Corynebacteria As a Cause of Pulmonary Infection: a Case Series and Literature Review Katharine Yang1, Robert L

Total Page:16

File Type:pdf, Size:1020Kb

Corynebacteria As a Cause of Pulmonary Infection: a Case Series and Literature Review Katharine Yang1, Robert L Yang et al. Pneumonia (2018) 10:10 https://doi.org/10.1186/s41479-018-0054-5 Pneumonia CASEREPORT Open Access Corynebacteria as a cause of pulmonary infection: a case series and literature review Katharine Yang1, Robert L. Kruse1, Weijie V. Lin1 and Daniel M. Musher1,2* Abstract Background: In most cases of community-acquired pneumonia (CAP), an etiologic agent is not determined; the most common report from the microbiological evaluation of sputum cites “normal respiratory flora.” Non-diphtheria Corynebacterium spp., a component of this flora, is commonly viewed as a contaminant, but it may be the cause of pneumonia and the frequency with which it causes CAP may be underestimated. Case presentations: This report present 3 cases of CAP in which Corynebacterium spp. was clearly the predominant isolate; identification was confirmed by matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry. Two cases were caused by C. propinquum and one by C. striatum. Two patients had a tracheostomy and one was on hemodialysis. Patients who received an appropriate antibiotic responded well. Conclusion: When identified as the predominant isolate in sputum from a patient with CAP, Corynebacterium spp. should be considered as a potential cause of the infection. In cases with patients who have compromised airway clearance or who are immunocompromised, microaspiration may be responsible. While some Corynebacterium spp. are suspectible to antibiotics usually prescribed for CAP, others are susceptible only to vancomycin or aminoglycosides. Vancomycin is thus the appropriate empiric antibiotic, pending speciation and susceptibility test results. The number of reported cases with result of antibiotic susceptibility testing, however, remains limited, and further investigation is needed. Non-diphtheria Corynebacterium spp. represent a noteworthy clinical cause of pneumonia. Identification by Gram stain and as a predominant organism on culture demands careful consideration for management. Keywords: Pneumonia, Corynebacteria, Diphtheroids, Normal respiratory flora Background The most common laboratory report for sputum Pneumonia is an important cause of medical morbidity samples submitted for microbiological study is “mixed and mortality worldwide; pneumonia and influenza are respiratory flora.” Pneumonia caused by S. pneumoniae listed as the 8th leading cause of death in the United is thought to result from unrecognized microaspiration States, with 57,062 deaths in 2015 [1]. Well-recognized of pneumococci that have colonized the nasopharynx and common causes of community-acquired pneumonia [4]. The authors of the present study have previously (CAP) in adults include bacteria such as Streptococcus hypothesized that unrecognized aspiration of less viru- pneumoniae, Haemophilus influenzae, and Staphylococ- lent bacteria that normally inhabit the nasopharynx cus aureus, and viruses such as influenza virus, respira- might also cause pneumonia, especially in persons whose tory syncytial virus, human metapneumovirus, and upper airways are bypassed or whose ability to clear parainfluenza virus. Intensive recent investigations have aspirated organisms is damaged [5]. The present study failed to identify a causative organism in 50–62% of pa- examined the possibilities that: (i) careful examination of tients hospitalized for CAP [2, 3]. Gram-stained sputum and culture plates may reveal a pre- dominant bacterium such as Corynebacterium spp. that are not generally regarded as a pulmonary pathogen; (ii) * Correspondence: [email protected] quantitative cultures may document a high concentration 1 Baylor College of Medicine, Houston, TX 77030, USA of these bacteria in sputum; and (iii) these organisms are 2Infectious Disease Section, Michael E. DeBakey Veterans Affairs Medical Center, 2002 Holcombe Boulevard, Houston, TX 77030, USA in fact the cause of some cases of pneumonia. © The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Yang et al. Pneumonia (2018) 10:10 Page 2 of 8 Corynebacterium spp. Gram-positive bacilli that are were decreased bilaterally. WBC count was 7200 cells/ often dismissed as contaminants have been reported to mm3, lactate 1.2 mg/dL. Chest X-ray showed a new cause pneumonia (Table 1). New technologies, such as left-sided infiltrate. Sputum Gram stain revealed many matrix-assisted laser desorption ionization time of flight Gram-positive rods, including those found within PMNs. (MALDI-TOF) mass spectrometry enable rapid and Sputum yielded many Corynebacteria, identified by precise identification of bacterial species [6], and highly MALDI-TOF as C. propinquum, and few S. aureus. sensitive techniques such as polymerase chain reaction Sputum was liquefied with 2% N-acetyl cysteine and (PCR) can help exclude a role for viruses, mycoplasma, diluted serially; aliquots were cultured on blood agar and chlamydia. With the advent of these new technolo- and the number of colony forming units (CFU) was cal- gies, there has been greater interest in Corynebacteria, culated [8]. The specimen contained 2 × 109 CFU of and these organisms have been cited as emerging patho- Corynebacteria and < 105 CFU of S. aureus per mL. gens [7]. Blood cultures and viral PCR were negative. The pa- The present study reports on 3 well-documented cases tient was initially given vancomycin, cefepime, and of CAP due to Corynebacteria (2 cases of C. propinquum, ampicillin; treatment was switched to ampicillin/sul- 1 case of C. striatum)thatwerediagnosedina6-month bactam after the Corynebacterium was reported sus- period at a large tertiary care hospital. The study reviews ceptible. His mental status rapidly improved, and he the medical literature on Corynebacterium spp. as etio- was subsequently discharged to complete a 10-day logic agents of pneumonia, with the goal of increasing course of amoxicillin/clavulanate. awareness of the possibility that so-called “normal respira- tory flora” may actually be responsible for an as-yet un- Case 3 determined proportion of cases of CAP. A 59-year-old male with widely metastatic squamous cell carcinoma of the tongue was admitted for bleed- Case presentations ing from his tracheostomy site. His temperature was Case 1 99 °F, blood pressure 108/84, pulse 119, respiratory A 75-year-old man on hemodialysis for end-stage renal rate 24, and oxygen saturation 82% on room air. He disease was hospitalized for cough, fever, and altered had blood at the tracheostomy site and bibasilar mental status. His temperature was 103 °F, pulse 68, rhonchi. WBC count was 22,000 cells/mm3, blood pressure 124/69, respiratory rate 22, and O2 satur- hemoglobin 11.1 g/dL, and lactate 1.8 mg/dL. Chest ation 96% on 2 L of O2 by nasal cannula. He was lethargic, X-ray revealed a left upper-lobe infiltrate. Sputum with bibasilar crackles and a normal cardiac examination. sample showed profuse PMNs and Gram-positive His white blood cell (WBC) count was 20,100 cells/mm3 rods. Culture yielded C. striatum (confirmed by and his plasma procalcitonin was 1.1 ng/mL. Chest X-ray MALDI-TOF) and few Escherichia coli.Thepatient showed bibasilar infiltrates. Microscopic examination of was placed on comfort care and died 8 days later. Gram-stained sputum showed profuse polymorpho- nuclear leukocytes (PMNs) and Gram-positive rods, many Discussion of which appeared to be intracellular (Fig. 1). Sputum cul- Epidemiology ture yielded overwhelmingly predominant Corynebacteria, Non-diphtheria Corynebacterium spp.--commensal flora with rare P. aeruginosa. The Corynebacteria was identified of the skin, respiratory tract, and mucous membranes as C. propinquum by MALDI-TOF. Blood cultures and [9, 10]-- have been characterized as emerging patho- viral PCR were negative. The patient was initially treated gens [7]. Among reported cases, infections of the re- with vancomycin, cefepime, and metronidazole. Based on spiratory tract are second in frequency only to those the predominance of Corynebacteria with the absence of of the urinary tract [11]. The literature search re- other bacteria on Gram stain and a negative PCR for vealed 67 reported cases of pulmonary infection due respiratory viruses, his pneumonia was attributed to to non-diphtheria Corynebacterium spp., summarized C. propinquum, and only vancomycin was continued. in Table 1. Cases include pneumonia (community-ac- He responded and was discharged to complete a quired, hospital-acquired, or ventilator-associated), 10-day course of linezolid. necrotizing pneumonia, and empyema, although pneumonia predominated. Implicated Corynebacter- Case 2 ium spp. include C. pseudodiphtheriticum [12, 13], C. A 61-year-old man was found unresponsive post laryn- propinquum [14], C. striatum [14–18], C. afermen- gectomy and tracheostomy for laryngeal squamous cell tans [19], C. xerosis [20], C. jeikeium [10, 21–23], C. carcinoma. His temperature was 97.8 °F, pulse 99, blood pseudotuberculosis [24, 25], C. mucifaciens [26], C. pressure 114/86, and respiratory rate 22. Breath sounds ulcerans
Recommended publications
  • Official Nh Dhhs Health Alert
    THIS IS AN OFFICIAL NH DHHS HEALTH ALERT Distributed by the NH Health Alert Network [email protected] May 18, 2018, 1300 EDT (1:00 PM EDT) NH-HAN 20180518 Tickborne Diseases in New Hampshire Key Points and Recommendations: 1. Blacklegged ticks transmit at least five different infections in New Hampshire (NH): Lyme disease, Anaplasma, Babesia, Powassan virus, and Borrelia miyamotoi. 2. NH has one of the highest rates of Lyme disease in the nation, and 50-60% of blacklegged ticks sampled from across NH have been found to be infected with Borrelia burgdorferi, the bacterium that causes Lyme disease. 3. NH has experienced a significant increase in human cases of anaplasmosis, with cases more than doubling from 2016 to 2017. The reason for the increase is unknown at this time. 4. The number of new cases of babesiosis also increased in 2017; because Babesia can be transmitted through blood transfusions in addition to tick bites, providers should ask patients with suspected babesiosis whether they have donated blood or received a blood transfusion. 5. Powassan is a newer tickborne disease which has been identified in three NH residents during past seasons in 2013, 2016 and 2017. While uncommon, Powassan can cause a debilitating neurological illness, so providers should maintain an index of suspicion for patients presenting with an unexplained meningoencephalitis. 6. Borrelia miyamotoi infection usually presents with a nonspecific febrile illness similar to other tickborne diseases like anaplasmosis, and has recently been identified in one NH resident. Tests for Lyme disease do not reliably detect Borrelia miyamotoi, so providers should consider specific testing for Borrelia miyamotoi (see Attachment 1) and other pathogens if testing for Lyme disease is negative but a tickborne disease is still suspected.
    [Show full text]
  • Hormaomycin, a New Peptide Lactone Antibiotic Effective in Inducing
    Hormaomycin, a New Peptide Lactone Antibiotic Effective in Inducing Cytodifferentiation and Antibiotic Biosynthesis in Some Streptomyces Species Nikolaus Andres, Heinz Wolf*, and Hans Zähner Institut für Biologie II, Lehrstuhl für Mikrobiologie I der Universität, Auf der Morgenstelle 28, D-7400 Tübingen, Bundesrepublik Deutschland Z. Naturforsch. 45c, 851-855 (1990); received April 10, 1990 Streptomyces, Signal Metabolite, Hormaomycin, Cytodifferentiation, Antibiotic Overproduc­ tion, Antibiotic Activity Hormaomycin is a novel signal metabolite from Streptomyces griseoflavus W-384 with aerial mycelium-inducing activity. The compound has been identified as an unusual peptide lactone. Hormaomycin displays three biological activities: First, it initiates the development of aerial mycelia in some Streptomyces strains. The mechanism responsible for this activity is unknown. Secondly, hormaomycin is effective in stimulating antibiotic production in different Strepto­ myces species. Thus, it is possible to get overproduction of a variety of antibiotics by the use of hormaomycin in fermentation processes. Thirdly, it inhibits the growth of some bacteria. The sensitive bacteria are restricted to coryneform taxa such as Arthrobacter and Corynebacterium which are closely related to Streptomyces. Introduction tones, few other kinds of regulatory compounds Bacteria of the genus Streptomyces have evolved were investigated. B-factor, a derivative of adeno­ complicated differentiation mechanisms that in­ sine, stimulates rifamycin production in Nocardia clude not only changes in metabolism but also sp. [8], C-factor is a 34.5 kDa-protein that induces sporulation in Streptomyces griseus [9]. The changes in cellular structure. The streptomycete life cycle involves the formation of a substrate macrodiolide pamamycin stimulates aerial mycelia mycelium which, after a period of vegetative formation in Streptomyces alboniger[ 10, 11].
    [Show full text]
  • The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections
    toxins Review The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections Patience Shumba 1, Srikanth Mairpady Shambat 2 and Nikolai Siemens 1,* 1 Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, University of Greifswald, D-17489 Greifswald, Germany; [email protected] 2 Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +49-3834-420-5711 Received: 20 May 2019; Accepted: 10 June 2019; Published: 11 June 2019 Abstract: Necrotizing soft tissue infections (NSTIs) are critical clinical conditions characterized by extensive necrosis of any layer of the soft tissue and systemic toxicity. Group A streptococci (GAS) and Staphylococcus aureus are two major pathogens associated with monomicrobial NSTIs. In the tissue environment, both Gram-positive bacteria secrete a variety of molecules, including pore-forming exotoxins, superantigens, and proteases with cytolytic and immunomodulatory functions. The present review summarizes the current knowledge about streptococcal and staphylococcal toxins in NSTIs with a special focus on their contribution to disease progression, tissue pathology, and immune evasion strategies. Keywords: Streptococcus pyogenes; group A streptococcus; Staphylococcus aureus; skin infections; necrotizing soft tissue infections; pore-forming toxins; superantigens; immunomodulatory proteases; immune responses Key Contribution: Group A streptococcal and Staphylococcus aureus toxins manipulate host physiological and immunological responses to promote disease severity and progression. 1. Introduction Necrotizing soft tissue infections (NSTIs) are rare and represent a more severe rapidly progressing form of soft tissue infections that account for significant morbidity and mortality [1].
    [Show full text]
  • Artus Mycobac. Diff. LC PCR Kit Handbook 10/2015 2
    October 2015 artus® Mycobac. diff. LC PCR Kit Handbook 24 96 Version 1 Quantitative in vitro diagnostics For use with the LightCycler® 1.1/1.2/1.5 and LightCycler 2.0 instruments 4556063 (24 reactions) 4556065 (96 reactions) QIAGEN GmbH QIAGEN Strasse 1 40724 Hilden GERMANY R4 1046963EN Sample to Insight__ Contents Summary and Explanation ...................................................................................................4 Principle of the Procedure ....................................................................................................4 Materials Provided .............................................................................................................6 Kit contents ..............................................................................................................6 Materials Required but Not Provided ....................................................................................7 Warnings and Precautions ..................................................................................................8 Warnings ................................................................................................................8 Reagent Storage and Handling ............................................................................................8 Procedure ..........................................................................................................................9 Important points before starting ..................................................................................9
    [Show full text]
  • ID 2 | Issue No: 4.1 | Issue Date: 29.10.14 | Page: 1 of 24 © Crown Copyright 2014 Identification of Corynebacterium Species
    UK Standards for Microbiology Investigations Identification of Corynebacterium species Issued by the Standards Unit, Microbiology Services, PHE Bacteriology – Identification | ID 2 | Issue no: 4.1 | Issue date: 29.10.14 | Page: 1 of 24 © Crown copyright 2014 Identification of Corynebacterium species Acknowledgments UK Standards for Microbiology Investigations (SMIs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website https://www.gov.uk/uk- standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical- laboratories. SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for-microbiology-investigations- steering-committee). The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the Medical Editors for editing the medical content. For further information please contact us at: Standards Unit Microbiology Services Public Health England 61 Colindale Avenue London NW9 5EQ E-mail: [email protected] Website: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality- and-consistency-in-clinical-laboratories UK Standards for Microbiology Investigations are produced in association with: Logos correct at time of publishing. Bacteriology – Identification | ID 2 | Issue no: 4.1 | Issue date: 29.10.14 | Page: 2 of 24 UK Standards for Microbiology Investigations | Issued by the Standards Unit, Public Health England Identification of Corynebacterium species Contents ACKNOWLEDGMENTS .........................................................................................................
    [Show full text]
  • Bacterial Communities of the Upper Respiratory Tract of Turkeys
    www.nature.com/scientificreports OPEN Bacterial communities of the upper respiratory tract of turkeys Olimpia Kursa1*, Grzegorz Tomczyk1, Anna Sawicka‑Durkalec1, Aleksandra Giza2 & Magdalena Słomiany‑Szwarc2 The respiratory tracts of turkeys play important roles in the overall health and performance of the birds. Understanding the bacterial communities present in the respiratory tracts of turkeys can be helpful to better understand the interactions between commensal or symbiotic microorganisms and other pathogenic bacteria or viral infections. The aim of this study was the characterization of the bacterial communities of upper respiratory tracks in commercial turkeys using NGS sequencing by the amplifcation of 16S rRNA gene with primers designed for hypervariable regions V3 and V4 (MiSeq, Illumina). From 10 phyla identifed in upper respiratory tract in turkeys, the most dominated phyla were Firmicutes and Proteobacteria. Diferences in composition of bacterial diversity were found at the family and genus level. At the genus level, the turkey sequences present in respiratory tract represent 144 established bacteria. Several respiratory pathogens that contribute to the development of infections in the respiratory system of birds were identifed, including the presence of Ornithobacterium and Mycoplasma OTUs. These results obtained in this study supply information about bacterial composition and diversity of the turkey upper respiratory tract. Knowledge about bacteria present in the respiratory tract and the roles they can play in infections can be useful in controlling, diagnosing and treating commercial turkey focks. Next-generation sequencing has resulted in a marked increase in culture-independent studies characterizing the microbiome of humans and animals1–6. Much of these works have been focused on the gut microbiome of humans and other production animals 7–11.
    [Show full text]
  • The Isolation of a Novel Streptomyces Sp. CJ13 from a Traditional Irish Folk Medicine Alkaline Grassland Soil That Inhibits Multiresistant Pathogens and Yeasts
    applied sciences Article The Isolation of a Novel Streptomyces sp. CJ13 from a Traditional Irish Folk Medicine Alkaline Grassland Soil that Inhibits Multiresistant Pathogens and Yeasts Gerry A. Quinn 1,* , Alyaa M. Abdelhameed 2, Nada K. Alharbi 3, Diego Cobice 1 , Simms A. Adu 1 , Martin T. Swain 4, Helena Carla Castro 5, Paul D. Facey 6, Hamid A. Bakshi 7 , Murtaza M. Tambuwala 7 and Ibrahim M. Banat 1 1 School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK; [email protected] (D.C.); [email protected] (S.A.A.); [email protected] (I.M.B.) 2 Department of Biotechnology, University of Diyala, Baqubah 32001, Iraq; [email protected] 3 Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11568, Saudi Arabia; [email protected] 4 Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Ab-erystwyth, Wales SY23 3EE, UK; [email protected] 5 Instituto de Biologia, Rua Outeiro de São João Batista, s/nº Campus do Valonguinho, Universidade Federal Fluminense, Niterói 24210-130, Brazil; [email protected] 6 Institute of Life Science, Medical School, Swansea University, Swansea, Wales SA2 8PP, UK; [email protected] 7 School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK; [email protected] (H.A.B.); [email protected] (M.M.T.) * Correspondence: [email protected] Abstract: The World Health Organization recently stated that new sources of antibiotics are urgently Citation: Quinn, G.A.; Abdelhameed, required to stem the global spread of antibiotic resistance, especially in multiresistant Gram-negative A.M.; Alharbi, N.K.; Cobice, D.; Adu, bacteria.
    [Show full text]
  • An Enhanced Characterization of the Human Skin Microbiome
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.21.914820; this version posted January 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 An enhanced characterization of the human skin microbiome: a new biodiversity of 2 microbial interactions 3 4 Akintunde Emiola1, Wei Zhou1, Julia Oh1* 5 6 1The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA 7 *Corresponding author. [email protected] 8 9 10 ABSTRACT 11 12 The healthy human skin microbiome is shaped by skin site physiology, individual-specific factors, 13 and is largely stable over time despite significant environmental perturbation. Studies identifying 14 these characteristics used shotgun metagenomic sequencing for high resolution reconstruction 15 of the bacteria, fungi, and viruses in the community. However, these conclusions were drawn from 16 a relatively small proportion of the total sequence reads analyzable by mapping to known 17 reference genomes. ‘Reference-free’ approaches, based on de novo assembly of reads into 18 genome fragments, are also limited in their ability to capture low abundance species, small 19 genomes, and to discriminate between more similar genomes. To account for the large fraction 20 of non-human unmapped reads on the skin—referred to as microbial ‘dark matter’—we used a 21 hybrid de novo and reference-based approach to annotate a metagenomic dataset of 698 healthy 22 human skin samples. This approach reduced the overall proportion of uncharacterized reads from 23 42% to 17%. With our refined characterization, we revisited assumptions about the skin 24 microbiome, and demonstrated higher biodiversity and lower stability, particularly in dry and moist 25 skin sites.
    [Show full text]
  • Scarlet Fever Fact Sheet
    Scarlet Fever Fact Sheet Scarlet fever is a rash illness caused by a bacterium called Group A Streptococcus (GAS) The disease most commonly occurs with GAS pharyngitis (“strep throat”) [See also Strep Throat fact sheet]. Scarlet fever can occur at any age, but it is most frequent among school-aged children. Symptoms usually start 1 to 5 days after exposure and include: . Sandpaper-like rash, most often on the neck, chest, elbows, and on inner surfaces of the thighs . High fever . Sore throat . Red tongue . Tender and swollen neck glands . Sometimes nausea and vomiting Scarlet fever is usually spread from person to person by direct contact The strep bacterium is found in the nose and/or throat of persons with strep throat, and can be spread to the next person through the air with sneezing or coughing. People with scarlet fever can spread the disease to others until 24 hours after treatment. Treatment of scarlet fever is important Persons with scarlet fever can be treated with antibiotics. Treatment is important to prevent serious complications such as rheumatic fever and kidney disease. Infected children should be excluded from child care or school until 24 hours after starting treatment. Scarlet fever and strep throat can be prevented . Cover the mouth when coughing or sneezing. Wash hands after wiping or blowing nose, coughing, and sneezing. Wash hands before preparing food. See your doctor if you or your child have symptoms of scarlet fever. Maryland Department of Health Infectious Disease Epidemiology and Outbreak Response Bureau Prevention and Health Promotion Administration Web: http://health.maryland.gov February 2013 .
    [Show full text]
  • Attachment 2 a Risk Profile of Dairy Products in Australia Appendices 1
    2-06 22 March 2006 Attachment 2 A Risk Profile of Dairy Products in Australia Appendices 1-6 DRAFT ASSESSMENT REPORT PROPOSAL P296 PRIMARY PRODUCTION AND PROCESSING STANDARD FOR DAIRY RISK PROFILE OF DAIRY PRODUCTS IN AUSTRALIA VII APPENDICES 1. IMPACT OF PROCESSING ON DAIRY PRODUCT SAFETY 1.1 Milk and cream 1.2 Cheese 1.3 Dried milk powders 1.4 Infant formulae 1.5 Concentrated milk products 1.6 Butter and butter products 1.7 Ice cream 1.8 Cultured and fermented milk products 1.9 Dairy desserts 1.10 Dairy based dips 1.11 Casein, why products and other functional milk derivatives 1.12 Colostrum 2. EPIDEMIOLOGICAL INFORMATION ON OUTBREAKS OF FOODBORNE ILLNESS ASSOCIATED WITH DAIRY PRODUCTS 3. OCCURRENCE OF MICROBIOLOGICAL HAZARDS ASSOCIATED WITH DAIRY PRODUCTS 4. CONSUMPTION FIGURES OF DAIRY PRODUCTS FOR AUSTRALIAN CONSUMERS 5. HAZARD IDENTIFICATION/HAZARD CHARACTERISATION OF PATHOGENS 5.1 Aeromonas Spp. 5.2 Bacillus cereus 5.3 Brucella Spp. 5.4 Campylobacter jejuni/coli 5.5 Clostridium Spp. 5.6 Coxiella burnetii 5.7 Corynebacterium ulcerans 5.8 Cryptosporidium 5.9 Enterobacter sakazakii 5.10 Pathogenic Escherichia coli 5.11 Listeria monocytogenes 5.12 Mycobacterium bovis 5.13 Mycobacterium avium subsp. paratuberculosis 5.14 Salmonella Spp. 5.15 Shigella Spp. 5.16 Staphylococcus aureus 5.17 Streptococcus Spp. 5.18 Yersinia enterocolitica 6. PREVIOUS RISK ASSESSMENTS ON MICROBIOLOGICAL PATHOGENS IN DAIRY PRODUCTS 7. CHEMICAL RISK ASSESSMENT FRAMEWORK 8. REGULATORY FRAMEWORK FOR AGRICULTURAL AND VETERINARY CHEMICALS 9. MAXIMUM RESIDUE LIMITS 10. CHEMICAL RESIDUES MEASURED IN BOVINE DAIRY PRODUCTS 11. REGISTERED ANTIMICROBIAL AGENTS 12.
    [Show full text]
  • Kansas Journal of Medicine, Volume 11 Issue 1
    VOLUME 11 • ISSUE 1 • Feb. 2018 WHAT’S INSIDE: ORIGINAL RESEARCH • CASE STUDIES • REVIEW TABLE OF CONTENTS ORIGINAL RESEARCH 1 Safe Sleep Practices of Kansas Birthing Hospitals Carolyn R. Ahlers-Schmidt, Ph.D., Christy Schunn, LSCSW, Cherie Sage, M.S., Matthew Engel, MPH, Mary Benton, Ph.D. CASE STUDIES 5 Neck Trauma and Extra-tracheal Intubation Vinh K. Pham, M.D., Justin C. Sandall, D.O. 8 Strongyloides Duodenitis in an Immunosuppressed Patient with Lupus Nephritis Ramprasad Jegadeesan, M.D., Tharani Sundararajan, MBBS, Roshni Jain, MS-3, Tejashree Karnik, M.D., Zalina Ardasenov, M.D., Elena Sidorenko, M.D. 11 Arcanobacterium Brain Abscesses, Subdural Empyema, and Bacteremia Complicating Epstein-Barr Virus Mononucleosis Victoria Poplin, M.D., David S. McKinsey, M.D. REVIEW 15 Transgender Competent Provider: Identifying Transgender Health Needs, Health Disparities, and Health Coverage Sarah Houssayni, M.D., Kari Nilsen, Ph.D. 20 The Increased Vulnerability of Refugee Population to Mental Health Disorders Sameena Hameed, Asad Sadiq, MBChB, MRCPsych, Amad U. Din, M.D., MPH KANSAS JOURNAL of MEDICINE deaths attributed to SIDS had one or more factors contributing to an unsafe sleep environment.3 The American Academy of Pediatrics (AAP) recommendations for a safe infant sleeping environment delineate a number of modifi- able factors to reduce the risk of sleep-related infant deaths.4 Factors Safe Sleep Practices of Kansas Birthing include back sleep only, room-sharing without bed-sharing, use of a Hospitals firm sleep surface, keeping soft bedding and other items out of the Carolyn R. Ahlers-Schmidt, Ph.D.1, Christy Schunn, LSCSW2, crib, and avoiding infant overheating.
    [Show full text]
  • Corynebacterium Species Rarely Cause Orthopedic Infections
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 Corynebacterium species rarely cause orthopedic infections Kalt, Fabian ; Schulthess, Bettina ; Sidler, Fabian ; Herren, Sebastian ; Fucentese, Sandro F ; Zingg, Patrick O ; Berli, Martin ; Zinkernagel, Annelies S ; Zbinden, Reinhard ; Achermann, Yvonne Abstract: Corynebacterium spp. are rarely considered as pathogens but data in orthopedic infections are sparse. Therefore, we asked how often Corynebacterium spp. caused an infection in a defined cohort of orthopedic patients with a positive culture. In addition, we aimed to determine the species variety and susceptibility of isolated strains in regards to potential treatment strategies. Between 2006 and 2015, we retrospectively assessed all Corynebacterium sp. bone and joint cultures from an orthopedic ward. The isolates were considered as relevant indicating an infection if the same Corynebacterium sp. was present in at least two samples. We found 97 orthopedic cases with isolation of Corynebacterium spp. (128 positive samples), mainly Corynebacterium tuberculostearicum (n=26), Corynebacterium amycolatum (n=17), Corynebacterium striatum (n=13), and Corynebacterium afermentans (n=11). Compared to a cohort of positive blood cultures, we found significantly more C. striatum and C. tuberculostearicum but no C. jeikeium cases. Only 16 cases out 66 cases (24.2%) with an available diagnostic set of at least 2 samples had an infection. Antibiotic susceptibility testing (AST) of different antibiotics showed various susceptibility results except for vancomycin and linezolid with a 100% susceptibility rate. Rates of susceptibility of corynebacteria isolated from orthopedic samples and of isolates from blood cultures were comparable. In conclusion, our study results confirmed that Corynebacterium sp.
    [Show full text]