Part of the Lesson Stem Teachers Script Hello Mathematicians. After

Total Page:16

File Type:pdf, Size:1020Kb

Part of the Lesson Stem Teachers Script Hello Mathematicians. After Part of the Stem Teachers Script Lesson In this lesson you Introduction Hello mathematicians. After today's lesson, you will be able to simplify expressions are going to involving square roots. learn…by 10-20 sec doing/using… You remember that the square root of a number is the side length of a square with an area equal to that number. So the square root of 16 is 4 because a square with an area of 16 would have a side length of 4. Since all sides of a square are the same Connection length, finding the square root of a number, "A" means finding some number that when multiplied by itself gives you A. So the square root of 25 is 5 because 5 times (Define Terms/ itself is 25. Building on Prior You know that… Knowledge) 30-60 sec Also remember that while all numbers greater than zero have a square root, only numbers called, "perfect squares," have integer square roots. Trying to take the square root of a number that is not a perfect square results in an irrational number. So 18 is not a perfect square because 4 times itself is 16, 5 times itself is 25, which means the square root of 18 is an irrational number greater than 4 but less than 5. Demonstration I’m going to But sometimes it is possible and very useful to simplify square roots into smaller explain this idea terms. We will simplify radical 18 in just a minute, but first I want you to think about 1-3 minc by showing you¦ something. Radical 4 is 2, and radical 9 is 3. When I multiply radical 4 times radical 9, I get radicaly 36, which you know is 6. Now thinking about this backwards, I could start with radical 36, and break it up into two of its factors, radical 4 times radical 9. That would give me 2 times 3, which is 6...exactly what we know radical 36 to be. This could help you break down numbers that you may not know are perfect squares, such as 400. If you think about it, both 4 and 100 are perfect squares and they are a factor pair of 400. So you could split radical 400 into radical 4 times radical 100. This is 2 times 10, which is 20. So 400 is a perfect square and its square root is 20. This idea can also help us simplify radical 18. Since 18 is not a perfect square, we will not be able to eliminate the radical completely. But we can make it simpler. Can you think of any factors of 18 that are perfect squares? 9 is right? 9 times what is 18? 9 times 2. So I can split radical 18 into radical 9 times radical 2. And since I know radical 9 is 3, I can rewrite this as 3 times radical 2. Radical 2 is an irrational number, so I cannot simplify it any further. Let's try another. Radical 24. Can you think of any perfect square factors of 24? 4 is. So I rewrite radical 24 as radical 4 times radical 6. Radical 4 is 2, so I get 2 radical 6. Here's one more: Radical 30. Can you think of any perfect square factors of 30? Well, it definitely has factors...such as 3 and 10. But neither of those is a perfect square, so splitting it up this way does not help us simplify radical 30. I could try 5 and 6, but neither of those is a perfect square. Radical 30 is actually as simple as you can make it. Radical 50 Radical 1600 Application Let’s see how this works in a 1-2 min problem¦ Radical 70 Radical 80 Conclusion Now you can simplify expressions involving square roots. So, now you know how to…by… 10-20 sec .
Recommended publications
  • A Dictionary of Chinese Characters: Accessed by Phonetics
    A dictionary of Chinese characters ‘The whole thrust of the work is that it is more helpful to learners of Chinese characters to see them in terms of sound, than in visual terms. It is a radical, provocative and constructive idea.’ Dr Valerie Pellatt, University of Newcastle. By arranging frequently used characters under the phonetic element they have in common, rather than only under their radical, the Dictionary encourages the student to link characters according to their phonetic. The system of cross refer- encing then allows the student to find easily all the characters in the Dictionary which have the same phonetic element, thus helping to fix in the memory the link between a character and its sound and meaning. More controversially, the book aims to alleviate the confusion that similar looking characters can cause by printing them alongside each other. All characters are given in both their traditional and simplified forms. Appendix A clarifies the choice of characters listed while Appendix B provides a list of the radicals with detailed comments on usage. The Dictionary has a full pinyin and radical index. This innovative resource will be an excellent study-aid for students with a basic grasp of Chinese, whether they are studying with a teacher or learning on their own. Dr Stewart Paton was Head of the Department of Languages at Heriot-Watt University, Edinburgh, from 1976 to 1981. A dictionary of Chinese characters Accessed by phonetics Stewart Paton First published 2008 by Routledge 2 Park Square, Milton Park, Abingdon, OX14 4RN Simultaneously published in the USA and Canada by Routledge 270 Madison Ave, New York, NY 10016 Routledge is an imprint of the Taylor & Francis Group, an informa business This edition published in the Taylor & Francis e-Library, 2008.
    [Show full text]
  • Effects of Metal Ions in Free Radical Reactions Richard Duane Kriens Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1963 Effects of metal ions in free radical reactions Richard Duane Kriens Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Kriens, Richard Duane, "Effects of metal ions in free radical reactions " (1963). Retrospective Theses and Dissertations. 2544. https://lib.dr.iastate.edu/rtd/2544 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been 64—3880 microfilmed exactly as received KRIENS, Richard Duane, 1932- EFFECTS OF METAL IONS IN FREE RADICAL REACTIONS. Iowa State University of Science and Technology Ph.D„ 1963 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan EFFECTS OF METAL IONS IN FREE RADICAL REACTIONS by Richard Duane Kriens A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Organic Chemistry Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. ead of Major Departmei^ Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa 1963 11 TABLE OF CONTENTS Page PART I. REACTIONS OF RADICALS WITH METAL SALTS. ... 1 INTRODUCTION 2 REVIEW OF LITERATURE 3 RESULTS AND DISCUSSION 17 EXPERIMENTAL 54 Chemicals 54 Apparatus and Procedure 66 Reactions of compounds with the 2-cyano-2-propyl radical 66 Reactions of compounds with the phenyl radical 67 Procedure for Sandmeyer type reaction.
    [Show full text]
  • The Two Faces of the Guanyl Radical: Molecular Context and Behavior
    molecules Review The Two Faces of the Guanyl Radical: Molecular Context and Behavior Chryssostomos Chatgilialoglu 1,2 1 ISOF, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; [email protected]; Tel.: +39-051-6398309 2 Center of Advanced Technologies, Adam Mickiewicz University, 61-712 Pozna´n,Poland Abstract: The guanyl radical or neutral guanine radical G(-H)• results from the loss of a hydrogen atom (H•) or an electron/proton (e–/H+) couple from the guanine structures (G). The guanyl radical exists in two tautomeric forms. As the modes of formation of the two tautomers, their relationship and reactivity at the nucleoside level are subjects of intense research and are discussed in a holistic manner, including time-resolved spectroscopies, product studies, and relevant theoretical calculations. Particular attention is given to the one-electron oxidation of the GC pair and the complex mechanism of the deprotonation vs. hydration step of GC•+ pair. The role of the two G(-H)• tautomers in single- and double-stranded oligonucleotides and the G-quadruplex, the supramolecular arrangement that attracts interest for its biological consequences, are considered. The importance of biomarkers of guanine DNA damage is also addressed. Keywords: guanine; guanyl radical; tautomerism; guanine radical cation; oligonucleotides; DNA; G-quadruplex; time-resolved spectroscopies; reactive oxygen species (ROS); oxidation 1. The Guanine Sink Citation: Chatgilialoglu, C. The Two The free radical chemistry associated with guanine (Gua) and its derivatives, guano- Faces of the Guanyl Radical: sine (Guo), 2’-deoxyguanosine (dGuo), guanosine-50-monophosphate (GMP), and 20- Molecular Context and Behavior. deoxyguanosine-50-monophosphate (dGMP), is of particular interest due to its biological Molecules 2021, 26, 3511.
    [Show full text]
  • Radical Hydroacylation of C-C and N-N Double Bonds in Air
    University College London Radical Hydroacylation of C-C and N-N Double Bonds in Air by Jenna Marie Ahern Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Declaration I, Jenna Marie Ahern, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Jenna Marie Ahern October 2010 Radical Hydroacylation of C-C and N-N Double Bonds in Air Jenna Marie Ahern Abstract The formation of C-C and C-N bonds in modern organic synthesis is a key target for methodological advancement. Current methods of C-C and C-N bond formation often involve the use of expensive catalysts, or sub-stoichiometric reagents, which can lead to the generation of undesirable waste products. This thesis describes a novel and environmentally benign set of reaction conditions for the formation of C-C and C-N bonds by hydroacylation and this is promoted by mixing two reagents, an aldehyde and an electron-deficient double bond, under freely available atmospheric oxygen at room temperature Chapter 1 will provide an introduction to the thesis and mainly discusses methods for C-C bond formation, in particular, radical chemistry and hydroacylation. Chapter 2 describes the hydroacylation of vinyl sulfonates and vinyl sulfones (C-C double bonds) with aliphatic and aromatic aldehydes with a discussion and evidence for the mechanism of the transformation. Chapter 3 details the synthesis of precursors for intramolecular cyclisations and studies into aerobic intramolecular cyclisations. Chapter 4 describes the hydroacylation of vinyl phosphonates (C-C double bonds) and diazocarboxylates (N-N double bonds) with aliphatic and aromatic aldehydes bearing functional groups.
    [Show full text]
  • Conjugated, Carbon-Centered Radicals
    molecules Review Synthesis, Physical Properties, and Reactivity of Stable, π-Conjugated, Carbon-Centered Radicals Takashi Kubo Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; [email protected] Received: 26 January 2019; Accepted: 11 February 2019; Published: 13 February 2019 Abstract: Recently, long-lived, organic radical species have attracted much attention from chemists and material scientists because of their unique electronic properties derived from their magnetic spin and singly occupied molecular orbitals. Most stable and persistent organic radicals are heteroatom-centered radicals, whereas carbon-centered radicals are generally very reactive and therefore have had limited applications. Because the physical properties of carbon-centered radicals depend predominantly on the topology of the π-electron array, the development of new carbon-centered radicals is key to new basic molecular skeletons that promise novel and diverse applications of spin materials. This account summarizes our recent studies on the development of novel carbon-centered radicals, including phenalenyl, fluorenyl, and triarylmethyl radicals. Keywords: π-conjugated radicals; hydrocarbon radicals; persistent; anthryl; phenalenyl; fluorenyl 1. Introduction Organic radical species are generally recognized as highly reactive, intermediate species. However, recently, functional materials taking advantage of the feature of open-shell electronic structure have attracted much attention from chemists and material scientists; therefore, the development of novel, long-lived, organic, radical species becomes more important [1–7]. Nitronyl nitroxides, galvinoxyl, and DPPH are well known as stable, organic, radical species, which are commercially available chemicals. These stable radical species are “heteroatom-centered radicals”, in which unpaired electrons are mainly distributed on heteroatoms.
    [Show full text]
  • 5-Substituted Triazolinyls As Novel Counter Radicals in Controlled Radical Polymerization
    5-Substituted Triazolinyls as Novel Counter Radicals in Controlled Radical Polymerization Thesis for completion of the degree “Doktor der Naturwissenschaften” in the Department of Chemistry and Pharmaceutics of Johannes Gutenberg University, Mainz by Maxim Peretolchin Mainz 2004 The work completed between October 1999 and November 2002 at the Max- Planck-Institute for Polymer Research, Mainz, Germany under the supervision of Prof. Dr. K. Müllen. 4 Content 1 State of the art 9 1.1 Polymer Chemistry 9 1.1.1 Introduction 9 1.1.2 Characterization of polymers 11 1.2 Coordination polymerization 12 1.3 Ionic polymerization 12 1.4 Free radical polymerization 15 1.4.1 Principles of radical polymerization 15 1.4.2 Kinetics of free radical polymerization 19 1.4.3 Comparison of free radical and ionic (living) polymerization 21 1.5 Controlled (living) radical polymerization 23 1.5.1 Overview 23 1.5.2 Atom transfer radical polymerization (ATRP) 24 1.5.3 Reversible addition fragmentation chain transfer (RAFT) 26 1.6 Stable free radical polymerization (SFRP) 27 1.6.1 Nitroxide mediated radical polymerization (NMRP) 28 1.6.2 Controlled radical polymerization mediated by stable radicals other than 32 nitroxides 1.6.3 Carbon-centered radicals 33 1.6.4 Nitrogen-centered radicals 34 1.7 Triazolinyl radicals 34 1.7.1 Syntheses and properties 34 1.7.2 Triazolinyl mediated controlled radical polymerization 38 1.8 Comparison of ATRP, SFRP, and RAFT 39 1.9 Kinetics of SFRP 39 1.9.1 Self-regulation concept 43 1.10 Materials, academic, and industrial prospects 45
    [Show full text]
  • Benzopinacolate Promoted Radical Carbon-Carbon Bond Forming
    Bis(trimethylstannyl)benzopinacolate Promoted Radical Carbon-Carbon Bond Forming Reactions and Related Studies Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Franklin Lee Seely Graduate Program in Chemistry The Ohio State University 2010 Dissertation Committee: Robert S. Coleman, Co-Advisor David J. Hart, Co-Advisor T. V. RajanBabu Abstract This research has dealt primarily with the development of novel methods for radical carbon-carbon bond formation. A major focus of this research has been the hydrogen atom free generation of trialkyltin radicals. The bulk of this thesis will deal with the use of bis(trimethylstannyl)benzopinacolate 1 in mediating radical reactions. We have demonstrated that these conditions allow a wide variety of inter and intramolecular free radical addition reactions. We have given evidence that these reactions proceed via a novel non-chain free radical mechanism. ii Dedication This thesis is dedicated to Tracy Lynne Court. You have given me the courage to try again. iii Acknowledgments I would like to sincerely thank Dr. David J. Hart for all his help, the countless hours of work he put in, and for making this possible. I would like to thank Dr. Robert S. Coleman for agreeing to act as my advisor, and all the support and guidance he has given. I would like to than Dr. T. V. RajanBabu for reading my thesis and all his thoughtful suggestions. iv Vita Education 1981-1985 ………………………………………………………..B.S., The University
    [Show full text]
  • Facile Synthesis of Tertiary Aliphatic Amine– Containing Cyclic Motif Via Neutral Aminyl Radical Cyclization Heng Chen Wayne State University
    Wayne State University Wayne State University Theses 1-1-2016 Facile Synthesis Of Tertiary Aliphatic Amine– Containing Cyclic Motif Via Neutral Aminyl Radical Cyclization Heng Chen Wayne State University, Follow this and additional works at: https://digitalcommons.wayne.edu/oa_theses Part of the Organic Chemistry Commons Recommended Citation Chen, Heng, "Facile Synthesis Of Tertiary Aliphatic Amine– Containing Cyclic Motif Via Neutral Aminyl Radical Cyclization" (2016). Wayne State University Theses. 468. https://digitalcommons.wayne.edu/oa_theses/468 This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Theses by an authorized administrator of DigitalCommons@WayneState. FACILE SYNTHESIS OF TERTIARY ALIPHATIC AMINE– CONTAINING CYCLIC MOTIF VIA NEUTRAL AMINYL RADICAL CYCLIZATION by HENG CHEN THESIS Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE 2016 MAJOR: CHEMISTRY (Organic) Approved By: Advisor Date ACKNOWLEDGMENTS I would like to thank my thesis advisor, Professor Jenn Stockdill and all the Stockdill lab’s members for their support and encouragement. I am grateful to Professors Woody Guo and Stanislav Groysman for serving in my master’s defense committee. Finally, I want to thank the Chemistry Department at Wayne State University for the financial support in the past 19 months. ii TABLE OF CONTENTS Acknowledgments..................................................................................................ii
    [Show full text]
  • New Blatter-Type Radicals from a Bench-Stable Carbene
    ARTICLE Received 6 Aug 2016 | Accepted 28 Feb 2017 | Published 15 May 2017 DOI: 10.1038/ncomms15088 OPEN New Blatter-type radicals from a bench-stable carbene Jacob A. Grant1, Zhou Lu2, David E. Tucker1, Bryony M. Hockin1, Dmitry S. Yufit1, Mark A. Fox1, Ritu Kataky1, Victor Chechik2 & AnnMarie C. O’Donoghue1 Stable benzotriazinyl radicals (Blatter’s radicals) recently attracted considerable interest as building blocks for functional materials. The existing strategies to derivatize Blatter’s radicals are limited, however, and synthetic routes are complex. Here, we report that an inexpensive, commercially available, analytical reagent Nitron undergoes a previously unrecognized transformation in wet acetonitrile in the presence of air to yield a new Blatter-type radical with an amide group replacing a phenyl at the C(3)-position. This one-pot reaction of Nitron provides access to a range of previously inaccessible triazinyl radicals with excellent benchtop stabilities. Mechanistic investigation suggests that the reaction starts with a hydrolytic cleavage of the triazole ring followed by oxidative cyclization. Several derivatives of Nitron were prepared and converted into Blatter-type radicals to test the synthetic value of the new reaction. These results significantly expand the scope of using functionalized benzotriazinyls as stable radical building blocks. 1 Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK. 2 Department of Chemistry, University of York, Heslington, York YO10 5DD, UK. Correspondence and requests for materials should be addressed to V.C. (email: [email protected]) or to A.M.C.O’D. (email: [email protected]). NATURE COMMUNICATIONS | 8:15088 | DOI: 10.1038/ncomms15088 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15088 1 latter’s radical 1 (Fig.
    [Show full text]
  • "Radical Stability --- Thermochemical Aspects" In
    Radical Stability—Thermochemical Aspects Johnny Hioe and Hendrik Zipse Department of Chemistry, LMU M¨unchen, M¨unchen, Germany 1 INTRODUCTION is quite challenging. Kinetic data, in contrast, are much more difficult to predict by theory, while the The terms “transient” and “persistent” are used determination of reaction rates can be approached frequently in the scientific literature to describe experimentally with a variety of direct or indirect the kinetic properties of open shell systems in methods, at least for sufficiently fast reactions homogeneous solution.1–5 The hydroxyl radical (see Radical Kinetics and Clocks). Theory and (HO•, 1), for example, is a transient species of experiment pair up nicely in this respect, as a central importance in atmospheric chemistry (see combination of these approaches is able to provide Atmospheric Radical Chemistry), as well as one a comprehensive picture of thermodynamic and of the most important reactive oxygen species kinetic data. (ROS) in aqueous solution, whereas the nitroxide 2,2,6,6-tetramethylpiperidine-1-oxyl, TEMPO (2)is a persistent radical stable enough to be bottled and 2 DEFINITIONS OF RADICAL STABILITY sold in bulk (Figure 1) (see Nitroxides in Synthetic Radical Chemistry). The thermodynamic stability of C-centered radicals However, despite their widespread use, these can be defined in various ways and several options terms are not too helpful for a quantitative approach are discussed in the following.6–10 One of the to radical chemistry as they do not reflect the most often used definitions is based on hydrogen influence of thermochemical driving force and transfer reactions as shown in Scheme 1 for reaction • intrinsic reaction barrier on the observed lifetime.
    [Show full text]
  • LETTER Doi:10.1038/Nature14885
    LETTER doi:10.1038/nature14885 Alcohols as alkylating agents in heteroarene C–H functionalization Jian Jin1 & David W. C. MacMillan1 Redox processes and radical intermediates are found in many bio- pathways. Recently, our laboratory introduced a new dual photoredox- chemical processes, including deoxyribonucleotide synthesis and organocatalytic platform to enable the functionalization of unacti- oxidative DNA damage1. One of the core principles underlying vated sp3 C2H bonds15–17. This catalytic manifold provides access DNA biosynthesis is the radical-mediated elimination of H2Oto to radical intermediates via C2H abstraction, resulting in the con- deoxygenate ribonucleotides, an example of ‘spin-centre shift’2, struction of challenging C2C bonds via a radical–radical coupling during which an alcohol C–O bond is cleaved, resulting in a car- mechanism. With the insight gained from this dual catalytic system bon-centred radical intermediate. Although spin-centre shift is a and our recent work on the development of a photoredox-catalysed well-understood biochemical process, it is underused by the syn- Minisci reaction18, we questioned whether it would be possible to thetic organic chemistry community. We wondered whether it generate alkyl radicals from alcohols and use them as alkylating agents would be possible to take advantage of this naturally occurring in a heteroaromatic C–H functionalization reaction (Fig. 1c). While process to accomplish mild, non-traditional alkylation reactions there are a few early reports of alcohols as alkyl radical precursors using alcohols as radical precursors. Because conventional radical- formed via high-energy irradiation (ultraviolet light and gamma based alkylation methods require the use of stoichiometric oxi- rays)19–21, a general and robust strategy for using alcohols as latent 3–7 dants, increased temperatures or peroxides , a mild protocol alkylating agents has been elusive.
    [Show full text]
  • Radical Aryl Migration Reactions and Synthetic Applications
    Chemical Society Reviews Radical Aryl Migration Reactions and Synthetic Applications Journal: Chemical Society Reviews Manuscript ID: CS-REV-12-2014-000467.R1 Article Type: Review Article Date Submitted by the Author: 16-Mar-2015 Complete List of Authors: Chen, Zhi-Min; Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering Zhang, Xiao-Ming; Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Department of Chemistry Tu, Yong Qiang; Lanzhou University, State Key Laboratory of Applied Organic Chemistry + Department of Chemistry Page 1 of 43 Chemical Society Reviews Radical Aryl Migration Reactions and Synthetic Applications Zhi-Min Chen,a,† Xiao-Ming Zhangb,† and Yong-Qiang Tu*a,b a School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China bState Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China †These authors contributed equally to this work Radical aryl migration reactions are of particular interest to the chemical community due to their potential applications in radical chemistry and organic synthesis. The neophyl rearrangements used as radical clocks for examining the radical-molecular reactions have been known for decades. The combinations of these migrations with other radical reactions have provided a wide range of novel synthetic methodologies that are complementary to nucleophilic rearrangements. This review will give an overview of various types of radical aryl migrations, with an emphasis on their mechanistic studies from a historical point of view, as well as their applications in tandem radical reactions. 1. Introduction Radical aryl migration reactions represent a unique class of organic transformations standing at the intersection of both radical and rearrangement reactions.
    [Show full text]