Paper for River Symposium

Total Page:16

File Type:pdf, Size:1020Kb

Paper for River Symposium http://www.paper.edu.cn Equitable Utilisation and Effective Protection of Sharing Transboundary Water Resources in international Rivers of Western China He, Daming (Asian International River Centre, Yunnan University, Kunming, 650091; E-mail:[email protected]) Liu, Xiujuan (Australian Mekong Resource Center, Sydney University, Sydney, Australia) Abstract: Western China includes 12 provincial divisions (the 7 provinces of Sichuan, Guizhou, Yunnan, Shangxi, Gansu, Qinghai and; 5 autonomous regions of Tibet, Ningxia, Xinjiang , Inner Mongolia and Guangxi; and one city of Chongqing), which comprise 71.4% of the national land area, 28.5% of the national population and produce 17.5% of the national GDP in China. There are 17 countries that have riparian relationships with wester n China, most of which are water -short countries. All are listed by UN ESCAP as countries with potential water crisis. The co-operative development and coordinated management of international rivers in western China is an important step toward the implementation of the national Great Western Development program. Taking into account of the national strategy and object hierarchy, as well as the development demand of the western region, it is necessary to pursue the multi-disciplinary study of the equitable allocation, utilisation, and eco-environment protection of transboundary water resource in the region. Such efforts will undoubtedly provide scientific evidence and support for the decision-making of the environmental protection and ecological construction and management in the western region, the enforcement of the sub-regional economic co-operation, mitigation of trans-boundary conflicts, and enhancing bio-diversity conservation. 1. Introduction Recently, some important international institutions, like the World Bank (WB) and the Asian Development Bank, have pointed out that there will exist in water crises, water conflicts, and even water wars in the 21th century. The equitable utilization and co-ordinated management of the shared freshwater resources in international watercourses (sharing rivers, lakes, and underground water layers) were particularly emphasised and are turning out to be the international hotpoint and staggering issues for the resolution of regional conflict. Countries such as Egypt and Israel have listed the cross-border freshwater resource as the most urgent strategic resource and the most important protection target for the military forces. Currently there are over 261 international rivers and approximately 300 underground water-bearing stratums and underground reservoirs shared by various countries, which comprise of 50% of the earth’s land area and almost 50% of the world’s population, sharing almost 50% of the global river runoff. Since the 1990s, the study on international rivers has become even more important. On March 19-21, 1998, more than 1000 ministers and experts from over 80 countries gathered in Paris to discuss the strategic themes on the management and protection of global freshwater resources, and water resources in international rivers was one of the three major themes discussed. On March 21-22, 2000, water management ministers from over 80 countries took part in the ministerial meeting of Water Security in the 21st Century, in which the integrated water resources management, the equitable utilisation of shared 中国科技论文在线 http://www.paper.edu.cn water resources in trans-boundary international rivers and national sovereignty were major themes, and it was proposed that till 2005 a co-operative mechanism be established and strengthened in the riparian countries sharing the major international rivers. Furthermore, by 2015, an agreement on water-sharing be signed. Tow key issues were raised for consideration: one is how to develop trans-boundary river basins under the precondition of respecting sovereignty, and the other is how to enforce pubic participation in the making and implementation of policies of trans-boundary river basins at the international level. Under the tendency of sustainable development in the new century, to realise th equitable utilisation of trans-boundary water resources and sustainable maintenance of trans-boundary eco-environment has become the key factors in ecosystem preservation of international water courses and the integrated and co-ordinated development of social, economic and environmental systems with catchment as the basic unit. It has become the new action goal for the efforts to deal with water shortage, population explosion, water pollution and to protect bio-diversity, as well as the efforts to ensure food, water and ecological security, to eliminate regional conflict, to enforce regional stability and the multi-polarisation of the global political economic situation. It has become the new focus of the multi-disciplinary study including geography sciences. In China as a whole, such effort remains to be in the initial stage. In the Schematic Report of the Tenth Five-Year-Plan(FYP) of national social economic Development, China’s Premier Zhu Rongji stated that the emphasis of the ecological construction of the Great Western Development is “to focus on the protection, conservation and development of water resources, to strengthen planning and reasonable allocation, and to manage to increase the efficiency of water utilisation”. The study on equitable utilisation of water resources in the international rivers in western China and ecological preservation is not only the key to the socio-economic development and ecological construction of the western China, but also has strategic importance, obvious comprehensive benefit and wide practical prospects to the national sustainable development, the regional co-operation and friendly relationship between China and West Asia, South Asia and Southeast Asia, and further the water and ecological security of the whole Asia. 2. International challenges Among all the continents, the per capita GDP of Asia is the lowest. Asia is also one continent that possesses the most international rivers, with 65% of its land area falling into the category of international river basins.1 In this context, the equitable utilisation, allocation of international river water resources and the preservation of its ecological environment should be put more attention to. In the past 50 years(ADB, 2000), due to the increasing population, the average per capita usable water resources have decreased by 70% in South Asia and Middle Asia, by 60% in North Asia and 55% in Southeast Asia. Over 30% of water resources in 8 countries in these regions comes from the international rivers, they are Bangladesh, Cambodia, Kazakstan, Pakistan, Tajikhstan, Thailand, Uzbekhstan and Vietnam. Among them, Bangladesh, Cambodia, Uzbekhstan, and Vietnam have more than 65% of their water resources with foreign sources. Taking into account of the rapid population increase and socio -economic 1 This number doesn’t take into account the new international rivers due to the separation of the former USSR. 中国科技论文在线 http://www.paper.edu.cn development, the decrease of usable water resources is bound to deteriorate, which leads to the future world water issues. The downstream countries related to the western China will surely be concerned about the changes of the water resource system and its ecological environment in the international rivers in the west. For example, on December 24, 2000, Indian Foreign Minister claimed that water and energy issues are becoming key issues of the foreign policies in India. He said that due to the climatic changes, in the last two years the Himalayan glacier from which major rivers in India originate has lowered by about 30m. If the tendency continues, serious water disaster will dawn these rivers. He also estimated that water will become the most important global issue. The Foreign Affairs Ministry of Japan also sees the international water issue as an important part of its foreign diplomatic policy. Now, the average per capita water resource is 2300m³ in China. It is estimated that the population will increase to 1.6 billion in 2030, and the average per capita water resource will decrease to 1760m³, which indicates that China becomes a nation with a water stress. Among the 30 provinces, autonomous regions and cities, the top five with the richest per capita water resource are all located in the western part of China: Tibet, with a per capita water resource of 206 892m³, Qinghai 13 978m³, Yunnan 5953m³, Xinjiang 5774m ³, and Guangxi 4415m³. Most of these regions are located in the upper reaches or sources of major rivers, and are the strategic base for water security of the sustainable development of China and the key regions for ecological security. If the Pearl River is seen as an international river, then most areas of these regions fall within the international river basins except Qinghai. Of the 15 major international rivers, 11 are located in the western part of China, which makes the western China the “Water Tower” of Asia. In total, an amount of 395 billion m³ of water flows out of the China West each year, accounting for about 90% of the total water amount flowing out of China. Most of the 17 riparian countries are listed as potential water stress countries except Laos and Burma. In particular, the neighbouring Afghanistan, India, Iran, Korea and Pakistan, which are all downstream countries compared with China, were listed as highly potential water stress countries. In this vein, the external conditions of water development in the international rivers in
Recommended publications
  • Controls on Modern Erosion and the Development of the Pearl River Drainage in the Late Paleogene
    Marine Geology xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margo Invited research article Controls on modern erosion and the development of the Pearl River drainage in the late Paleogene ⁎ Chang Liua, Peter D. Clifta,b, , Andrew Carterc, Philipp Böningd, Zhaochu Hue, Zhen Sunf, Katharina Pahnked a Department of Geology and Geophysics, Louisiana State University, Baton Rouge 70803, USA b School of Geography Science, Nanjing Normal University, Nanjing 210023, China c Department of Earth and Planetary Sciences, Birkbeck College, University of London, London WC1E 7HX, UK d Max Planck Research Group for Marine Isotope Geochemistry, Institute of Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26129, Germany e State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China f Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 Xingangxi Road, Guangzhou 510301, China ARTICLE INFO ABSTRACT Keywords: The Pearl River and its tributaries drains large areas of southern China and has been the primary source of Zircon sediment to the northern continental margin of the South China Sea since its opening. In this study we use a Nd isotope combination of bulk sediment geochemistry, Nd and Sr isotope geochemistry, and single grain zircon U-Pb Erosion dating to understand the source of sediment in the modern drainage. We also performed zircon U-Pb dating on Provenance Eocene sedimentary rocks sampled by International Ocean Discovery Program (IODP) Expedition 349 in order to Pearl River constrain the source of sediment to the rift before the Oligocene.
    [Show full text]
  • Download Article (PDF)
    Advances in Social Science, Education and Humanities Research, volume 85 4th International Conference on Management Science, Education Technology, Arts, Social Science and Economics (MSETASSE 2016) Discussions on Development of Cultural Tourism Industry in Region at the Source of the Pearl River Jingfeng Wang School of economics and management, Qujing Normal University, Qujing Yunnan, 655011, China Key words: Source of the Pearl River, Cultural tourism, Development. Abstract. The Pearl River is one of the three large inland rivers of China. The region at the source of the Pearl River is rich in natural landscape resources and human landscapes, has a profound historical and cultural foundation, and is distinctively featured by minority folk-custom, all of which are advantageous conditions for the development of cultural tourism industry. Yet the development situation of cultural tourism industry at the source of the Pearl River is still less than satisfactory. Only by transformation and upgrading of scenic region at the source of the Pearl River, and development of minority folk-custom-themed the Three Kingdoms History-themed cultural tourism, and cultural heritage tourism products, the cultural tourism industry at the source of the Pearl River can have more development opportunities. Overview of the Pearl River and of Its Source The Pearl River is one of the three inland rivers of China. By streamflow, the Pearl River is the second largest inland river in China, second only to the Yangtze River; by length, the Pearl River is the third largest inland river in China, following the Yangtze River and the Yellow River. The main stream of the Pearl River is 2320km long in total, the basin area is 446,768km2 [1], its river basin stretches over Yunnan, Guizhou, Guangxi, Hunan, Jiangxi, Guangdong, Hong Kong and Macao, and it flows into the South China Sea from the 8th estuary in the Pearl River Delta.
    [Show full text]
  • Effects of Atmospheric CO2 Consumption on Rock Weathering in the Pearl River Basin, China
    E3S Web of Conferences 98, 06011 (2019) https://doi.org/10.1051/e3sconf/20199806011 WRI-16 Effects of atmospheric CO2 consumption on rock weathering in the Pearl River basin, China Xiaoqun Qin1,*, Zhongcheng Jiang1, Liankai Zhang1, Qibo Huang1, and Pengyu Liu1 1Institute of Karst Geology, ChineseAcademy of Geological Sciences, Guilin 541004, China Abstract: Atmospheric CO2 is absorbed and dissolved in water via karst processes not only in carbonate rock areas, but in all rock areas of the earth. The chemical and isotopic analysis results, particularly of strontium, for water samples collected from eleven stations along the Pearl River, four times over the course of one year, showed that due to weathering by - 2+ 2+ carbonate or silicate rocks, HCO3 , Ca , and Mg have become the main ions in the river water. Through river ion stoichiometric and flux calculations, the carbonate rock weathering rate and atmospheric CO2 consumption were found to be 27.6 mm/ka and 540 x 103 mol/km2.a, which are 10.8 and 6.7 times the corresponding values for silicate rock. With the beneficial climatic conditions for rock erosion and large areas of carbonate rock in the Pearl River Basin, the atmospheric CO2 consumption value is about 2.6 times the average value for the 60 major rivers in the world. 1 Introduction Rock weathering is a universal, and one of the most influential, geological processes that occurs on the earth’s surface. Atmospheric CO2 is an important driving force for the karst geological processes [1]. Atmospheric CO2 can be removed by chemical weathering of rocks and produce huge carbon sinks, thereby reducing atmospheric CO2.
    [Show full text]
  • Coal, Water, and Grasslands in the Three Norths
    Coal, Water, and Grasslands in the Three Norths August 2019 The Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH a non-profit, federally owned enterprise, implementing international cooperation projects and measures in the field of sustainable development on behalf of the German Government, as well as other national and international clients. The German Energy Transition Expertise for China Project, which is funded and commissioned by the German Federal Ministry for Economic Affairs and Energy (BMWi), supports the sustainable development of the Chinese energy sector by transferring knowledge and experiences of German energy transition (Energiewende) experts to its partner organisation in China: the China National Renewable Energy Centre (CNREC), a Chinese think tank for advising the National Energy Administration (NEA) on renewable energy policies and the general process of energy transition. CNREC is a part of Energy Research Institute (ERI) of National Development and Reform Commission (NDRC). Contact: Anders Hove Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH China Tayuan Diplomatic Office Building 1-15-1 No. 14, Liangmahe Nanlu, Chaoyang District Beijing 100600 PRC [email protected] www.giz.de/china Table of Contents Executive summary 1 1. The Three Norths region features high water-stress, high coal use, and abundant grasslands 3 1.1 The Three Norths is China’s main base for coal production, coal power and coal chemicals 3 1.2 The Three Norths faces high water stress 6 1.3 Water consumption of the coal industry and irrigation of grassland relatively low 7 1.4 Grassland area and productivity showed several trends during 1980-2015 9 2.
    [Show full text]
  • Teleconnection Analysis of Runoff and Soil Moisture Over the Pearl River Basin in Southern China
    Open Access Hydrol. Earth Syst. Sci., 18, 1475–1492, 2014 Hydrology and www.hydrol-earth-syst-sci.net/18/1475/2014/ doi:10.5194/hess-18-1475-2014 Earth System © Author(s) 2014. CC Attribution 3.0 License. Sciences Teleconnection analysis of runoff and soil moisture over the Pearl River basin in southern China J. Niu1, J. Chen1, and B. Sivakumar2,3 1Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China 2School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia 3Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA Correspondence to: J. Chen ([email protected]) Received: 26 July 2013 – Published in Hydrol. Earth Syst. Sci. Discuss.: 30 September 2013 Revised: 6 February 2014 – Accepted: 7 March 2014 – Published: 23 April 2014 Abstract. This study explores the teleconnection of two cli- precipitation. Therefore, an important step in the assessment matic patterns, namely the El Niño–Southern Oscillation and prediction of floods or droughts is to understand the re- (ENSO) and the Indian Ocean Dipole (IOD), with hydrolog- lationships between the key hydrological variables (e.g., pre- ical processes over the Pearl River basin in southern China, cipitation, runoff, soil moisture) and climate patterns. particularly on a sub-basin-scale basis. The Variable Infil- Generally speaking, observations of hydrological vari- tration Capacity (VIC) model is used to simulate the daily ables over large-scale basins are scarce, except for precip- hydrological processes over the basin for the study period itation. For instance, even though streamflow gauging sta- 1952–2000, and then, using the simulation results, the time tions currently exist along most large rivers around the world, series of the monthly runoff and soil moisture anomalies for long-term flow observations are still not available, especially its ten sub-basins are aggregated.
    [Show full text]
  • Family Cyprinidae Subfamily Labeoninae
    SUBFAMILY Labeoninae Bleeker, 1859 - labeonins, labeos, algae-eaters, carps etc. [=?Paeonomiae, ?Apalopterinae, Platycarinae, Temnochilae, Labeonini, ?Plalacrognathini, Garrae, Gymnostomi, Rohteichthyina, Discognathina, Parapsilorhynchidae, Banganina, Osteochilina, Semilabeoina] Notes: Name in prevailing recent practice ?Paeonomiae McClelland, 1838:943 [ref. 2924] (subfamily) ? Cirrhinus [corrected to Paeonominae by McClelland 1839:225, 261, 264 [ref. 2923]; no stem of the type genus, not available, Article 11.7.1.1] ?Apalopterinae McClelland, 1839:226, 261, 299 [ref. 2923] (subfamily) ? Platycara [no stem of the type genus, not available, Article 11.7.1.1] Platycarinae Macleay, 1841:271 [ref. 32498] (family) Platycara [also Macleay 1842:204 [ref. 32499]] Temnochilae Heckel, 1847:280, 281 [ref. 2068] (Abtheilung) ? Labeo [no stem of the type genus, not available, Article 11.7.1.1] Labeonini Bleeker, 1859d:XXVIII [ref. 371] (stirps) Labeo [family-group name used as valid by: Rainboth 1991 [ref. 32596], Nelson 1994 [ref. 26204], Yue et al. 2000 [ref. 25272], Zhang & Chen 2004 [ref. 27930], Li, Ran & Chen 2006 [ref. 29057], Nelson 2006 [ref. 32486], Zhang & Kottelat 2006 [ref. 28711], Zhang, Qiang & Lan 2008 [ref. 29452], Yang & Mayden 2010, Zheng, Yang, Chen & Wang 2010 [ref. 30961], Zhu, Zhang, Zhang & Han 2011 [ref. 31305], Yang et al. 2012a, Yang et al. 2012b [ref. 32362]] ?Phalacrognathini Bleeker, 1860a:422 [ref. 370] (cohors) ? Labeo [no stem of the type genus, not available, Article 11.7.1.1] Garrae Bleeker, 1863–64:24 [ref. 4859] (phalanx) Garra [also Bleeker 1863b:191 [ref. 397]; stem Garr- confirmed by Smith 1945:259 [ref. 4056], by Cavender & Coburn in Mayden 1992:322 [ref. 23260], by Mirza 2000:356 [ref.
    [Show full text]
  • Rtm Compilations Prelims 2021
    INSIGHTSIAS IA SIMPLIFYING IAS EXAM PREPARATION RTM COMPILATIONS PRELIMS 2021 March 2021 www.insightsactivelearn.com | www.insightsonindia.com Revision Through MCQs (RTM) Compilation (March 2021) Telegram: https://t.me/insightsIAStips 2 Youtube: https://www.youtube.com/channel/UCpoccbCX9GEIwaiIe4HLjwA Revision Through MCQs (RTM) Compilation (March 2021) Table of Contents RTM- REVISION THROUGH MCQS – 1st-Mar-2021 .............................................................. 4 RTM- REVISION THROUGH MCQS – 2nd-Mar-2021 ............................................................. 9 RTM- REVISION THROUGH MCQS – 3rd-Mar-2021 ............................................................ 14 RTM- REVISION THROUGH MCQS – 4th-Mar-2021 ............................................................ 20 RTM- REVISION THROUGH MCQS – 5th-Mar-2021 ............................................................ 24 RTM- REVISION THROUGH MCQS – 6th-Mar-2021 ............................................................ 28 RTM- REVISION THROUGH MCQS – 8th-Mar-2021 ............................................................ 33 RTM- REVISION THROUGH MCQS – 9th-Mar-2021 ............................................................ 38 RTM- REVISION THROUGH MCQS – 10th-Mar-2021 .......................................................... 44 RTM- REVISION THROUGH MCQS – 11th-Mar-2021 .......................................................... 49 RTM- REVISION THROUGH MCQS – 12th-Mar-2021 .......................................................... 55 RTM- REVISION THROUGH
    [Show full text]
  • Areas Benefiting from Water Conservation in Key Ecological Function Areas in China
    Nov., 2015 Journal of Resources and Ecology Vol.6 No.6 J. Resour. Ecol. 2015 6 (6) 375-385 Eco. Compensation DOI:10.5814/j.issn.1674-764x.2015.06.005 www.jorae.cn Areas Benefiting from Water Conservation in Key Ecological Function Areas in China XIAO Yu1*, ZHANG Changshun1 and XU Jie1,2 1 Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China Abstract: Ecosystem services are transferred from the service-providing area to the service-benefiting area to satisfy human needs through some substance, energy or information. Most studies focus on the provision of ecosystem services and few focus on the demands on ecosystem services and their spatial distribution. Here, on the basis of the flow of water conservation services from the providing area to the benefiting area, the benefits produced by water conservation service are investigated and the benefiting areas are identified. The results indicate that in 2010 the water conservation service of key ecological function areas provided irrigation water for 1.67×105 km2 of paddy fields and 1.01×105 km2 irrigated fields, domestic water to urban residents and industrial water to factories, mines and enterprises of 2.64×104 km2 urban construction land and domestic water to rural residents across 3.73×104 km2 of rural settlements and formed 6.64×104 km2 of inland water which can be used for freshwater aquaculture, downstream regions comprise 1.31×104 km of navigable river, which can be used for inland shipping. The benefit areas of the key function areas located in the upper and middle reaches of the Yangtze River are greater and more influential benefit areas.
    [Show full text]
  • 1 March 2021
    1 www.journalsofindia.com March 2021 Content AGRICULTURE ____________________________________________________________________ 6 FLORICULTURE MISSION ______________________________________________________________ 6 BHARATIYA PRAKRITIK KRISHI PADDHATI (BPKP) ______________________________________________ 6 KISAN RATH MOBILE APP _____________________________________________________________ 6 RED RICE FROM ASSAM _______________________________________________________________ 7 JAMMU'S PURPLE REVOLUTION _________________________________________________________ 7 ECONOMY _______________________________________________________________________ 8 NEW AICTE RULES__________________________________________________________________ 8 ETHANOL BLENDING _________________________________________________________________ 8 FACELESS INCOME-TAX APPELLATE TRIBUNAL (ITAT) ___________________________________________ 9 THE NATIONAL BANK FOR FINANCING INFRASTRUCTURE AND DEVELOPMENT (NABFID) BILL, 2021 ____________ 9 ATMANIRBHAR NIVESHAK MITRA PORTAL __________________________________________________ 9 TRUSTED TELECOM PRODUCTS _________________________________________________________ 10 NEW PRIVATE BANKS _______________________________________________________________ 10 UDAN 4.1 ______________________________________________________________________ 11 MSME CREDIT HEALTH INDEX _________________________________________________________ 12 OXFAM COMMITMENT TO REDUCING INEQUALITY (CRI) INDEX 2020 _______________________________ 12 BOARD FOR ADVANCE RULINGS (BAR) ___________________________________________________
    [Show full text]
  • Hydrological and Biogeochemical Controls on Temporal Variations Of
    Liu et al. Environ Sci Eur (2021) 33:53 https://doi.org/10.1186/s12302-021-00495-x RESEARCH Open Access Hydrological and biogeochemical controls on temporal variations of dissolved carbon and solutes in a karst river, South China Jing Liu1, Jun Zhong2* , Shuai Chen3, Sen Xu2 and Si‑Liang Li2 Abstract Background: Understanding the responses of riverine dissolved carbon dynamics and chemical weathering processes to short‑term climatic variabilities is important to understand the Surface‑Earth processes under ongoing 13 climate change. Temporal variations of solutes and stable carbon isotope of dissolved inorganic carbon (δ CDIC) were analysed during a hydrological year in the Guijiang River, South China. We aimed to unravel the chemical weathering processes and carbon dynamics in karst areas under ongoing climate changes. Results: Signifcant positive relationships were found between weathering rates and climatic factors (i.e. temperature and discharge) over the hydrological year. The total fux of CO consumption (760.4 ­103 mol/km2/year) in the Guiji‑ 2 × ang River was much higher than the global mean fux, with a higher CO2 consumption capacity in the Guijiang River relative to most other global rivers. Chemical weathering fuxes in this karst area showed high sensitivity to global climate change. CO2 evasion during the warm–wet seasons was much lower than those during cold–dry seasons. 13 Light δ CDIC values occurred under high‑fow conditions, corresponding with the high temperatures in high‑fow seasons. IsoSource modelling revealed that biological carbon could account for 53% of all dissolved inorganic carbon (DIC), controlling the temporal carbon variabilities.
    [Show full text]
  • Combined Aggregated Sampling Stochastic Dynamic Programming and Simulation-Optimization to Derive Operation Rules for Large-Scale Hydropower System
    energies Article Combined Aggregated Sampling Stochastic Dynamic Programming and Simulation-Optimization to Derive Operation Rules for Large-Scale Hydropower System Xinyu Wu 1,2,*, Rui Guo 1, Xilong Cheng 1 and Chuntian Cheng 1,2 1 Institute of Hydropower System & Hydroinformatics, Dalian University of Technology, Dalian 116024, China; [email protected] (R.G.); [email protected] (X.C.); [email protected] (C.C.) 2 Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China * Correspondence: [email protected] Abstract: Simulation-optimization methods are often used to derive operation rules for large-scale hydropower reservoir systems. The solution of the simulation-optimization models is complex and time-consuming, for many interconnected variables need to be optimized, and the objective functions need to be computed through simulation in many periods. Since global solutions are seldom obtained, the initial solutions are important to the solution quality. In this paper, a two- stage method is proposed to derive operation rules for large-scale hydropower systems. In the first stage, the optimal operation model is simplified and solved using sampling stochastic dynamic programming (SSDP). In the second stage, the optimal operation model is solved by using a genetic algorithm, taking the SSDP solution as an individual in the initial population. The proposed method is applied to a hydropower system in Southwest China, composed of cascaded reservoir systems of Hongshui River, Lancang River, and Wu River. The numerical result shows that the two-stage Citation: Wu, X.; Guo, R.; Cheng, X.; method can significantly improve the solution in an acceptable solution time.
    [Show full text]
  • FAMILY Nemacheilidae Regan, 1911 - Stone Loaches [=Nemachilinae, Adiposiidae, Lefuini, Yunnanilini, Triplophysini] Notes: Nemachilinae Regan, 1911E:31 [Ref
    FAMILY Nemacheilidae Regan, 1911 - stone loaches [=Nemachilinae, Adiposiidae, Lefuini, Yunnanilini, Triplophysini] Notes: Nemachilinae Regan, 1911e:31 [ref. 3642] (subfamily) Nemacheilus [as Nemachilus, name must be corrected Article 32.5.3; changed to Noemacheilinae by Bănărescu & Nalbant 1964:160 [ref. 217] based on Noemacheilus; corrected to Nemacheilinae by Roberts 1989:94 [ref. 6439], confirmed by Nelson 2006:147 [ref. 32486] and by Kottelat 2012:74 [ref. 32367]] Adiposiidae Jordan, 1923a:145 [ref. 2421] (family) Adiposia Lefuini Prokofiev, 2010:890 [ref. 31096] (tribe) Lefua Yunnanilini Prokofiev, 2010:890 [ref. 31096] (tribe) Yunnanilus Triplophysini Prokofiev, 2010:892 [ref. 31096] (tribe) Triplophysa GENUS Aborichthys Chaudhuri, 1913 - hillstream loaches [=Aborichthys Chaudhuri [B. L.], 1913:244] Notes: [ref. 819]. Masc. Aborichthys kempi Chaudhuri, 1913. Type by monotypy. •Synonym of Noemacheilus Kuhl & van Hasselt, 1823 but a valid subgenus Aborichthys -- (Menon 1987:183 [ref. 14149]). •Valid as Aborichthys Chaudhuri, 1913 -- (Jayaram 1981:145 [ref. 6497], Zhu 1989:59 [ref. 17744], Kottelat 1990:18 [ref. 14137], Bănărescu & Nalbant 1995:454 [ref. 23187], Sen 2009:13 [ref. 30554], Prokofiev 2010:889 [ref. 31096], Kottelat 2012:74 [ref. 32367], Kosygin 2012:49 [ref. 32937], Kottelat 2013:198 [ref. 32989], Arunachalam et al. 2014:33 [ref. 33198]) Current status: Valid as Aborichthys Chaudhuri, 1913. Nemacheilidae. Species Aborichthys boutanensis (McClelland, 1842) - Bolan hillstream loach (author) [=Cobitis boutanensis McClelland [J.], 1842:586, Aborichthys kempi Chaudhuri [B. L.], 1913:245, Pl. 7 (figs. 1, 1a-b)] Notes: [Calcutta Journal of Natural History v. 2 (no. 8); ref. 2926] Bolan Pass, Afganistan [now Bhutan]. Current status: Valid as Aborichthys boutanensis (McClelland, 1842). Nemacheilidae. Distribution: Bhutan.
    [Show full text]