Teleconnection Analysis of Runoff and Soil Moisture Over the Pearl River Basin in Southern China
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Controls on Modern Erosion and the Development of the Pearl River Drainage in the Late Paleogene
Marine Geology xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margo Invited research article Controls on modern erosion and the development of the Pearl River drainage in the late Paleogene ⁎ Chang Liua, Peter D. Clifta,b, , Andrew Carterc, Philipp Böningd, Zhaochu Hue, Zhen Sunf, Katharina Pahnked a Department of Geology and Geophysics, Louisiana State University, Baton Rouge 70803, USA b School of Geography Science, Nanjing Normal University, Nanjing 210023, China c Department of Earth and Planetary Sciences, Birkbeck College, University of London, London WC1E 7HX, UK d Max Planck Research Group for Marine Isotope Geochemistry, Institute of Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26129, Germany e State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China f Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 Xingangxi Road, Guangzhou 510301, China ARTICLE INFO ABSTRACT Keywords: The Pearl River and its tributaries drains large areas of southern China and has been the primary source of Zircon sediment to the northern continental margin of the South China Sea since its opening. In this study we use a Nd isotope combination of bulk sediment geochemistry, Nd and Sr isotope geochemistry, and single grain zircon U-Pb Erosion dating to understand the source of sediment in the modern drainage. We also performed zircon U-Pb dating on Provenance Eocene sedimentary rocks sampled by International Ocean Discovery Program (IODP) Expedition 349 in order to Pearl River constrain the source of sediment to the rift before the Oligocene. -
The Use of Social Capital in Organizing the Frog Festival Of
doi: 10.14456/jms.2018.4 The Use of Social Capital in Organizing the Frog Festival of Baying Village in the Context of Cultural Tourism Development1 Houdian Yaa and Jaggapan Cadchumsangb* abFaculty of Humanities and Social Sciences, Khon Kaen University Khon Kaen 40002, Thailand *Corresponding author. Email: [email protected], [email protected] Abstract This article deals with the use of social capital in organizing the Frog Festival in a Zhuang ethnic village in China amidst the expansion of cultural tourism. The data used were drawn from qualitative research in Baying Village, Donglan District, Hechi City, Guangxi Zhuang Autonomous Region, People’s Republic of China. Key informant interviews as well as participant and non-participant observations were the main data collection techniques employed in the field research. The study found that there are three forms of social capital-namely, networks, norms, and trust-employed in the organization of the Frog Festival, which has become a part of China’s cultural tourism development. Social capital in the form of networks includes bonding networks among relatives, bridging networks between Baying residents and Zhuang outside the village, and linking networks between Baying villagers and the state as well as agencies from outside. Of the three forms of network, bonding is the most important because it connects not only those who have genealogical relationships, but also Zhuang dwellers from nearby villages to actively take part in organizing the festival. The research also indicates key roles of the other two categories of social capital-norms and trust-used in the organization of the Frog Festival which have allowed for its success in Baying and generated strong social networks. -
World Bank Document
Document of The World Bank FOR OFFICIAL USE ONLY Public Disclosure Authorized Report No: ICR00004961 IMPLEMENTATION COMPLETION AND RESULTS REPORT IBRD-82490 ON A LOAN FROM THE INTERNATIONAL BANK FOR RECONSTRUCTION AND DEVELOPMENT Public Disclosure Authorized IN THE AMOUNT OF US$80 MILLION TO THE PEOPLE'S REPUBLIC OF CHINA FOR A GUANGXI LAIBIN WATER ENVIRONMENT PROJECT Public Disclosure Authorized June 22, 2020 Urban, Resilience And Land Global Practice East Asia And Pacific Region Public Disclosure Authorized This document has a restricted distribution and may be used by recipients only in the performance of their official duties. Its contents may not otherwise be disclosed without World Bank authorization. CURRENCY EQUIVALENTS (Exchange Rate Effective January 31, 2020) Currency Unit = Renminbi (RMB) RMB¥6.94 = US$1 FISCAL YEAR January 1 – December 31 ABBREVIATIONS AND ACRONYMS CPF Country Partnership Framework CPS Country Partnership Strategy EIA Environmental Impact Assessment EIRR Economic Internal Rate of Return EMP Environmental Management Plan FEP Flood Emergency Plan FM Financial Management FWS Flood Warning System FYP Five-Year Plan GRM Grievance Redress Mechanism ICR Implementation Completion and Results Report IRI Intermediate Results Indicator IUFR Interim Unaudited Financial Report ISR Implementation Status and Results Report LID Low Impact Development LMG Laibin Municipal Government LWIC Laibin Water Investment Company M&E Monitoring and Evaluation O&M Operation and Maintenance PAD Project Appraisal Document PAP Project Affected -
Case Study: Pearl River Tower, Guangzhou, China
ctbuh.org/papers Title: Case Study: Pearl River Tower, Guangzhou, China Authors: Roger Frechette, Director of Sustainable Engineering, Skidmore, Owings & Merrill Russell Gilchrist, Director of Technical Architecture, Skidmore, Owings & Merrill Subjects: Architectural/Design Building Case Study Sustainability/Green/Energy Keywords: Embodied Energy Energy Consumption Façade Sustainability Publication Date: 2008 Original Publication: CTBUH 2008 8th World Congress, Dubai Paper Type: 1. Book chapter/Part chapter 2. Journal paper 3. Conference proceeding 4. Unpublished conference paper 5. Magazine article 6. Unpublished © Council on Tall Buildings and Urban Habitat / Roger Frechette; Russell Gilchrist ‘Towards Zero Energy’ A Case Study of the Pearl River Tower, Guangzhou, China Roger E. Frechette III, PE, LEED-AP1 and Russell Gilchrist, RIBA2 1Director of Sustainable Engineering, 2Director of Technical Architecture, Skidmore, Owings & Merrill, LLP, Chicago, IL, USA Abstract Architects and engineers have a significant responsibility to ensure that the design and execution of all new construction projects be of the ‘lightest touch’ in both energy consumption, real and embodied, to ensure the longevity of the precious natural resources remain on this planet. The goal to achieve ‘carbon neutrality’ is quite possibly the single most important issue facing architects and engineers today, given the empirical evidence that construction projects far outstrip both industry and transportation as the largest contributors to carbon emissions in the world. This paper will attempt to both define what is meant by ‘carbon neutral’ in the context of building design as well as using the case study to demonstrate how such an approach might be achieved it examines the challenges of achieving a net zero energy building, both from an energy consumption perspective as well as the embodied energy of the construction. -
Water Situation in China – Crisis Or Business As Usual?
Water Situation In China – Crisis Or Business As Usual? Elaine Leong Master Thesis LIU-IEI-TEK-A--13/01600—SE Department of Management and Engineering Sub-department 1 Water Situation In China – Crisis Or Business As Usual? Elaine Leong Supervisor at LiU: Niclas Svensson Examiner at LiU: Niclas Svensson Supervisor at Shell Global Solutions: Gert-Jan Kramer Master Thesis LIU-IEI-TEK-A--13/01600—SE Department of Management and Engineering Sub-department 2 This page is left blank with purpose 3 Summary Several studies indicates China is experiencing a water crisis, were several regions are suffering of severe water scarcity and rivers are heavily polluted. On the other hand, water is used inefficiently and wastefully: water use efficiency in the agriculture sector is only 40% and within industry, only 40% of the industrial wastewater is recycled. However, based on statistical data, China’s total water resources is ranked sixth in the world, based on its water resources and yet, Yellow River and Hai River dries up in its estuary every year. In some regions, the water situation is exacerbated by the fact that rivers’ water is heavily polluted with a large amount of untreated wastewater, discharged into the rivers and deteriorating the water quality. Several regions’ groundwater is overexploited due to human activities demand, which is not met by local. Some provinces have over withdrawn groundwater, which has caused ground subsidence and increased soil salinity. So what is the situation in China? Is there a water crisis, and if so, what are the causes? This report is a review of several global water scarcity assessment methods and summarizes the findings of the results of China’s water resources to get a better understanding about the water situation. -
List 3. Headings That Need to Be Changed from the Machine- Converted Form
LIST 3. HEADINGS THAT NEED TO BE CHANGED FROM THE MACHINE- CONVERTED FORM The data dictionary for the machine conversion of subject headings was prepared in summer 2000 based on the systematic romanization of Wade-Giles terms in existing subject headings identified as eligible for conversion before detailed examination of the headings could take place. When investigation of each heading was subsequently undertaken, it was discovered that some headings needed to be revised to forms that differed from the forms that had been given in the data dictionary. This occurred most frequently when older headings no longer conformed to current policy, or in the case of geographic headings, when conflicts were discovered using current geographic reference sources, for example, the listing of more than one river or mountain by the same name in China. Approximately 14% of the subject headings in the pinyin conversion project were revised differently than their machine- converted forms. To aid in bibliographic file maintenance, the following list of those headings is provided. In subject authority records for the revised headings, Used For references (4XX) coded Anne@ in the $w control subfield for earlier form of heading have been supplied for the data dictionary forms as well as the original forms of the headings. For example, when you see: Chien yao ware/ converted to Jian yao ware/ needs to be manually changed to Jian ware It means: The subject heading Chien yao ware was converted to Jian yao ware by the conversion program; however, that heading now -
Mapping the Plastic
Title: Mapping the Plastic Speaker: Simon Ironside Chair FIG Working Group 4.3 Date: 18 & 19 November 2019 1 Addressing the alarming problem of plastic pollution of our waterways Mapping the A surveyor’s perspective Plastic Simon Ironside Chair FIG Working Group 4.3 Plastic clogs up a waterway in Yangon, Myanmar. courtesy of Global New Light of Myanmar, 5 June 2018 Plastic Pollution Overview (Waterways) The Commonwealth Scientific and Industrial Research Organisation, Australia (CSIRO) • Yangtze River, Yellow Sea, Asia • Indus River, Arabian Sea, Asia • Yellow River (Huang He), Yellow Sea, Asia Top 10 river • Hai River, Yellow Sea, Asia • Nile, Mediterranean Sea, Africa systems • Meghna/Bramaputra/Ganges, Bay of Bengal, Asia contributing • Pearl River (Zhujiang), South China Sea/East Sea, Asia • Amur River (Heilong Jiang), Sea of Okhotsk, Asia to ocean • Niger River, Gulf of Guinea, Africa plastic • Mekong River, South China Sea/East Sea, Asia *Export of plastic debris by rivers into the sea - Authors: Christian Schmidt, Tobias Krauth, Stephan Wagner, Reprinted with permission from Environmental Science & Technology 2017, 51, 21, 12246-12253. Copyright 2017, American Chemical Society.` • While ocean plastic remains a daunting problem, this could be good news for the quest to control it. Export of plastic • These 10 waterways contribute between 88 and 95 percent of the total plastic load that oceans receive via debris by rivers rivers and would be good places to focus on better waste into the sea - management. Authors: Christian • The high fraction of a few river catchments contributing the vast majority of the total load implies that potential Schmidt, Tobias Krauth, mitigation measures would be highly efficient when Stephan Wagner applied in the high-load rivers • Reducing plastic loads by 50 percent in the 10 top-ranked rivers, would reduce the total river-based load to the sea by 45 percent. -
In Koguryo Dynasty the State-Formation History Starts from B
International Journal of Korean History(Vol.6, Dec.2004) 1 History of Koguryŏ and China’s Northeast Asian Project 1Park Kyeong-chul * Introduction The Koguryŏ Dynasty, established during the 3rd century B.C. around the Maek tribe is believed to have begun its function as a centralized entity in the Northeast Asia region. During the period between 1st century B.C. and 1st century A.D. aggressive regional expansion policy from the Koguryŏ made it possible to overcome its territorial limitations and weak economic basis. By the end of the 4th century A.D., Koguryŏ emerged as an empire that had acquired its own independent lebensraum in Northeast Asia. This research paper will delve into identifying actual founders of the Koguryŏ Dynasty and shed light on their lives prior to the actual establishment of the Dynasty. Then on, I will analyze the establishment process of Koguryŏ Dynasty. Thereafter, I will analyze the history of Koguryŏ Dynasty at three different stages: the despotic military state period, the period in which Koguryŏ emerged as an independent empire in Northeast Asia, and the era of war against the Sui and Tang dynasty. Upon completion of the above task, I will illustrate the importance of Koguryŏ history for Koreans. Finally, I attempt to unearth the real objectives why the Chinese academics are actively promoting the Northeast Asian Project. * Professor, Dept. of Liberal Arts, Kangnam University 2 History of Koguryŏ and China’s Northeast Asian Project The Yemaek tribe and their culture1 The main centers of East Asian culture in approximately 2000 B.C. were China - by this point it had already become an agrarian society - and the Mongol-Siberian region where nomadic cultures reign. -
Download Article (PDF)
Advances in Social Science, Education and Humanities Research, volume 85 4th International Conference on Management Science, Education Technology, Arts, Social Science and Economics (MSETASSE 2016) Discussions on Development of Cultural Tourism Industry in Region at the Source of the Pearl River Jingfeng Wang School of economics and management, Qujing Normal University, Qujing Yunnan, 655011, China Key words: Source of the Pearl River, Cultural tourism, Development. Abstract. The Pearl River is one of the three large inland rivers of China. The region at the source of the Pearl River is rich in natural landscape resources and human landscapes, has a profound historical and cultural foundation, and is distinctively featured by minority folk-custom, all of which are advantageous conditions for the development of cultural tourism industry. Yet the development situation of cultural tourism industry at the source of the Pearl River is still less than satisfactory. Only by transformation and upgrading of scenic region at the source of the Pearl River, and development of minority folk-custom-themed the Three Kingdoms History-themed cultural tourism, and cultural heritage tourism products, the cultural tourism industry at the source of the Pearl River can have more development opportunities. Overview of the Pearl River and of Its Source The Pearl River is one of the three inland rivers of China. By streamflow, the Pearl River is the second largest inland river in China, second only to the Yangtze River; by length, the Pearl River is the third largest inland river in China, following the Yangtze River and the Yellow River. The main stream of the Pearl River is 2320km long in total, the basin area is 446,768km2 [1], its river basin stretches over Yunnan, Guizhou, Guangxi, Hunan, Jiangxi, Guangdong, Hong Kong and Macao, and it flows into the South China Sea from the 8th estuary in the Pearl River Delta. -
Tracing Population Movements in Ancient East Asia Through the Linguistics and Archaeology of Textile Production
Evolutionary Human Sciences (2020), 2, e5, page 1 of 20 doi:10.1017/ehs.2020.4 REVIEW Tracing population movements in ancient East Asia through the linguistics and archaeology of textile production Sarah Nelson1, Irina Zhushchikhovskaya2, Tao Li3,4, Mark Hudson3 and Martine Robbeets3* 1Department of Anthropology, University of Denver, Denver, CO, USA, 2Laboratory of Medieval Archaeology, Institute of History, Archaeology and Ethnography of Peoples of Far East, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia, 3Eurasia3angle Research group, Max Planck Institute for the Science of Human History, Jena, Germany and 4Department of Archaeology, Wuhan University, Wuhan, China *Corresponding author. E-mail: [email protected] Abstract Archaeolinguistics, a field which combines language reconstruction and archaeology as a source of infor- mation on human prehistory, has much to offer to deepen our understanding of the Neolithic and Bronze Age in Northeast Asia. So far, integrated comparative analyses of words and tools for textile production are completely lacking for the Northeast Asian Neolithic and Bronze Age. To remedy this situation, here we integrate linguistic and archaeological evidence of textile production, with the aim of shedding light on ancient population movements in Northeast China, the Russian Far East, Korea and Japan. We show that the transition to more sophisticated textile technology in these regions can be associated not only with the adoption of millet agriculture but also with the spread of the languages of the so-called ‘Transeurasian’ family. In this way, our research provides indirect support for the Language/Farming Dispersal Hypothesis, which posits that language expansion from the Neolithic onwards was often associated with agricultural colonization. -
4-1 China Ex-Post Evaluation of Japanese ODA Loan Project Jilin
China Ex-Post Evaluation of Japanese ODA Loan Project Jilin Song Liao River Basin Environmental Improvement Project External Evaluator: Kenji Momota, IC Net Limited 1. Project Description Project Site Sewage Treatment Plant in Jilin City 1.1 Background Since the 1978 adoption of the Economic Reform Policy, the Chinese economy has been making steady growth, and the country’s development in economic aspects has been phenomenal. In parallel, however, the advancement of industrialization has brought about an impending challenge: solving environmental problems including deteriorating quality of river water caused by increased household and industrial wastewater, and air pollution caused by increased use of coal. At the time of appraisal of the project in question (1998), the basin of Songhua River (total length: ca. 2,308 km) that runs through Jilin and Heilongjiang Provinces and Liao River (total length: ca. 1,390 km) that runs from Hebei Province/Inner Mongolia, through Jilin Province to Liaoning Province is home to a large number of state-owned petrochemical and other companies and has achieved solid economic growth. The economic prosperity, however, brought with it aggravation of water environment deterioration, because the increases in household sewage and industrial wastewater generation far exceeded the available capacity of sewage and wastewater treatment facilities. Against this background, the Province of Jilin was faced with the urgent need to implement control-at-source measures and improve the sewer system. 1.2 Project Outline The objective of this project is to improve water quality by implementing environmental 4-1 pollution control projects in Songhua/Liao River Basin, a region faced with serious problems of water and air pollution as a result of rapid economic growth, thereby contributing to improved standard of living and health of the local residents. -
Paper for River Symposium
http://www.paper.edu.cn Equitable Utilisation and Effective Protection of Sharing Transboundary Water Resources in international Rivers of Western China He, Daming (Asian International River Centre, Yunnan University, Kunming, 650091; E-mail:[email protected]) Liu, Xiujuan (Australian Mekong Resource Center, Sydney University, Sydney, Australia) Abstract: Western China includes 12 provincial divisions (the 7 provinces of Sichuan, Guizhou, Yunnan, Shangxi, Gansu, Qinghai and; 5 autonomous regions of Tibet, Ningxia, Xinjiang , Inner Mongolia and Guangxi; and one city of Chongqing), which comprise 71.4% of the national land area, 28.5% of the national population and produce 17.5% of the national GDP in China. There are 17 countries that have riparian relationships with wester n China, most of which are water -short countries. All are listed by UN ESCAP as countries with potential water crisis. The co-operative development and coordinated management of international rivers in western China is an important step toward the implementation of the national Great Western Development program. Taking into account of the national strategy and object hierarchy, as well as the development demand of the western region, it is necessary to pursue the multi-disciplinary study of the equitable allocation, utilisation, and eco-environment protection of transboundary water resource in the region. Such efforts will undoubtedly provide scientific evidence and support for the decision-making of the environmental protection and ecological construction and management in the western region, the enforcement of the sub-regional economic co-operation, mitigation of trans-boundary conflicts, and enhancing bio-diversity conservation. 1. Introduction Recently, some important international institutions, like the World Bank (WB) and the Asian Development Bank, have pointed out that there will exist in water crises, water conflicts, and even water wars in the 21th century.