ningaloo Marine Park, and in one region this resulted in a trophic cascade. This may be the first study that has recorded evidence of a trophic cascade where recreational line fishing is the only means of extraction. However, the results also show that this is not a consistent response to reduced fishing pressure; in other regions, changes in predatory fish abundance did not result in differences in the abundances of their prey, suggesting no trophic cascade. The studies have contributed towards an understanding of fish-habitat interactions and provide a baseline for future monitoring of the Ningaloo Marine Park. They also have important implications for marine park managers in terms of defining their expectations when implementing Sanctuary Zones. The results also show that Sanctuary Zones have the potential to be effective tools for fisheries management. 3 Declaration I certify that this does not, to the best of my knowledge and belief: incorporate without acknowledgement any material previously submitted for a degree or diploma in any institution of higher education; contain any material previously published or written by another person except where reference is made in the text; or contain any defamatory material. Signed ... .... 4 Acknowledgments I thank my wife Alison for her endless support and encouragement in the field and at home. She is a fantastic and enthusiastic field worker and collected and measured many urchins and bags of algae and "happily" helped the flies, and me extract the guts from fish. She even tolerated my monologues on non-metric multidimensional scaling, ANOSIM and ANOVA. To my supervisors Paul Lavery and Glenn Hyndes, thanks for your humour, encouragement, stimulating ideas, field assistance (I sure you were glad to get out of the office and dive on Ningaloo Reef) and editing. I have learnt a great deal from you both. I also had a fantastic team of volunteer field workers, thanks so much to Nick Wood, Julia Phillips, Leah Stratford, Andrew McGuckin and Matthew Metropolis. Hope the field diet of curries, coke and muesli bars wasn't too much. Thanks to the team at the Department of Conservation and Land Management, Marine Conservation, and the Exmouth Regional Office- Chris Simpson, Jennie Cary, Kevin Bancroft, Tim Daly, Tim Grubba, Ray Laurie, Carolyn Williams, Doug Myers, Terry Harrington and Bruce Bond. Y au were always encouraging and interested in my progress. Thanks for helping out with financial support, advice, and field equipment and providing a forum to present my findings. I would also like to extend my sincere thanks to the following people: Russ Babcock and Tim McClanahan for reviewing my PhD research proposal Jim Bohnsack, Chris Simpson and Tim McClanahan for reviewing this thesis Mat Vanderklift for editing manuscripts and providing moral support Euan Harvey for advice on fish census techniques arid the use of underwater video Bob Clarke, David Fox and Tony Underwood for statistical advice on Chapter 2 of the thesis Jane Griffith for coral identification Gary Kendrick for advice on project design Mike Cappo for the loan of underwater video equipment Harry Recher for advice and for talking me out of an even bigger project Mike Moran, Neil Sumner and Peta Williamson for advice and support Two anonymous reviewers whose advice improved the manuscript of Chapter 2 of this thesis Funding for this project was supplied by Paul Lavery, myself, the Department of Conservation and Land Management, the Australian Coral Reef Society through a student award, Edith Cowan University - Centre for Ecosystem Management and Edith Cowan University - School of Natural Sciences. 5 CONTENTS CHAPTER 1 -INTRODUCTION............................................................................... 11 1.1 The role of Marine Protected Areas and marine reserves ........................................ ll 1.2 The vulnerability of fishes to recreational fishing ..................................................... 13 1.3 The trophic effects of fishing ......................................................................................
Recommended publications
  • View/Download
    SPARIFORMES · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 4.0 - 13 Feb. 2021 Order SPARIFORMES 3 families · 49 genera · 283 species/subspecies Family LETHRINIDAE Emporerfishes and Large-eye Breams 5 genera · 43 species Subfamily Lethrininae Emporerfishes Lethrinus Cuvier 1829 from lethrinia, ancient Greek name for members of the genus Pagellus (Sparidae) which Cuvier applied to this genus Lethrinus amboinensis Bleeker 1854 -ensis, suffix denoting place: Ambon Island, Molucca Islands, Indonesia, type locality (occurs in eastern Indian Ocean and western Pacific from Indonesia east to Marshall Islands and Samoa, north to Japan, south to Western Australia) Lethrinus atkinsoni Seale 1910 patronym not identified but probably in honor of William Sackston Atkinson (1864-ca. 1925), an illustrator who prepared the plates for a paper published by Seale in 1905 and presumably the plates in this 1910 paper as well Lethrinus atlanticus Valenciennes 1830 Atlantic, the only species of the genus (and family) known to occur in the Atlantic Lethrinus borbonicus Valenciennes 1830 -icus, belonging to: Borbon (or Bourbon), early name for Réunion island, western Mascarenes, type locality (occurs in Red Sea and western Indian Ocean from Persian Gulf and East Africa to Socotra, Seychelles, Madagascar, Réunion, and the Mascarenes) Lethrinus conchyliatus (Smith 1959) clothed in purple, etymology not explained, probably referring to “bright mauve” area at central basal part of pectoral fins on living specimens Lethrinus crocineus
    [Show full text]
  • Biodiversity of Shallow Reef Fish Assemblages in Western Australia Using a Rapid Censusing Technique
    Records of the Western Australian Museum 20: 247-270 (2001). Biodiversity of shallow reef fish assemblages in Western Australia using a rapid censusing technique J. Harry Hutchins Department of Aquatic Zoology, Western Australian Museum, Francis Street, Perth, Western Australia 6000, Australia email: [email protected] Abstract -A rapid assessment methodology was used to provide relative abundance data on selected families of Western Australian fishes. Twenty shallow water reef sites were surveyed covering the coastline between the Recherche Archipelago in the south east and the Kimberley in the north. Three groups of atolls located off the Kimberley coast were also included. Eighteen families that best represent the State's nearshore reef fish fauna were targeted. They are: Serranidae, Caesionidae, Lu~anidae, Haemulidae, Lethrinidae, Mullidae, Pempherididae, Kyphosidae, Girellidae, Scorpididae, Chaetodontidae, Pomacanthidae, Pomacentridae, Cheilodactylidae, Labridae, Odacidae, Acanthuridae, and Monacanthidae. Analysis of the dataset using a hierarchical classification technique indicates that four groups of reef fishes are present: a southwest assemblage, a northwest assemblage, an offshore atolls assemblage, and a Kimberley assemblage. The first assemblage is comprised mainly of temperate species, while the latter three are mostly tropical fishes; these two broader groupings narrowly overlap on the west coast between Kalbarri and the Houtman Abrolhos. Evidence of a wide zone of temperate/tropical overlap-as proposed by some previous studies-is not supported by this analysis, nor is the presence of a prominent subtropical fauna on the west coast. Ecological differences of the four assemblages are explored, as well as the impact by the Leeuwin Current on this arrangement. INTRODUCTION western and southern coasts of the State, but could Western Australia occupies about 23 degrees of only provide a brief comparison with other more latitude (12-35°5) covering a large and varied northern areas.
    [Show full text]
  • Lethrinus Reticulatus Valenciennes, 1830 Frequent Synonyms / Misidentifications: None / None
    click for previous page Perciformes: Percoidei: Lethrinidae 3041 Lethrinus reticulatus Valenciennes, 1830 Frequent synonyms / misidentifications: None / None. FAO names: En - Redsnout emperor. Diagnostic characters: Body moderately elongate, its depth 2.8 to 3.3 times in standard length. Head length 1.1 to 1.2 times in body depth, 2.5 to 2.8 times in standard length, dorsal profile near eye convex or nearly straight; snout length about 1.9 to 2.4 times in head length, measured without the lip the snout is 0.8 to 0.9 times in cheek height, its dorsal profile concave, snout angle relative to upper jaw between 50° and 60°; interorbital space flat or concave; posterior nostril a longitudinal oblong opening, closer to orbit than anterior nostril; eye situated close to dorsal profile, its length 3.3 to 4.3 times in head length; cheek height 2.7 to 3.4 times in head length; lateral teeth in jaws conical; outer surface of maxilla usually smooth. Dorsal fin with X spines and 9 soft rays, the third dorsal-fin spine the longest, its length 2 to 2.8 times in body depth; anal fin with III spines and 8 soft rays, the first soft ray usually the longest, its length almost equal to, shorter, or slightly longer than length of base of soft-rayed portion of anal fin and 1.4 to 1.8 times in length of entire anal-fin base; pectoral-fin rays 13; pelvic-fin membranes between rays closest to body without dense melanophores. Lateral-line scales 46 to 48; cheek without scales; 4 ½ scale rows between lateral line and base of middle dorsal-fin spines; 15 or 16 scale rows in transverse series between origin of anal fin and lateral line; usually 15 rows in lower series of scales around caudal peduncle; 7 to 10 scales in supratemporal patch; inner surface of pectoral-fin base without scales; posterior angle of operculum fully scaly.
    [Show full text]
  • Appendices Appendices
    APPENDICES APPENDICES APPENDIX 1 – PUBLICATIONS SCIENTIFIC PAPERS Aidoo EN, Ute Mueller U, Hyndes GA, and Ryan Braccini M. 2015. Is a global quantitative KL. 2016. The effects of measurement uncertainty assessment of shark populations warranted? on spatial characterisation of recreational fishing Fisheries, 40: 492–501. catch rates. Fisheries Research 181: 1–13. Braccini M. 2016. Experts have different Andrews KR, Williams AJ, Fernandez-Silva I, perceptions of the management and conservation Newman SJ, Copus JM, Wakefield CB, Randall JE, status of sharks. Annals of Marine Biology and and Bowen BW. 2016. Phylogeny of deepwater Research 3: 1012. snappers (Genus Etelis) reveals a cryptic species pair in the Indo-Pacific and Pleistocene invasion of Braccini M, Aires-da-Silva A, and Taylor I. 2016. the Atlantic. Molecular Phylogenetics and Incorporating movement in the modelling of shark Evolution 100: 361-371. and ray population dynamics: approaches and management implications. Reviews in Fish Biology Bellchambers LM, Gaughan D, Wise B, Jackson G, and Fisheries 26: 13–24. and Fletcher WJ. 2016. Adopting Marine Stewardship Council certification of Western Caputi N, de Lestang S, Reid C, Hesp A, and How J. Australian fisheries at a jurisdictional level: the 2015. Maximum economic yield of the western benefits and challenges. Fisheries Research 183: rock lobster fishery of Western Australia after 609-616. moving from effort to quota control. Marine Policy, 51: 452-464. Bellchambers LM, Fisher EA, Harry AV, and Travaille KL. 2016. Identifying potential risks for Charles A, Westlund L, Bartley DM, Fletcher WJ, Marine Stewardship Council assessment and Garcia S, Govan H, and Sanders J.
    [Show full text]
  • Species Identification Guide
    SPECIES IDENTIFICATION GUIDE Pilbara/Kimberley Region ABOUT THIS GUIDE a variety of marine and freshwater species including barramundi, tropical emperors, The Pilbara/Kimberley Region extends from sea-perches, trevallies, sooty grunter, the Ashburton River near Onslow to the threadfin, mud crabs, and cods. Northern Territory/South Australia border. The Ord and Fitzroy Rivers are two of the Recreational fishing activity in the region State’s largest river systems. They are shows distinct seasonal peaks, with the highly valued by visiting and local fishers. highest number of visitors during the winter Both river systems are relatively easy to months (dry season). Fishing pressure is access and are focal points for recreational also concentrated around key population fishers pursuing barramundi. centres. An estimated 6.5 per cent of the State’s recreational fishers fished marine Offshore islands, coral reef systems and waters in the Pilbara/Kimberley during continental shelf waters provide species of 1998/99, while a further 1.6 per cent major recreational interest, including many fished fresh waters in the region. members of the demersal sea perch family (Lutjanidae) such as scarlet sea perch and This guide provides a brief overview of red emperor, cods, coral and coronation some of the region’s most popular and trout, sharks, trevally, tuskfish, tunas, sought-after fish species. Fishing rules are mackerels and billfish. contained in a separate guide on fishing in the Pilbara/Kimberley Region. Fishing charters and fishing tournaments have becoming increasingly popular in the FISHING IN THE region over the past five years. The Dampier PILBARA/KIMBERLEY Classic and Broome sailfish tournaments are both state and national attractions, and Within the Pilbara/Kimberley Region, creek WA is gaining an international reputation for systems, mangroves, rivers and ocean the quality of its offshore pelagic sport and beaches provide shore and boat fishing for game fishing.
    [Show full text]
  • APPENDIX 1 Classified List of Fishes Mentioned in the Text, with Scientific and Common Names
    APPENDIX 1 Classified list of fishes mentioned in the text, with scientific and common names. ___________________________________________________________ Scientific names and classification are from Nelson (1994). Families are listed in the same order as in Nelson (1994), with species names following in alphabetical order. The common names of British fishes mostly follow Wheeler (1978). Common names of foreign fishes are taken from Froese & Pauly (2002). Species in square brackets are referred to in the text but are not found in British waters. Fishes restricted to fresh water are shown in bold type. Fishes ranging from fresh water through brackish water to the sea are underlined; this category includes diadromous fishes that regularly migrate between marine and freshwater environments, spawning either in the sea (catadromous fishes) or in fresh water (anadromous fishes). Not indicated are marine or freshwater fishes that occasionally venture into brackish water. Superclass Agnatha (jawless fishes) Class Myxini (hagfishes)1 Order Myxiniformes Family Myxinidae Myxine glutinosa, hagfish Class Cephalaspidomorphi (lampreys)1 Order Petromyzontiformes Family Petromyzontidae [Ichthyomyzon bdellium, Ohio lamprey] Lampetra fluviatilis, lampern, river lamprey Lampetra planeri, brook lamprey [Lampetra tridentata, Pacific lamprey] Lethenteron camtschaticum, Arctic lamprey] [Lethenteron zanandreai, Po brook lamprey] Petromyzon marinus, lamprey Superclass Gnathostomata (fishes with jaws) Grade Chondrichthiomorphi Class Chondrichthyes (cartilaginous
    [Show full text]
  • Sperm Competition and Sex Change: a Comparative Analysis Across Fishes
    ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2007.00050.x SPERM COMPETITION AND SEX CHANGE: A COMPARATIVE ANALYSIS ACROSS FISHES Philip P. Molloy,1,2,3 Nicholas B. Goodwin,1,4 Isabelle M. Cot ˆ e, ´ 3,5 John D. Reynolds,3,6 Matthew J. G. Gage1,7 1Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom 2E-mail: [email protected] 3Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada 4E-mail: [email protected] 5E-mail: [email protected] 6E-mail: [email protected] 7E-mail: [email protected] Received October 2, 2006 Accepted October 26, 2006 Current theory to explain the adaptive significance of sex change over gonochorism predicts that female-first sex change could be adaptive when relative reproductive success increases at a faster rate with body size for males than for females. A faster rate of reproductive gain with body size can occur if larger males are more effective in controlling females and excluding competitors from fertilizations. The most simple consequence of this theoretical scenario, based on sexual allocation theory, is that natural breeding sex ratios are expected to be female biased in female-first sex changers, because average male fecundity will exceed that of females. A second prediction is that the intensity of sperm competition is expected to be lower in female-first sex-changing species because larger males should be able to more completely monopolize females and therefore reduce male–male competition during spawning.
    [Show full text]
  • Zootaxa,Two New Cryptogonimid Genera Beluesca
    Zootaxa 1543: 45–60 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Two new cryptogonimid genera Beluesca n. gen. and Chelediadema n. gen. (Digenea: Cryptogonimidae) from tropical Indo-West Pacific Haemulidae (Perciformes) TERRENCE L. MILLER1 & THOMAS H. CRIBB1,2 1School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia. E-mail: [email protected] 2Centre for Marine Studies, The University of Queensland, Brisbane, Queensland 4072, Australia. E-mail: [email protected] Abstract A survey of the parasites of Indo-West Pacific Haemulidae revealed the presence of three new cryptogonimid (Digenea: Cryptogonimidae) species warranting two new genera, Beluesca littlewoodi n. gen., n. sp. and B. longicolla n. sp. from the intestine and pyloric caeca of Plectorhinchus gibbosus and Chelediadema marjoriae n. gen., n. sp. from the intestine and pyloric caeca of Diagramma labiosum, P. albovittatus and P. gibbosus from Heron and Lizard Islands off the Great Barrier Reef, Australia. Beluesca n. gen. is distinguished from all other cryptogonimid genera by the combination of an elongate body, funnel-shaped oral sucker, relatively small number of large oral spines, highly lobed ovary, opposite to slightly oblique testes, uterine loops that are restricted to the hindbody and extend well posterior to the testes and vitelline follicles that may extend from the ovary into the forebody, but do not extend anterior to the intestinal bifurca- tion. Pseudallacanthochasmus plectorhynchi Mamaev, 1970 is transferred to Beluesca as B. plectorhyncha (Mamaev, 1970) n. comb. based on morphological and ecological (host preference) characteristics.
    [Show full text]
  • Commercial Fish ELISA Kits Have a Limited Capacity to Detect Different Fish Species and Their Products
    Ruethers Thimo (Orcid ID: 0000-0002-0856-3452) Koeberl Martina (Orcid ID: 0000-0002-1790-743X) Commercial fish ELISA kits have a limited capacity to detect different fish species and their products Short title: Limited capacity of detecting fish utilizing ELISA technology Authorship: Thimo Ruethersa,b,c,d, Aya C. Takia,b,c,d, Jasmit Khangurhae, James Robertse, Saman Buddhadasae, Dean Clarkee, Claire E. Hedgese, Dianne E. Campbellb,f,g, Sandip D. Kamatha,b,c,d, Andreas L. Lopataa,b,c,d, Martina Koeberle† Authors’ Affiliation aMolecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, 1 James Cook Dr, Douglas, Queensland 4814, Australia; bCentre for Food and Allergy Research, Murdoch Children’s Research Institute, Flemington Rd, Parkville, Victoria 3052, Australia; cAustralian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Dr, Douglas, Queensland 4814, Australia; dCentre for Sustainable Tropical Fisheries and Aquaculture, Faculty of Science and Engineering, James Cook University, 1 James Cook Dr, Douglas, Queensland 4814, Australia; eNational Measurement Institute, 1/153 Bertie Street, Port Melbourne, Victoria 3207, Australia fChildren’s Hospital at Westmead, Allergy and Immunology, Locked Bag, Westmead, New South Wales 2145, Australia; This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences
    [Show full text]
  • Using a Collaborative Data Collection Method to Update Life-History Values for Snapper And
    bioRxiv preprint doi: https://doi.org/10.1101/655571; this version posted May 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Using a collaborative data collection method to update life-history values for snapper and 2 grouper in Indonesia’s deep-slope demersal fishery 3 4 Elle Wibisono1*, Peter Mous2, Austin Humphries1,3 5 1 Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, 6 Kingston, Rhode Island, USA 7 2 The Nature Conservancy Indonesia Fisheries Conservation Program, Bali, Indonesia 8 3 Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, 9 USA 10 11 12 *Corresponding author 13 E-mail: [email protected] (EW) 14 15 1 bioRxiv preprint doi: https://doi.org/10.1101/655571; this version posted May 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 16 Abstract 17 The deep-slope demersal fishery that targets snapper and grouper species is an important fishery 18 in Indonesia. Boats operate at depths between 50-500 m using drop lines and bottom long lines. 19 There are few data, however, on the basic characteristics of the fishery which impedes accurate 20 stock assessments and the establishment of harvest control rules.
    [Show full text]
  • NORTH COAST FISH IDENTIFICATION GUIDE Ben M
    NORTH COAST FISH IDENTIFICATION GUIDE Ben M. Rome and Stephen J. Newman Department of Fisheries 3rd floor SGIO Atrium 168-170 St George’s Terrace PERTH WA 6000 Telephone (08) 9482 7333 Facsimile (08) 9482 7389 Website: www.fish.wa.gov.au ABN: 55 689 794 771 Published by Department of Fisheries, Perth, Western Australia. Fisheries Occasional Publications No. 80, September 2010. ISSN: 1447 - 2058 ISBN: 1 921258 90 X Information about this guide he intention of the North Coast Fish Identification Guide is to provide a simple, Teasy to use manual to assist commercial, recreational, charter and customary fishers to identify the most commonly caught marine finfish species in the North Coast Bioregion. This guide is not intended to be a comprehensive taxonomic fish ID guide for all species. It is anticipated that this guide will assist fishers in providing a more comprehensive species level description of their catch and hence assist scientists and managers in understanding any variation in the species composition of catches over both spatial and temporal scales. Fish taxonomy is a dynamic and evolving field. Advances in molecular analytical techniques are resolving many of the relationships and inter-relationships among species, genera and families of fishes. In this guide, we have used and adopted the latest taxonomic nomenclature. Any changes to fish taxonomy will be updated and revised in subsequent editions. The North Coast Bioregion extends from the Ashburton River near Onslow to the Northern Territory border. Within this region there is a diverse range of habitats from mangrove creeks, rivers, offshore islands, coral reef systems to continental shelf and slope waters.
    [Show full text]
  • Inventory and Assessment of Marine Fishes in the Island Towns Of
    J.Bio.Innov 8(3), pp: 391-398, 2019 |ISSN 2277-8330 (Electronic) Galenzoga Inventory andCollege Assessment of Science, University of Marine of Eastern Philippines,Fishes in the Island Towns of Northern Samar, Philippines Divina Minguez-Galenzoga The Coral Triangle, which includes the Philippines, is the Abstract heartland of marine biodiversity. There is relatively poor The study aimed to identify the species documentation for most groups other than fishes and corals. Even with fishes, there is a scarcity of information from specific composition of marine fishes in the island locations within the Triangle [2]. towns of Northern Samar, Philippines; In the coastal areas reside about 59% of the country’s total determine their abundance and population and this is where about 70% of the 1,525 of the distribution; point out their local names; municipalities in the country, including 10 of the largest cities are located. This indicates how the lives of most Filipinos are and identify the fishing gears used by closely linked with the sea and its biodiversity [3]. fishermen. Sampling areas included the five Thus, this research study is pursued to add to the collective island towns of the province; i.e. Biri, Capul, data of information for marine fishes in island towns. Laoang, San Antonio, and San Vicente. for three years (2016 – 2018) during summer I. OBJECTIVES months. Data were gathered using The objectives of this study are: 1. To identify the species composition of marine fishes in the translated questionnaires. All fishes caught island towns of Northern Samar, Philippines; and sold were included in the study.
    [Show full text]