PUL-Mediated Plant Cell Wall Polysaccharide Utilization in the Gut Bacteroidetes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ninety-Nine De Novo Assembled Genomes from the Moose (Alces Alces) Rumen Microbiome Provide New Insights Into Microbial Plant Biomass Degradation
The ISME Journal (2017) 11, 2538–2551 © 2017 International Society for Microbial Ecology All rights reserved 1751-7362/17 www.nature.com/ismej ORIGINAL ARTICLE Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation Olov Svartström1, Johannes Alneberg2, Nicolas Terrapon3,4, Vincent Lombard3,4, Ino de Bruijn2, Jonas Malmsten5,6, Ann-Marie Dalin6, Emilie EL Muller7, Pranjul Shah7, Paul Wilmes7, Bernard Henrissat3,4,8, Henrik Aspeborg1 and Anders F Andersson2 1School of Biotechnology, Division of Industrial Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden; 2School of Biotechnology, Division of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden; 3CNRS UMR 7257, Aix-Marseille University, 13288 Marseille, France; 4INRA, USC 1408 AFMB, 13288 Marseille, France; 5Department of Pathology and Wildlife Diseases, National Veterinary Institute, Uppsala, Sweden; 6Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden; 7Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg and 8Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia The moose (Alces alces) is a ruminant that harvests energy from fiber-rich lignocellulose material through carbohydrate-active enzymes (CAZymes) produced by its rumen microbes. We applied shotgun metagenomics to rumen contents from six moose to obtain insights into this microbiome. Following binning, 99 metagenome-assembled genomes (MAGs) belonging to 11 prokaryotic phyla were reconstructed and characterized based on phylogeny and CAZyme profile. The taxonomy of these MAGs reflected the overall composition of the metagenome, with dominance of the phyla Bacteroidetes and Firmicutes. -
BASICS of the FODMAP DIET Elizabeth English RD, CLC OBJECTIVES
BASICS OF THE FODMAP DIET Elizabeth English RD, CLC OBJECTIVES Describe sources of FODMAP carbohydrate Recognize appropriate patient populations for the FODMAP diet Identify high FODMAP foods which are necessary to restrict when following the FODMAP diet Identify low FODMAP foods which are allowed when following the FODMAP diet FODMAP • Fermentable • Oligosaccharides • Disaccharides • Monosaccharides • And • Polyols POPULATION • Prevalence of IBS varies between 8% - 20% of the US population depending on diagnostic criteria and population evaluated • Most studies report a higher prevalence of IBS in women than men • Average medical expenditure for IBS in the US is estimated to be $1.35 billion in direct costs and $205 million in indirect costs • IBS accounts for almost half of all visits to gastroenterologists MAGGE & LEMBO . GASTORENTEROLOGY & HEPATOLOGY 2012 KIDS • Kids with FGID (functional gastrointestinal disorders) report lower quality of life than healthy controls •Increased incidence of school absenteeism •Decreased energy •Less likely to be physically active •Less likely to be involved in school activities •Increased feelings of sadness and loneliness YOUSSEF ET AL. PEDIATRICS 2014 TARGET POPULATION • Patients diagnosed with functional gastrointestinal diseases (FGIDs) including IBS, abdominal migrane & childhood functional abdominal pain • Diagnosis by exclusion • Celiac disease • IBD • Food allergies • EoE • Cancer • Gastritis FODMAP HISTORY • Sue Shepherd developed the FODMAP diet in 1999 at her Shepherd Works RD practice • Realized that FODMAP foods were triggers for IBS • In 2005, the first paper describing FODMAPs was published with Dr. Peter Gibson • In 2006, the first research trial was a retrospective audit of patients with IBS and fructose malabsorption on a low fructose/fructan diet with 74% of patients reporting symptomatic improvement on this dietary regimen • Early research continued until 2009 when the FODMAP diet became well known throughout the digestive community BARRETT & GIBSON. -
1587714682 277 2.Pdf
Systematic and Applied Microbiology 42 (2019) 107–116 Contents lists available at ScienceDirect Systematic and Applied Microbiology jou rnal homepage: http://www.elsevier.com/locate/syapm The diverse and extensive plant polysaccharide degradative apparatuses of the rumen and hindgut Prevotella species: A factor in their ubiquity? ∗ Tomazˇ Accetto , Gorazd Avgustinˇ University of Ljubljana, Biotechnical faculty, Animal Science Department, Groblje 3, 1230 Domzale,ˇ Slovenia a r t i c l e i n f o a b s t r a c t Article history: Although the Prevotella are commonly observed in high shares in the mammalian hindgut and rumen Received 2 August 2018 studies using NGS approach, the knowledge on their actual role, though postulated to lie in soluble fibre Received in revised form 2 October 2018 degradation, is scarce. Here we analyse in total 23, more than threefold of hitherto known rumen and Accepted 3 October 2018 hindgut Prevotella species and show that rumen/hindgut Prevotella generally possess extensive reper- toires of polysaccharide utilization loci (PULs) and carbohydrate active enzymes targeting various plant Keywords: polysaccharides. These PUL repertoires separate analysed Prevotella into generalists and specialists yet a Prevotella finer diversity among generalists is evident too, both in range of substrates targeted and in PUL combi- Rumen Hindgut nations targeting the same broad substrate classes. Upon evaluation of the shares of species analysed in this study in rumen metagenomes we found firstly, that they contributed significantly to total Prevotella Polysaccharide utilization locus CAZYme abundance though much of rumen Prevotella diversity may still be unknown. Secondly, the hindgut Pre- Metagenome votella species originally isolated in pigs and humans occasionally dominated among the Prevotella with surprisingly high metagenome read shares and were consistently found in rumen metagenome samples from sites as apart as New Zealand and Scotland. -
Prevotella Multisaccharivorax Type Strain (PPPA20T)
Lawrence Berkeley National Laboratory Recent Work Title Non-contiguous finished genome sequence of the opportunistic oral pathogen Prevotella multisaccharivorax type strain (PPPA20). Permalink https://escholarship.org/uc/item/0p79h5ds Journal Standards in genomic sciences, 5(1) ISSN 1944-3277 Authors Pati, Amrita Gronow, Sabine Lu, Megan et al. Publication Date 2011-10-01 DOI 10.4056/sigs.2164949 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2011) 5:41-49 DOI:10.4056/sigs.2164949 Non-contiguous finished genome sequence of the opportunistic oral pathogen Prevotella multisaccharivorax type strain (PPPA20T) Amrita Pati1, Sabine Gronow2, Megan Lu1,3, Alla Lapidus1, Matt Nolan1, Susan Lucas1, Nancy Hammon1, Shweta Deshpande1, Jan-Fang Cheng1, Roxanne Tapia1,3, Cliff Han1,3, Lynne Goodwin1,3 Sam Pitluck1, Konstantinos Liolios1, Ioanna Pagani1, Konstantinos Mavromatis1, Natalia Mikhailova1, Marcel Huntemann1, Amy Chen4, Krishna Palaniappan4, Miriam Land1,5, Loren Hauser1,5, John C. Detter1,3, Evelyne-Marie Brambilla2, Manfred Rohde6, Markus Göker2, Tanja Woyke1, James Bristow1, Jonathan A. Eisen1,7, Victor Markowitz4, Philip Hugenholtz1,8, Nikos C. Kyrpides1, Hans-Peter Klenk2*, and Natalia Ivanova1 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and -
Characterization of Antibiotic Resistance Genes in the Species of the Rumen Microbiota
ARTICLE https://doi.org/10.1038/s41467-019-13118-0 OPEN Characterization of antibiotic resistance genes in the species of the rumen microbiota Yasmin Neves Vieira Sabino1, Mateus Ferreira Santana1, Linda Boniface Oyama2, Fernanda Godoy Santos2, Ana Júlia Silva Moreira1, Sharon Ann Huws2* & Hilário Cuquetto Mantovani 1* Infections caused by multidrug resistant bacteria represent a therapeutic challenge both in clinical settings and in livestock production, but the prevalence of antibiotic resistance genes 1234567890():,; among the species of bacteria that colonize the gastrointestinal tract of ruminants is not well characterized. Here, we investigate the resistome of 435 ruminal microbial genomes in silico and confirm representative phenotypes in vitro. We find a high abundance of genes encoding tetracycline resistance and evidence that the tet(W) gene is under positive selective pres- sure. Our findings reveal that tet(W) is located in a novel integrative and conjugative element in several ruminal bacterial genomes. Analyses of rumen microbial metatranscriptomes confirm the expression of the most abundant antibiotic resistance genes. Our data provide insight into antibiotic resistange gene profiles of the main species of ruminal bacteria and reveal the potential role of mobile genetic elements in shaping the resistome of the rumen microbiome, with implications for human and animal health. 1 Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil. 2 Institute for Global Food Security, School of Biological -
Day 1. Yao. Intro to Carbohydrates
Introduction to Carbohydrates: Basic Concepts, Monosaccharides, Oligosaccharides, and Polysaccharides Dr. Yuan Yao Whistler Center for Carbohydrate Research October 1, 2019 2 History of Carbohydrate Uses & Knowledge 10,000 BCE Sugarcane processing in New Guinea 6000 BCE Sugarcane culture developed in India 6000 BCE Cellulose, as cotton, used by many cultures 4000 BCE Starch used as an adhesive in Egypt 1500 BCE Cotton cloth from India to Persia and China 1000 BCE Use of sucrose in candies, confections, and medicines in Egypt 100 CE Paper made for writing in China 700 CE Paper coated with starch paste to retain ink and provide strength Adapted from John Robyt, Essentials of Carbohydrate Chemistry 3 History of Carbohydrate Uses & Knowledge 1600 CE Sugar refineries developed in Europe 1700 CE Sugar beet developed in Europe for obtaining sucrose 1792 CE A sugar isolated from honey that was different from sucrose 1802 CE A sugar found in grapes that was also different from sucrose 1808 CE Malus developed plane polarized light and observed optical rotation by carbohydrates 1811 CE Acid-hydrolyzed starch produced a sweet crystalline sugar 1820 CE Acid-hydrolyzed cellulose also produced a sweet crystalline sugar 1821 CE Production of dextrins by heating starch: British Gums Adapted from John Robyt, Essentials of Carbohydrate Chemistry 1 4 History of Carbohydrate Uses & Knowledge 1838 CE Sugar from honey, grapes, starch, & cellulose was found to be glucose 1866 CE Kekule changed the name of glucose to dextrose because it rotates plane polarized -
MICRO-ORGANISMS and RUMINANT DIGESTION: STATE of KNOWLEDGE, TRENDS and FUTURE PROSPECTS Chris Mcsweeney1 and Rod Mackie2
BACKGROUND STUDY PAPER NO. 61 September 2012 E Organización Food and Organisation des Продовольственная и cельскохозяйственная de las Agriculture Nations Unies Naciones Unidas Organization pour организация para la of the l'alimentation Объединенных Alimentación y la United Nations et l'agriculture Наций Agricultura COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE MICRO-ORGANISMS AND RUMINANT DIGESTION: STATE OF KNOWLEDGE, TRENDS AND FUTURE PROSPECTS Chris McSweeney1 and Rod Mackie2 The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the FAO or its Members. 1 Commonwealth Scientific and Industrial Research Organisation, Livestock Industries, 306 Carmody Road, St Lucia Qld 4067, Australia. 2 University of Illinois, Urbana, Illinois, United States of America. This document is printed in limited numbers to minimize the environmental impact of FAO's processes and contribute to climate neutrality. Delegates and observers are kindly requested to bring their copies to meetings and to avoid asking for additional copies. Most FAO meeting documents are available on the Internet at www.fao.org ME992 BACKGROUND STUDY PAPER NO.61 2 Table of Contents Pages I EXECUTIVE SUMMARY .............................................................................................. 5 II INTRODUCTION ............................................................................................................ 7 Scope of the Study ........................................................................................................... -
Galactose, Natural Sources and Biotech Uses
Galactose, Natural Sources and Biotech Uses Nowadays, as the science developed, people are more and more interested in two hot topics, global environment and human health. In the near future, as scientists predict, it’s very likely for human to have a new “clean” biofuel coming from carbohydrates and replacing the fossil fuel we are using now, which would be a huge advancement of environmental protection. Also people are learning more about the minute quantity but essential contents in diet, like so-called bifidus factors, which have big affects on health, especially for babies. And interestingly, all of these can be related to the “half milk sugar” (from Chinese) galactose. In this essay, I will give a broad overview of galactose, including its nature source, some functions, related enzymes and future prospects. As from many aspects, galactose would have an important role in future and more sources would be needed, both natural and artificial. So where to start finding new sources of galactose would be an interesting question. And in this essay, I will try to give some opinions to answer this question. 1. What is galactose? Galactose, also named D-galactopyranose, is a simple monosaccharide sugar, sharing the same molecular chemical formula C6H12O6 with glucose and fructose, while they are defined as structure isomers as they have different structures. Galactose has the appearance of white crystal and is less sweet comparing to glucose or fructose. Galactose has an average mass of 180.16 Da. As galactose is consisting of six carbon and one aldehyde group, it is classified as an aldohexose. -
Prevotella in Pigs: the Positive and Negative Associations with Production and Health
microorganisms Review Prevotella in Pigs: The Positive and Negative Associations with Production and Health Samat Amat 1,2, Hannah Lantz 1, Peris M. Munyaka 1 and Benjamin P. Willing 1,* 1 Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; [email protected] (S.A.); [email protected] (H.L.); [email protected] (P.M.M.) 2 Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA * Correspondence: [email protected]; Tel.: +1-780-492-8908 Received: 1 September 2020; Accepted: 11 October 2020; Published: 14 October 2020 Abstract: A diverse and dynamic microbial community (known as microbiota) resides within the pig gastrointestinal tract (GIT). The microbiota contributes to host health and performance by mediating nutrient metabolism, stimulating the immune system, and providing colonization resistance against pathogens. Manipulation of gut microbiota to enhance growth performance and disease resilience in pigs has recently become an active area of research in an era defined by increasing scrutiny of antimicrobial use in swine production. In order to develop microbiota-targeted strategies, or to identify potential next-generation probiotic strains originating from the endogenous members of GIT microbiota in pigs, it is necessary to understand the role of key commensal members in host health. Many, though not all, correlative studies have associated members of the genus Prevotella with positive outcomes in pig production, including growth performance and immune response; therefore, a comprehensive review of the genus in the context of pig production is needed. In the present review, we summarize the current state of knowledge about the genus Prevotella in the intestinal microbial community of pigs, including relevant information from other animal species that provide mechanistic insights, and identify gaps in knowledge that must be addressed before development of Prevotella species as next-generation probiotics can be supported. -
Biosynthesis of Rare Hexoses Using Microorganisms and Related Enzymes
Biosynthesis of rare hexoses using microorganisms and related enzymes Zijie Li1, Yahui Gao2, Hideki Nakanishi1, Xiaodong Gao*1 and Li Cai*3 Review Open Access Address: Beilstein J. Org. Chem. 2013, 9, 2434–2445. 1The Key Laboratory of Carbohydrate Chemistry and Biotechnology, doi:10.3762/bjoc.9.281 Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China, 2School of Food Science and Technology, Received: 25 July 2013 Jiangnan University, Wuxi, 214122, China and 3Division of Accepted: 15 October 2013 Mathematics and Science, University of South Carolina Salkehatchie, Published: 12 November 2013 Walterboro, South Carolina, 29488, USA This article is part of the Thematic Series "Natural products in synthesis Email: and biosynthesis". Xiaodong Gao* - [email protected]; Li Cai* - [email protected] Guest Editor: J. S. Dickschat * Corresponding author © 2013 Li et al; licensee Beilstein-Institut. License and terms: see end of document. Keywords: biosynthesis; enzyme; hexose; microorganism; rare sugars Abstract Rare sugars, referred to as monosaccharides and their derivatives that rarely exist in nature, can be applied in many areas ranging from foodstuffs to pharmaceutical and nutrition industry, or as starting materials for various natural products and drug candidates. Unfortunately, an important factor restricting the utilization of rare sugars is their limited availability, resulting from limited syn- thetic methods. Nowadays, microbial and enzymatic transformations have become a very powerful tool in this field. This article reviews the biosynthesis and enzymatic production of rare ketohexoses, aldohexoses and sugar alcohols (hexitols), including D-tagatose, D-psicose, D-sorbose, L-tagatose, L-fructose, 1-deoxy-L-fructose, D-allose, L-glucose, L-talose, D-gulose, L-galactose, L-fucose, allitol, D-talitol, and L-sorbitol. -
Rapid Flow-Through Fractionation of Biomass to Preserve Labile Aryl Ether Bonds in Native Lignin
Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2019 Rapid Flow-Through Fractionation of Biomass to Preserve Labile Aryl Ether Bonds in Native Lignin Hao Zhou,[a] Jia Yun Xu,[a] Yingjuan Fu,[a] Haiguang Zhang,[a] Zaiwu Yuan,[a] Menghua Qin,*[b] Zhaojiang Wang*[a] a State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China b Laboratory of Organic Chemistry, Taishan University, Taian 271021, China Table of content Materials .....................................................................................................................................................................................................................................................3 Gas chromatography-mass spectrometric (GC-MS) analysis and the quantification of lignin monomers..................................................................................................3 Ultra-performance liquid chromatography tandem mass spectrometry (LC-MS) analysis.........................................................................................................................4 Determination of structural carbohydrates and lignin in untreated biomass and solid residue after treatments.....................................................................................4 NMR analysis...............................................................................................................................................................................................................................................5 -
Glycation of Plant Proteins Via Maillard Reaction: Reaction Chemistry, Technofunctional Properties, and Potential Food Application
foods Review Glycation of Plant Proteins Via Maillard Reaction: Reaction Chemistry, Technofunctional Properties, and Potential Food Application Ines Kutzli 1,2 , Jochen Weiss 1 and Monika Gibis 1,* 1 Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599 Stuttgart, Germany; [email protected] (I.K.); [email protected] (J.W.) 2 Food and Soft Materials, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland * Correspondence: [email protected] Abstract: Plant proteins are being considered to become the most important protein source of the future, and to do so, they must be able to replace the animal-derived proteins currently in use as techno-functional food ingredients. This poses challenges because plant proteins are oftentimes storage proteins with a high molecular weight and low water solubility. One promising approach to overcome these limitations is the glycation of plant proteins. The covalent bonding between the proteins and different carbohydrates created via the initial stage of the Maillard reaction can improve the techno-functional characteristics of these proteins without the involvement of potentially toxic chemicals. However, compared to studies with animal-derived proteins, glycation studies on plant proteins are currently still underrepresented in literature. This review provides an overview of the existing studies on the glycation of the major groups of plant proteins with different carbohydrates Citation: Kutzli, I.; Weiss, J.; Gibis, using different preparation methods. Emphasis is put on the reaction conditions used for glycation M. Glycation of Plant Proteins Via as well as the modifications to physicochemical properties and techno-functionality.