Cleaner Shrimp As Biocontrols in Aquaculture

Total Page:16

File Type:pdf, Size:1020Kb

Cleaner Shrimp As Biocontrols in Aquaculture ResearchOnline@JCU This file is part of the following work: Vaughan, David Brendan (2018) Cleaner shrimp as biocontrols in aquaculture. PhD Thesis, James Cook University. Access to this file is available from: https://doi.org/10.25903/5c3d4447d7836 Copyright © 2018 David Brendan Vaughan The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owners of any third party copyright material included in this document. If you believe that this is not the case, please email [email protected] Cleaner shrimp as biocontrols in aquaculture Thesis submitted by David Brendan Vaughan BSc (Hons.), MSc, Pr.Sci.Nat In fulfilment of the requirements for Doctorate of Philosophy (Science) College of Science and Engineering James Cook University, Australia [31 August, 2018] Original illustration of Pseudanthias squamipinnis being cleaned by Lysmata amboinensis by D. B. Vaughan, pen-and-ink Scholarship during candidature Peer reviewed publications during candidature: 1. Vaughan, D.B., Grutter, A.S., and Hutson, K.S. (2018, in press). Cleaner shrimp are a sustainable option to treat parasitic disease in farmed fish. Scientific Reports [IF = 4.122]. 2. Vaughan, D.B., Grutter, A.S., and Hutson, K.S. (2018, in press). Cleaner shrimp remove parasite eggs on fish cages. Aquaculture Environment Interactions, DOI:10.3354/aei00280 [IF = 2.900]. 3. Vaughan, D.B., Grutter, A.S., Ferguson, H.W., Jones, R., and Hutson, K.S. (2018). Cleaner shrimp are true cleaners of injured fish. Marine Biology 164: 118, DOI:10.1007/s00227-018-3379-y [IF = 2.391]. 4. Trujillo-González, A., Becker, J., Vaughan, D.B., and Hutson, K.S. (2018). Monogenean parasites infect ornamental fish imported to Australia. Parasitology Research, DOI: 10.1007/s00436-018-5776-z [IF = 2.329]. 5. Hutson, K.S., Brazenor, A.K., Vaughan, D.B., and Trujillo-González, A. (2018). Monogenean parasite cultures: current techniques and recent advances. Advances in Parasitology 99, 61–91 [IF 4.255]. 6. Vaughan, D.B., and Christison, K.W. (2017). Anoplodiscus Sonsino, 1890: a new Australian species, and the first African record from South African hosts. Systematic Parasitology 94, 891–906 [IF 1.316]. 7. Bastos Gomes, G., Miller, T.L., Vaughan, D.B., Jerry, D.R., McCowan, C., Bradley, T., and Hutson, K.S. (2017). Evidence of multiple species of Chilodonella (Protozoa, Ciliophora) infecting Australian farmed freshwater fishes. Veterinary Parasitology 237, 8–16 [IF. 2.278]. i Scholarship during Candidature 8. Penning, M.R., Vaughan, D.B., Fivaz, K., and McEwan, T. (2017). Chapter 32. Chemical immobilization of elasmobranchs at uShaka Sea World in Durban, South Africa. In: M. Smith, D. Warmolts, D. Thoney, R. Hueter, M. Murray, and J. Ezcurra (Eds). The Elasmobranch Husbandry Manual 2: Recent Advances in the Care of Sharks, Rays and their Relatives, Ohio Biological Survey, USA, viii + 504 p. 9. Vaughan, D.B., Grutter, A.S., Costello, M.J., and Hutson, K.S. (2016). Cleaner fishes and shrimp diversity and a re-evaluation of cleaning symbioses. Fish and Fisheries, DOI: 10.1111/faf.12198 [IF 9.013]. 10. Vaughan, D.B., Chisholm, L.A., and Hansen, H. (2016). Electrocotyle whittingtoni n. gen., n. sp. (Monogenea: Monocotylidae: Heterocotylinae) from the gills of a captive onefin electric ray, Narke capensis (Narkidae) at Two Oceans Aquarium, Cape Town, South Africa. Parasitology Research 115, 3575–3584 [IF = 2.329]. Symposium presentations during candidature (presenter underlined): 1. Vaughan, D.B., Grutter, A.S., Ferguson, H., and Hutson, K.S. (2017). Cleaner shrimp as biocontrols. Fourth Australasian Scientific Conference on Aquatic Animal Health, Cairns, Australia, 12 July, 2017. 2. Hutson, K.S., Grutter, A.S., Militz, T., and Vaughan, D.B. (2016). Interactions between cleaners and client fishes. Joint Australian Society of Fish Biology and Oceania Chondrichthyan Society conference, Tasmania, Australia, 4–7 September, 2016. 3. Mitchell, D., Christison K.W., van As, L., and Vaughan, D.B. (2016). Hexabothriid parasites from Rajidae species of South Africa. 45th Parasitological Society of Southern Africa Conference, South Africa. 28–30 August, 2016. 4. Vaughan, D.B., Trujillo-González, A., and Hutson, K.S. (2016). Cleaner shrimp: humble janitors, double agents or skilled surgeons? 3rd International Workshop on Symbiotic Copepoda, Heron Island, Australia. 10–16 July, 2016. ii Scholarship during Candidature 5. Christison, K.W., and Vaughan, D.B. (2015). Amyloodinium ocellatum in captive fish populations and its potential impacts for finfish farming in South Africa. 12th Conference of the Aquaculture Association of Southern Africa. South Africa. 27 September–2 October, 2015. 6. Vaughan, D.B., and Christison, K.W. (2015). An investigation of Amyloodinium ocellatum in captive fish populations in South Africa and its potential impacts for finfish farming. 3rd Fisheries Research and Development Corporation Australasian Aquatic Animal Health Scientific Conference. Cairns, Australia. 6–10 July, 2015. iii Scholarship during Candidature Statement on the contribution of others Financial support for this research was provided by Dr Kate Hutson, The Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, supplemented by the Competitive Research Training Grant award (2018), James Cook University. I was awarded the competitive International Post-graduate Research Scholarship (Ausralian Government; James Cook University) and the Prestige Scholarship (James Cook University) in 2015 for a period of three and a half years. The former covered the cost of study at James Cook University, and Overseas Health Cover. Both scholarships contributed a living stipend. Chapter 2; contributors: Alexandra S. Grutter, Mark J. Costello, Kate S. Hutson. Alexandra Grutter assisted with the conceptual idea and final editing of the associated manuscript. Mark Costello created the original version of Figure 2.2, suggested the inclusion of Figures 2.4 and 2.5, and assisted with final editing. Kate Hutson assisted with the conceptual idea, suggested the inclusion of Figure 2.1, provided the financial assistance, and provided editorial support. Citation: Vaughan, D.B., Grutter, A.S., Costello, M.J., and Hutson, K.S. (2016). Cleaner fishes and shrimp diversity and a re-evaluation of cleaning symbioses. Fish and Fisheries, DOI:10.1111/faf.12198. Chapter 3; contributors: Alexandra S. Grutter, Hugh W. Ferguson, Rhondda Jones, Kate S. Hutson. Alexandra Grutter assisted with the conceptual idea and final editing of the associated manuscript. Hugh Ferguson provided pathological interpretation of duplicate histological iv Statement on the Contribution of Others sections and contributed editorial support. Rhondda Jones suggested all statistical analyses, and assisted with the interpretation of the model outputs. Kate Hutson assisted with the conceptual idea and experimental design, provided the financial assistance for the purchase of livestock, and provided editorial support. Citation: Vaughan, D.B., Grutter, A.S., Ferguson, H.W., Jones, R., and Hutson, K.S. (2018). Cleaner shrimp are true cleaners of injured fish. Marine Biology 164, 118, DOI:10.1007/s00227-018-3379-y. Chapter 4; contributors: Alexandra S. Grutter, Kate S. Hutson. Alexandra Grutter provided editorial and focal direction support. Kate Hutson assisted with the conceptual idea and experimental design, provided the financial assistance for the purchase of livestock, and provided editorial support. Citation: Vaughan, D.B., Grutter, A.S., and Hutson, K.S. (2018, in press). Cleaner shrimp are a sustainable option to treat parasitic disease in farmed fish. Scientific Reports. Chapter 5; contributors: Alexandra S. Grutter, Kate S. Hutson. Alexandra Grutter provided editorial support. Kate Hutson assisted with the conceptual idea and experimental design, provided the financial assistance for the purchase of livestock, and provided editorial support. Citation: Vaughan, D.B., Grutter, A.S., and Hutson, K.S. (2018). Cleaner shrimp remove parasite eggs on fish cages. Aquaculture Environment Interactions, DOI:10.3354/aei00280. Appendix 6; contributors: Alexandra S. Grutter, Dianne Bray, Karen Cheney, Justin Marshall, and Kate S. Hutson. Alexandra Grutter assisted with the conceptual design, and provided editorial support. Kate Hutson and Dianne Bray assisted with the conceptual idea and experimental design. Kate v Statement on the Contribution of Others Hutson provided the financial assistance for the purchase of hardware and livestock, and provided editorial support. Permission to use Fig. A6.1 (XNite UV filter spectral analysis) was granted by Dan Llewellyn, LDP LLC www.MaxMax.com, who also supplied the image electronically. Permission to use Fig. A6.3 (unpublished Stenopus hispidus spectral reflectance) was granted by Karen Cheney and Justin Marshall, who also supplied the image electronically. Copyright note Every reasonable effort has been made to gain permission and to acknowledge the owners of copyright material. I would be pleased to hear from any copyright owner who has been omitted or incorrectly acknowledged. vi Statement on the Contribution of Others Statement on animal ethics and welfare One thousand, four hundred and thirty six individual animals, representing 400 Epinephelus coioides, 520 E. lanceolatus, 150 Lates calcarifer, 126 female Pseudanthias squamipinnis, 30 Lysmata amboinensis, 150 L. vittata, 30 Stenopus hispidus, and 30 Urocaridella antonbruunii, were used to generate
Recommended publications
  • Thais Peixoto Macedo DE LIMPADORES a ORNAMENTOS DE AQUÁRIO: a Diversidade De Camarões Recifais Em Unidades De Conservação D
    Thais Peixoto Macedo DE LIMPADORES A ORNAMENTOS DE AQUÁRIO: A diversidade de camarões recifais em Unidades de Conservação da costa brasileira Trabalho de Conclusão de Curso apresentado ao programa de graduação do Curso de Ciências Biológicas da Universidade Federal de Santa Catarina em cumprimento a requisito parcial para a obtenção do grau de bacharel em Ciências Biológicas. Orientadora: Profa. Dra. Andrea Santarosa Freire Florianópolis 2018 Ficha de identificação da obra elaborada pelo autor através do Programa de Geração Automática da Biblioteca Universitária da UFSC. Macedo, Thais Peixoto DE LIMPADORES A ORNAMENTOS DE AQUÁRIO : A diversidade de camarões recifais em Unidades de Conservação da costa brasileira / Thais Peixoto Macedo ; orientadora, Andrea Santarosa Freire, 2018. 65 p. Trabalho de Conclusão de Curso (graduação) - Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Graduação em Ciências Biológicas, Florianópolis, 2018. Inclui referências. 1. Ciências Biológicas. 2. Diversidade taxonômica. 3. Padrões de diversidade. 4. Lista de espécies. 5. Caridea e Stenopodidea. I. Freire, Andrea Santarosa. II. Universidade Federal de Santa Catarina. Graduação em Ciências Biológicas. III. Título. Thais Peixoto Macedo DE LIMPADORES A ORNAMENTOS DE AQUÁRIO: A diversidade de camarões recifais em Unidades de Conservação da costa brasileira Este Trabalho de Conclusão de Curso foi julgado adequado para obtenção do Título de “Bacharel em Ciências Biológicas” e aprovada em sua forma final pela Universidade Federal de Santa Catarina Florianópolis, 6 de dezembro de 2018. ________________________ Prof. Dr. Carlos Zanetti Coordenador do Curso Banca Examinadora: ________________________ Prof.ª Dr.ª Andrea Santarosa Freire Orientadora Universidade Federal de Santa Catarina ________________________ Prof. Dr. Sergio Floeter Universidade Federal de Santa Catarina ________________________ Tammy Arai Iwasa Universidade Estadual de Campinas AGRADECIMENTOS Ciência não se faz sozinho.
    [Show full text]
  • (Sea of Okhotsk, Sakhalin Island): 2. Cyclopteridae−Molidae Families
    ISSN 0032-9452, Journal of Ichthyology, 2018, Vol. 58, No. 5, pp. 633–661. © Pleiades Publishing, Ltd., 2018. An Annotated List of the Marine and Brackish-Water Ichthyofauna of Aniva Bay (Sea of Okhotsk, Sakhalin Island): 2. Cyclopteridae−Molidae Families Yu. V. Dyldina, *, A. M. Orlova, b, c, d, A. Ya. Velikanove, S. S. Makeevf, V. I. Romanova, and L. Hanel’g aTomsk State University (TSU), Tomsk, Russia bRussian Federal Research Institute of Fishery and Oceanography (VNIRO), Moscow, Russia cInstitute of Ecology and Evolution, Russian Academy of Sciences (IPEE), Moscow, Russia d Dagestan State University (DSU), Makhachkala, Russia eSakhalin Research Institute of Fisheries and Oceanography (SakhNIRO), Yuzhno-Sakhalinsk, Russia fSakhalin Basin Administration for Fisheries and Conservation of Aquatic Biological Resources—Sakhalinrybvod, Aniva, Yuzhno-Sakhalinsk, Russia gCharles University in Prague, Prague, Czech Republic *e-mail: [email protected] Received March 1, 2018 Abstract—The second, final part of the work contains a continuation of the annotated list of fish species found in the marine and brackish waters of Aniva Bay (southern part of the Sea of Okhotsk, southern part of Sakhalin Island): 137 species belonging to three orders (Perciformes, Pleuronectiformes, Tetraodon- tiformes), 31 family, and 124 genera. The general characteristics of ichthyofauna and a review of the commer- cial fishery of the bay fish, as well as the final systematic essay, are presented. Keywords: ichthyofauna, annotated list, conservation status, commercial importance, marine and brackish waters, Aniva Bay, southern part of the Sea of Okhotsk, Sakhalin Island DOI: 10.1134/S0032945218050053 INTRODUCTION ANNOTATED LIST OF FISHES OF ANIVA BAY The second part concludes the publication on the 19.
    [Show full text]
  • Biodiversity of Shallow Reef Fish Assemblages in Western Australia Using a Rapid Censusing Technique
    Records of the Western Australian Museum 20: 247-270 (2001). Biodiversity of shallow reef fish assemblages in Western Australia using a rapid censusing technique J. Harry Hutchins Department of Aquatic Zoology, Western Australian Museum, Francis Street, Perth, Western Australia 6000, Australia email: [email protected] Abstract -A rapid assessment methodology was used to provide relative abundance data on selected families of Western Australian fishes. Twenty shallow water reef sites were surveyed covering the coastline between the Recherche Archipelago in the south east and the Kimberley in the north. Three groups of atolls located off the Kimberley coast were also included. Eighteen families that best represent the State's nearshore reef fish fauna were targeted. They are: Serranidae, Caesionidae, Lu~anidae, Haemulidae, Lethrinidae, Mullidae, Pempherididae, Kyphosidae, Girellidae, Scorpididae, Chaetodontidae, Pomacanthidae, Pomacentridae, Cheilodactylidae, Labridae, Odacidae, Acanthuridae, and Monacanthidae. Analysis of the dataset using a hierarchical classification technique indicates that four groups of reef fishes are present: a southwest assemblage, a northwest assemblage, an offshore atolls assemblage, and a Kimberley assemblage. The first assemblage is comprised mainly of temperate species, while the latter three are mostly tropical fishes; these two broader groupings narrowly overlap on the west coast between Kalbarri and the Houtman Abrolhos. Evidence of a wide zone of temperate/tropical overlap-as proposed by some previous studies-is not supported by this analysis, nor is the presence of a prominent subtropical fauna on the west coast. Ecological differences of the four assemblages are explored, as well as the impact by the Leeuwin Current on this arrangement. INTRODUCTION western and southern coasts of the State, but could Western Australia occupies about 23 degrees of only provide a brief comparison with other more latitude (12-35°5) covering a large and varied northern areas.
    [Show full text]
  • Cobia Database Articles Final Revision 2.0, 2-1-2017
    Revision 2.0 (2/1/2017) University of Miami Article TITLE DESCRIPTION AUTHORS SOURCE YEAR TOPICS Number Habitat 1 Gasterosteus canadus Linné [Latin] [No Abstract Available - First known description of cobia morphology in Carolina habitat by D. Garden.] Linnaeus, C. Systema Naturæ, ed. 12, vol. 1, 491 1766 Wild (Atlantic/Pacific) Ichthyologie, vol. 10, Iconibus ex 2 Scomber niger Bloch [No Abstract Available - Description and alternative nomenclature of cobia.] Bloch, M. E. 1793 Wild (Atlantic/Pacific) illustratum. Berlin. p . 48 The Fisheries and Fishery Industries of the Under this head was to be carried on the study of the useful aquatic animals and plants of the country, as well as of seals, whales, tmtles, fishes, lobsters, crabs, oysters, clams, etc., sponges, and marine plants aml inorganic products of U.S. Commission on Fisheries, Washington, 3 United States. Section 1: Natural history of Goode, G.B. 1884 Wild (Atlantic/Pacific) the sea with reference to (A) geographical distribution, (B) size, (C) abundance, (D) migrations and movements, (E) food and rate of growth, (F) mode of reproduction, (G) economic value and uses. D.C., 895 p. useful aquatic animals Notes on the occurrence of a young crab- Proceedings of the U.S. National Museum 4 eater (Elecate canada), from the lower [No Abstract Available - A description of cobia in the lower Hudson Eiver.] Fisher, A.K. 1891 Wild (Atlantic/Pacific) 13, 195 Hudson Valley, New York The nomenclature of Rachicentron or Proceedings of the U.S. National Museum Habitat 5 Elacate, a genus of acanthopterygian The universally accepted name Elucate must unfortunately be supplanted by one entirely unknown to fame, overlooked by all naturalists, and found in no nomenclator.
    [Show full text]
  • Journal of the Marine Biological Association of the United Kingdom
    Journal of the Marine Biological Association of the United Kingdom http://journals.cambridge.org/MBI Additional services for Journal of the Marine Biological Association of the United Kingdom: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here Patterns of cleaning behaviour on coral reef fish by the anemoneshrimp Ancylomenes pedersoni Lindsay K. Huebner and Nanette E. Chadwick Journal of the Marine Biological Association of the United Kingdom / Volume 92 / Issue 07 / November 2012, pp 1557 ­ 1562 DOI: 10.1017/S0025315411001822, Published online: 06 December 2011 Link to this article: http://journals.cambridge.org/abstract_S0025315411001822 How to cite this article: Lindsay K. Huebner and Nanette E. Chadwick (2012). Patterns of cleaning behaviour on coral reef fish by the anemoneshrimp Ancylomenes pedersoni. Journal of the Marine Biological Association of the United Kingdom, 92, pp 1557­1562 doi:10.1017/S0025315411001822 Request Permissions : Click here Downloaded from http://journals.cambridge.org/MBI, IP address: 128.232.233.62 on 09 Nov 2012 Journal of the Marine Biological Association of the United Kingdom, 2012, 92(7), 1557–1562. # Marine Biological Association of the United Kingdom, 2011 doi:10.1017/S0025315411001822 Patterns of cleaning behaviour on coral reef fish by the anemoneshrimp Ancylomenes pedersoni lindsay k. huebner and nanette e. chadwick Department of Biological Sciences, 101 Rouse Life Sciences Building, Auburn University, Auburn, Alabama 36849 Little is known about the cleaning behaviour of shrimps in comparison to that of cleaner fish, and only recently have cleaner shrimps been shown to remove parasites effectively from coral reef fish. Here we describe patterns of cleaning interactions between Pederson shrimp Ancylomenes pedersoni and fish clients in St Thomas, US Virgin Islands.
    [Show full text]
  • Study on the Potential of Aquaculture in ACP Countries an Overview Report of the Three Regions the Institute of Aquaculture, University of Stirling, Scotland, UK
    Study on the Potential of Aquaculture in ACP countries An Overview Report of the Three Regions The Institute of Aquaculture, University of Stirling, Scotland, UK. Authors: William Leschen, David Little Email [email protected] [email protected] www.aqua.stir.ac.uk September 2014 Cover Photos: Clockwise from top left: The (Mud) Crab Company Fiji July 2014, Yalelo Cage Tilapia Producer Siavonga, Zambia July 2014, J Hunter Fiji Pearls Savusavu Fiji July 2014, Herman Lee King Tilapia, Valencia River, Arima, Trinidad and Tobago August 2014. Contents Executive Summary………………………………………………………………………………………………………….. 6 Introduction and Rationale………………………………………………………………………………………………… 8 Methodology for the Study Report…………………………………………………………………………………… 10 Chapter 1. Initial overview of overall global aquaculture sector, its recent growth, key trends in production and value chains, policy and regulatory mechanisms……………………… 12 2. More specific overview of aquaculture development in ACP. Findings and impacts of ACP aquaculture programme so far………………………………. …………………………………………………. 17 3. Evidence base for contribution of aquaculture to food and nutrition security and poverty alleviation in developing countries…………………………………………………………………………. 29 4. Selected case studies of successful and durable aquaculture development (of different scales) across each of the three ACP regions. From each then identifying specific opportunities for modifying and diffusing out to new locations and beneficiaries…………………………………………………………………………………………………………………… 33 5. Key factors in addressing the
    [Show full text]
  • Assessing the Effectiveness of Surrogates for Conserving Biodiversity in the Port Stephens-Great Lakes Marine Park
    Assessing the effectiveness of surrogates for conserving biodiversity in the Port Stephens-Great Lakes Marine Park Vanessa Owen B Env Sc, B Sc (Hons) School of the Environment University of Technology Sydney Submitted in fulfilment for the requirements of the degree of Doctor of Philosophy September 2015 Certificate of Original Authorship I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used as indicated in the thesis. Signature of Student: Date: Page ii Acknowledgements I thank my supervisor William Gladstone for invaluable support, advice, technical reviews, patience and understanding. I thank my family for their encouragement and support, particularly my mum who is a wonderful role model. I hope that my children too are inspired to dream big and work hard. This study was conducted with the support of the University of Newcastle, the University of Technology Sydney, University of Sydney, NSW Office of the Environment and Heritage (formerly Department of Environment Climate Change and Water), Marine Park Authority NSW, NSW Department of Primary Industries (Fisheries) and the Integrated Marine Observing System (IMOS) program funded through the Department of Industry, Climate Change, Science, Education, Research and Tertiary Education. The sessile benthic assemblage fieldwork was led by Dr Oscar Pizarro and undertaken by the University of Sydney’s Australian Centre for Field Robotics.
    [Show full text]
  • Appendices Appendices
    APPENDICES APPENDICES APPENDIX 1 – PUBLICATIONS SCIENTIFIC PAPERS Aidoo EN, Ute Mueller U, Hyndes GA, and Ryan Braccini M. 2015. Is a global quantitative KL. 2016. The effects of measurement uncertainty assessment of shark populations warranted? on spatial characterisation of recreational fishing Fisheries, 40: 492–501. catch rates. Fisheries Research 181: 1–13. Braccini M. 2016. Experts have different Andrews KR, Williams AJ, Fernandez-Silva I, perceptions of the management and conservation Newman SJ, Copus JM, Wakefield CB, Randall JE, status of sharks. Annals of Marine Biology and and Bowen BW. 2016. Phylogeny of deepwater Research 3: 1012. snappers (Genus Etelis) reveals a cryptic species pair in the Indo-Pacific and Pleistocene invasion of Braccini M, Aires-da-Silva A, and Taylor I. 2016. the Atlantic. Molecular Phylogenetics and Incorporating movement in the modelling of shark Evolution 100: 361-371. and ray population dynamics: approaches and management implications. Reviews in Fish Biology Bellchambers LM, Gaughan D, Wise B, Jackson G, and Fisheries 26: 13–24. and Fletcher WJ. 2016. Adopting Marine Stewardship Council certification of Western Caputi N, de Lestang S, Reid C, Hesp A, and How J. Australian fisheries at a jurisdictional level: the 2015. Maximum economic yield of the western benefits and challenges. Fisheries Research 183: rock lobster fishery of Western Australia after 609-616. moving from effort to quota control. Marine Policy, 51: 452-464. Bellchambers LM, Fisher EA, Harry AV, and Travaille KL. 2016. Identifying potential risks for Charles A, Westlund L, Bartley DM, Fletcher WJ, Marine Stewardship Council assessment and Garcia S, Govan H, and Sanders J.
    [Show full text]
  • Reef Fishes Use Sea Anemones As Visual Cues for Cleaning Interactions with Shrimp
    Journal of Experimental Marine Biology and Ecology 416–417 (2012) 237–242 Contents lists available at SciVerse ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Reef fishes use sea anemones as visual cues for cleaning interactions with shrimp Lindsay K. Huebner ⁎, Nanette E. Chadwick Department of Biological Sciences, 101 Rouse Life Sciences Building, Auburn University, Auburn, AL 36849, USA article info abstract Article history: Marine cleaners benefit diverse fish clients via removal of ectoparasites, yet little is known about how fishes Received 17 August 2011 locate small, inconspicuous cleaner shrimps on coral reefs. Pederson shrimp Ancylomenes pedersoni are effec- Received in revised form 19 December 2011 tive cleaners in the Caribbean Sea, and additionally form obligate associations with corkscrew sea anemones Accepted 5 January 2012 Bartholomea annulata, which also serve as hosts to a variety of other crustacean symbionts. We examined the Available online 24 January 2012 visual role of B. annulata to reef fishes during cleaning interactions with A. pedersoni by comparing anemone characteristics with fish visitation rates, and by manipulating the visibility of anemones and cleaner shrimp in Keywords: fi fi Ancylomenes pedersoni eld experiments using mesh covers. Rates of visitation by shes to cleaning stations increased primarily Cleaner shrimp with anemone body size and the total number of crustacean symbionts, but did not change consistently in Cleaning symbiosis response to covers. Fishes posed for cleaning at stations only where anemones remained visible, regardless Client fishes of whether shrimp were visible. Shrimp at stations where anemones were covered performed fewer cleaning Sea anemone interactions with fishes, as fishes did not continue to pose when anemones were not visible.
    [Show full text]
  • Volume 19 Winter 2002 the Coral Hind, Lapu Lapu, Or Miniata
    FREE ISSN 1045-3520 Volume 19 Winter 2002 Introducing a Zonal Based Natural Photo by Robert Fenner Filtration System for Reef Aquariums by Steve Tyree Quite a few natural based filtration systems have been devised by reef aquarists and scientists in the past twenty years. Some systems utilized algae to remove organic and inorganic pollutants from the reef aquarium; others utilized sediment beds. The natural filtration system that I have been researching and designing is drastically different from both of these types. No external algae are used. I believe that all the algae a functional reef requires are already growing in the reef, even if they are not apparent. They include micro-algae, turf algae, coralline algae, single-cell algae within photosynthetic corals, and cyanobacteria with photosynthetic capabilities. Most of the systems that I have set up to research this concept have not included sediment beds. All organic matter and pollutants are recycled and processed within the system by macro-organisms. Sediment beds have not been utilized to process excess Miniata Grouper, Cephalopholis miniata organic debris, but that does not prevent other aquarists from adding them. The main concept behind my system is the use of living sponges, sea squirts, and filter feeders for filtration. Sponges consume bacteria, can reach about twenty inches in length in the wild, and dissolved and colloidal organic material, micro-plankton, The Coral Hind, Lapu about half that in captivity. It is undoubtedly the most and fine particulate matter. Sea squirts consume large Lapu, or Miniata prized member of the genus for the aquarium trade.
    [Show full text]
  • Real Damage to the Shrimp. It Is Best to Keep Bongo Shrimp Singly Or in Established Pairs
    real damage to the shrimp. It is best to keep Bongo Shrimp singly or in established pairs. PISTOL SHRIMP Pistol shrimp are very different from most other species of shrimp in that they burrow and have the ability to stun and kill their various prey without ever touching them. Most pistol shrimp are in the Alpheidae family and Alpheus genus and are found all over the world. Pistol shrimp get their name from their particular ability to snap their modified larger claw in order to injure prey or predators. The snap is so powerful that it creates a microscopic bubble which shoots out of the claw towards its target. The bubble moves so fast that scientists have recorded the sound to be about 218 Tiger Pistol Shrimp (Alpheus bellulus). Image by Sabine Penisson. decibels, comparable to the sound of a gun-shot. The temperature inside the micro-bubble has been reported to reach approximately 4,700ºC, which is nearly the temperature of the surface of the sun Bongo Shrimp is both a much rarer and more cryptic starfish- (approximately 5,500ºC). The most common species in the trade eating species encountered infrequently in the trade. They are also are Randall’s Pistol Shrimp (Alpheus randalli), Tiger Pistol Shrimp intensely captivating. Bongo Shrimp are orange, black, and white (Alpheus bellulus), Anemone Pistol Shrimp (Alpheus armatus), and and sometimes have tiny blue spots. They grow to about ¾ of an Bull’s Eye Pistol Shrimp (Alpheus soror). A more rarely encountered inch in length and are best kept in nano or pico aquariums.
    [Show full text]
  • Systématique Et Ecologie Des Crustacés Décapodes Et Stomatopodes De Polynésie Française Joseph Poupin
    Systématique et Ecologie des Crustacés Décapodes et Stomatopodes de Polynésie Française Joseph Poupin To cite this version: Joseph Poupin. Systématique et Ecologie des Crustacés Décapodes et Stomatopodes de Polynésie Française. Ecologie, Environnement. Université de Perpignan, 2005. tel-00085049 HAL Id: tel-00085049 https://tel.archives-ouvertes.fr/tel-00085049 Submitted on 11 Jul 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université de Perpignan - Faculté des Sciences Mémoire présenté par Joseph Poupin à L’Université de Perpignan Pour l’obtention d’une Habilitation à Diriger les Recherches Titre Systématique et Ecologie des Crustacés Décapodes et Stomatopodes de Polynésie Française. Soutenance effectuée le mercredi 25 mai 2005 à l’Institut de Recherche de l’Ecole Navale Composition du jury : • Claramunt Christophe, examinateur • Galzin René, rapporteur • Hily Christian, rapporteur • Lemaitre Rafael, examinateur • Van Wormoudth Alain, rapporteur Mémoire accompagné d’un fascicule séparé sur les Travaux et Perspectives de Recherche de Mr. POUPIN (56 pp, 17 figs). A l’issue de la soutenance, le 25 mai 2005, l’Habilitation à Diriger les Recherches a été attribuée au candidat. Version du mémoire corrigée suivant les recommandations du jury.
    [Show full text]