The Structure and Nephroprotective Activity of Oligo-Porphyran on Glycerol-Induced Acute Renal Failure in Rats

Total Page:16

File Type:pdf, Size:1020Kb

The Structure and Nephroprotective Activity of Oligo-Porphyran on Glycerol-Induced Acute Renal Failure in Rats marine drugs Article The Structure and Nephroprotective Activity of Oligo-Porphyran on Glycerol-Induced Acute Renal Failure in Rats Jing Wang 1,2, Yun Hou 1,3, Delin Duan 1,2,4 and Quanbin Zhang 1,2,* 1 Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; [email protected] (J.W.); [email protected] (Y.H.); [email protected] (D.D.) 2 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China 3 Graduate University of the Chinese Academy of Sciences, Beijing 100049, China 4 State Key Lab of Seaweed Bioactive Substances, Qingdao 266500, China * Correspondence: [email protected]; Tel.: +86-532-8289-8708 Academic Editor: Keith B. Glaser Received: 1 February 2017; Accepted: 4 May 2017; Published: 9 May 2017 Abstract: Porphyran is a sulfate galactan in the cell wall of Porphyra. Its acid hydrolysis product, oligo-porphyran (OP), was prepared and the structure studied by electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS). This oligosaccharide was mainly composed of monosulfate-oligo-galactan, disufate-oligo-galactan, trisulfate-oligo-galactan, trisulfate oligo-methyl-galactan, and 3,6-anhydrogalactose with the degree of polymerization ranging from 1 to 8. The effects of OP were investigated in the glycerol-induced acute renal failure (ARF) model. Compared with the normal group, rats from the glycerol-induced group exhibited collecting duct and medullary ascending limb dilation and casts. The OP-treated group exerted a protective effect against glycerol-induced changes. The results showed that the administration of OP markedly decreased mortality in female ARF rats. For male ARF rats, all of which survived, OP significantly decreased the blood urea nitrogen and serum creatinine levels. Ion levels in plasma and urine were significantly changed in ARF rats, whereas OP treatment almost recovered ion levels back to normal. This study showed a noticeable renal morphologic and functional protection by OP in glycerol-induced ARF rats. Keywords: sulfated galactan; oligo-porphyran; acute renal failure; gender difference 1. Introduction Acute renal failure (ARF) is a syndrome characterized by a rapid loss of kidney function [1]. During ARF, tubular fluid flow rate and glomerular filtration rate decrease rapidly. Subsequently, the kidney is unable to produce sufficient amounts of urine, and nitrogen-containing waste substances accumulate in the blood [2–4]. ARF is a contributor to many other diseases, including cardiovascular diseases, hypertension, and diabetes mellitus [5]. This syndrome has a major impact on the life quality of patients, and it is even life-threatening in some conditions [6]. Porphyran, with a linear backbone of alternating 3-linked β-D-galactose and 4-linked α-L-galactose-6-sulfate or 3,6-anhydro-α-L-galactose (3,6-AG) units [7], is the main polysaccharide in the cell wall of Porphyra. Porphyran has various biological activities, which are mainly attributed to its sulfated group [8,9]. In our previous study, we found that the sulfated polysaccharides from Laminaria and its hydrolysis products had protective effect on the rats with renal impairment [10,11]. One of an important factor for glycerol-induced renal injury is oxidative stress [12–14]. Porphyran has been proven to have strong antioxidant activity in vitro, however, few people studied its inhibition Mar. Drugs 2017, 15, 135; doi:10.3390/md15050135 www.mdpi.com/journal/marinedrugs Mar. Drugs 2017, 15, 135 2 of 13 has been proven to have strong antioxidant activity in vitro, however, few people studied its Mar. Drugs 2017, 15, 135 2 of 13 inhibition effect on ARF. Glycerol was a common agent for the induction of ARF in vivo and can lead to renal oxidative stress, as previously reported [15]. Therefore, the protective effect on glycerol‐ inducedeffect on ARF ARF. of Glycerol porphyan was is obvious. a common agent for the induction of ARF in vivo and can lead to renal oxidativeResearchers stress, asfound previously many factors reported of [sulfated15]. Therefore, polysaccharides, the protective such effect as molecular on glycerol-induced weight, degree ARF ofof sulfation, porphyan and is obvious. type of sugar, that influence their antioxidant activity. The earlier studies in our laboratoryResearchers showed found that manydifferent factors molecular of sulfated weights polysaccharides, of porphyan suchcould as influence molecular the weight, antioxidant degree activityof sulfation, [16]. Lower and type molecular of sugar, weight that influence porphyan their exhibited antioxidant stronger activity. antioxidant The earlier activity studies compared in our withlaboratory native porphyan. showed that In this different paper, molecular we prepared weights oligo of‐porphyran porphyan by could acid hydrolysis influence the and antioxidant evaluated theactivity structure [16]. and Lower effect molecular of oligo weight‐porphyran porphyan on the exhibited glycerol stronger‐induced antioxidant ARF in rats. activity Dexamethasone compared was with usednative in porphyan.the positive In control this paper, group we due prepared to its anti oligo-porphyran‐inflammatory and by acid antioxidant hydrolysis property and evaluated in ARF rats the [6].structure The levels and effectof blood of oligo-porphyran urea nitrogen (BUN), on the serum glycerol-induced creatinine (SCR), ARF in and rats. ions Dexamethasone in the rats’ blood was usedand urinein the were positive investigated. control group The dueaim toof itsthis anti-inflammatory study was to clarify and antioxidantthe structure property and nephroprotective in ARF rats [6]. activityThe levels of oligo of blood‐porphyran urea nitrogen on glycerol (BUN),‐induced serum creatinineacute renal (SCR), failure and in ionsrats. in the rats’ blood and urine were investigated. The aim of this study was to clarify the structure and nephroprotective activity of 2.oligo-porphyran Results on glycerol-induced acute renal failure in rats. 2.1.2. Results The Structure Study of Oligo‐Porphran 2.1.1.2.1. The Preparation, Structure StudyFraction, of Oligo-Porphran and Analysis of Oligo‐Porphyran (OP) 2.1.1.The Preparation, chemical composition Fraction, and of Analysis the oligo of‐porphyran Oligo-Porphyran (OP) used (OP) in this study was shown in Table 1. It contains 71.39% galactose, 7.05% 3,6‐anhydrogalactose, and 18.32% sulfate groups. Its average The chemical composition of the oligo-porphyran (OP) used in this study was shown in Table1. molecular weight was 1431 Da. This oligosaccharide was mainly composed of sulfated galactan with It contains 71.39% galactose, 7.05% 3,6-anhydrogalactose, and 18.32% sulfate groups. Its average the degree of polymerization ranging from 1 to 8. molecular weight was 1431 Da. This oligosaccharide was mainly composed of sulfated galactan with the degree of polymerization ranging from 1 to 8. Table 1. The chemical analysis of OP. Mw SulfateTable 1. GroupThe chemical Galactose analysis of OP.3,6‐anhydrogalactose Sample (Kda) (%) (%) (%) SampleOP Mw (Kda)1.43 16.90 Sulfate ± 0.51 Group (%)59.93 ± Galactose 1.44 (%)6.45 3,6-anhydrogalactose ± 0.17 (%) OP 1.43 16.90 ± 0.51 59.93 ± 1.44 6.45 ± 0.17 The eluting profile of chromatography of OP was shown in Figure 1. Three fractions were obtained:The F1, eluting F2, and profile F3 from of chromatography 0 to 0.3 M NaCl of elutions OP was from shown column in Figure chromatography,1. Three fractions and the were F4 fractionobtained: was F1, obtained F2, and from F3 from a 0.5 0 toM 0.3NaCl M elution. NaCl elutions The sulfate from group column of chromatography, F1–F4 was 16.54%, and 16.06%, the F4 18.98%,fraction and was 23.18%, obtained respectively. from a 0.5 M NaCl elution. The sulfate group of F1–F4 was 16.54%, 16.06%, 18.98%, and 23.18%, respectively. 2 0.6 Water 0.5 1.5 0.4 F1 F4 1 F2 F3 0.3 0.2 0.5 0.1 NaCl(mol/L) Absorbance 0 0 0 50 100 150 200 250 Elution volume(mL) Figure 1. Chromatography of eluted OP on DEAE-sepharose CL-6B chromatography. Figure 1. Chromatography of eluted OP on DEAE‐sepharose CL‐6B chromatography. Mar. Drugs 2017, 15, 135 3 of 13 Mar. Drugs 2017, 15, 135 3 of 13 2.1.2. Structure of Oligo-PorphyranOligo‐Porphyran (OP) The degree of polymerization (DP) of OP and its fractions fractions F1–F4 F1–F4 was was tested tested by by HPLC HPLC (Figure (Figure 22).). The number of sulfate groups and DPs of OP increased from F1 to F4. The sulfate group numbers of F1~F4 were were 1, 2, 3, and >3, respectively, respectively, while the DPs of their main components were were 2–4, 4–6, 6–8, and 7–13, respectively. Figure 2. Cont. Mar. Drugs 2017, 15, 135 4 of 13 Mar. Drugs 2017, 15, 135 4 of 13 FigureFigure 2. 2. TheThe degreedegree ofof polymerizationpolymerization of of OP OP and and its its fractions fractions tested tested by by HPLC. HPLC. WeWe studied the the molecular molecular weight weight distribution distribution and and structure structure of F1–F4 of F1–F4 using ESI using‐TOF ESI-TOF-MS‐MS (Figure (Figure3). From3). the From MS‐spectrum the MS-spectrum of F1, we found of F1, a wedistribution found a of distribution singly‐charged of singly-chargedions corresponding ions to − − corresponding[Galn‐SO3H‐H] to (n [Gal = 2–6).n-SO There3H-H] were(n =less 2–6). intensive There weresignals, less which intensive were signals, found to which be [3,6 were‐AG found‐Galn‐ − − toSO be3H [3,6-AG-Gal‐H] (n = 3–4).n-SO Analysis3H-H] of(n the= 3–4). spectrum Analysis of F2 of found the spectrum a distribution of F2 foundof doubly a distribution‐charged ions of 2− 2− doubly-chargedcorresponding to ions [Gal correspondingn‐(SO3H)2‐2H] to (n [Gal = 3–7),n-(SO which3H)2 -2H]means (F2n =was 3–7), mainly which made means of disulfate F2 was mainly‐oligo‐ madegalactan.
Recommended publications
  • BASICS of the FODMAP DIET Elizabeth English RD, CLC OBJECTIVES
    BASICS OF THE FODMAP DIET Elizabeth English RD, CLC OBJECTIVES Describe sources of FODMAP carbohydrate Recognize appropriate patient populations for the FODMAP diet Identify high FODMAP foods which are necessary to restrict when following the FODMAP diet Identify low FODMAP foods which are allowed when following the FODMAP diet FODMAP • Fermentable • Oligosaccharides • Disaccharides • Monosaccharides • And • Polyols POPULATION • Prevalence of IBS varies between 8% - 20% of the US population depending on diagnostic criteria and population evaluated • Most studies report a higher prevalence of IBS in women than men • Average medical expenditure for IBS in the US is estimated to be $1.35 billion in direct costs and $205 million in indirect costs • IBS accounts for almost half of all visits to gastroenterologists MAGGE & LEMBO . GASTORENTEROLOGY & HEPATOLOGY 2012 KIDS • Kids with FGID (functional gastrointestinal disorders) report lower quality of life than healthy controls •Increased incidence of school absenteeism •Decreased energy •Less likely to be physically active •Less likely to be involved in school activities •Increased feelings of sadness and loneliness YOUSSEF ET AL. PEDIATRICS 2014 TARGET POPULATION • Patients diagnosed with functional gastrointestinal diseases (FGIDs) including IBS, abdominal migrane & childhood functional abdominal pain • Diagnosis by exclusion • Celiac disease • IBD • Food allergies • EoE • Cancer • Gastritis FODMAP HISTORY • Sue Shepherd developed the FODMAP diet in 1999 at her Shepherd Works RD practice • Realized that FODMAP foods were triggers for IBS • In 2005, the first paper describing FODMAPs was published with Dr. Peter Gibson • In 2006, the first research trial was a retrospective audit of patients with IBS and fructose malabsorption on a low fructose/fructan diet with 74% of patients reporting symptomatic improvement on this dietary regimen • Early research continued until 2009 when the FODMAP diet became well known throughout the digestive community BARRETT & GIBSON.
    [Show full text]
  • Day 1. Yao. Intro to Carbohydrates
    Introduction to Carbohydrates: Basic Concepts, Monosaccharides, Oligosaccharides, and Polysaccharides Dr. Yuan Yao Whistler Center for Carbohydrate Research October 1, 2019 2 History of Carbohydrate Uses & Knowledge 10,000 BCE Sugarcane processing in New Guinea 6000 BCE Sugarcane culture developed in India 6000 BCE Cellulose, as cotton, used by many cultures 4000 BCE Starch used as an adhesive in Egypt 1500 BCE Cotton cloth from India to Persia and China 1000 BCE Use of sucrose in candies, confections, and medicines in Egypt 100 CE Paper made for writing in China 700 CE Paper coated with starch paste to retain ink and provide strength Adapted from John Robyt, Essentials of Carbohydrate Chemistry 3 History of Carbohydrate Uses & Knowledge 1600 CE Sugar refineries developed in Europe 1700 CE Sugar beet developed in Europe for obtaining sucrose 1792 CE A sugar isolated from honey that was different from sucrose 1802 CE A sugar found in grapes that was also different from sucrose 1808 CE Malus developed plane polarized light and observed optical rotation by carbohydrates 1811 CE Acid-hydrolyzed starch produced a sweet crystalline sugar 1820 CE Acid-hydrolyzed cellulose also produced a sweet crystalline sugar 1821 CE Production of dextrins by heating starch: British Gums Adapted from John Robyt, Essentials of Carbohydrate Chemistry 1 4 History of Carbohydrate Uses & Knowledge 1838 CE Sugar from honey, grapes, starch, & cellulose was found to be glucose 1866 CE Kekule changed the name of glucose to dextrose because it rotates plane polarized
    [Show full text]
  • Galactose, Natural Sources and Biotech Uses
    Galactose, Natural Sources and Biotech Uses Nowadays, as the science developed, people are more and more interested in two hot topics, global environment and human health. In the near future, as scientists predict, it’s very likely for human to have a new “clean” biofuel coming from carbohydrates and replacing the fossil fuel we are using now, which would be a huge advancement of environmental protection. Also people are learning more about the minute quantity but essential contents in diet, like so-called bifidus factors, which have big affects on health, especially for babies. And interestingly, all of these can be related to the “half milk sugar” (from Chinese) galactose. In this essay, I will give a broad overview of galactose, including its nature source, some functions, related enzymes and future prospects. As from many aspects, galactose would have an important role in future and more sources would be needed, both natural and artificial. So where to start finding new sources of galactose would be an interesting question. And in this essay, I will try to give some opinions to answer this question. 1. What is galactose? Galactose, also named D-galactopyranose, is a simple monosaccharide sugar, sharing the same molecular chemical formula C6H12O6 with glucose and fructose, while they are defined as structure isomers as they have different structures. Galactose has the appearance of white crystal and is less sweet comparing to glucose or fructose. Galactose has an average mass of 180.16 Da. As galactose is consisting of six carbon and one aldehyde group, it is classified as an aldohexose.
    [Show full text]
  • Biosynthesis of Rare Hexoses Using Microorganisms and Related Enzymes
    Biosynthesis of rare hexoses using microorganisms and related enzymes Zijie Li1, Yahui Gao2, Hideki Nakanishi1, Xiaodong Gao*1 and Li Cai*3 Review Open Access Address: Beilstein J. Org. Chem. 2013, 9, 2434–2445. 1The Key Laboratory of Carbohydrate Chemistry and Biotechnology, doi:10.3762/bjoc.9.281 Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China, 2School of Food Science and Technology, Received: 25 July 2013 Jiangnan University, Wuxi, 214122, China and 3Division of Accepted: 15 October 2013 Mathematics and Science, University of South Carolina Salkehatchie, Published: 12 November 2013 Walterboro, South Carolina, 29488, USA This article is part of the Thematic Series "Natural products in synthesis Email: and biosynthesis". Xiaodong Gao* - [email protected]; Li Cai* - [email protected] Guest Editor: J. S. Dickschat * Corresponding author © 2013 Li et al; licensee Beilstein-Institut. License and terms: see end of document. Keywords: biosynthesis; enzyme; hexose; microorganism; rare sugars Abstract Rare sugars, referred to as monosaccharides and their derivatives that rarely exist in nature, can be applied in many areas ranging from foodstuffs to pharmaceutical and nutrition industry, or as starting materials for various natural products and drug candidates. Unfortunately, an important factor restricting the utilization of rare sugars is their limited availability, resulting from limited syn- thetic methods. Nowadays, microbial and enzymatic transformations have become a very powerful tool in this field. This article reviews the biosynthesis and enzymatic production of rare ketohexoses, aldohexoses and sugar alcohols (hexitols), including D-tagatose, D-psicose, D-sorbose, L-tagatose, L-fructose, 1-deoxy-L-fructose, D-allose, L-glucose, L-talose, D-gulose, L-galactose, L-fucose, allitol, D-talitol, and L-sorbitol.
    [Show full text]
  • Rapid Flow-Through Fractionation of Biomass to Preserve Labile Aryl Ether Bonds in Native Lignin
    Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2019 Rapid Flow-Through Fractionation of Biomass to Preserve Labile Aryl Ether Bonds in Native Lignin Hao Zhou,[a] Jia Yun Xu,[a] Yingjuan Fu,[a] Haiguang Zhang,[a] Zaiwu Yuan,[a] Menghua Qin,*[b] Zhaojiang Wang*[a] a State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China b Laboratory of Organic Chemistry, Taishan University, Taian 271021, China Table of content Materials .....................................................................................................................................................................................................................................................3 Gas chromatography-mass spectrometric (GC-MS) analysis and the quantification of lignin monomers..................................................................................................3 Ultra-performance liquid chromatography tandem mass spectrometry (LC-MS) analysis.........................................................................................................................4 Determination of structural carbohydrates and lignin in untreated biomass and solid residue after treatments.....................................................................................4 NMR analysis...............................................................................................................................................................................................................................................5
    [Show full text]
  • Glycation of Plant Proteins Via Maillard Reaction: Reaction Chemistry, Technofunctional Properties, and Potential Food Application
    foods Review Glycation of Plant Proteins Via Maillard Reaction: Reaction Chemistry, Technofunctional Properties, and Potential Food Application Ines Kutzli 1,2 , Jochen Weiss 1 and Monika Gibis 1,* 1 Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599 Stuttgart, Germany; [email protected] (I.K.); [email protected] (J.W.) 2 Food and Soft Materials, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland * Correspondence: [email protected] Abstract: Plant proteins are being considered to become the most important protein source of the future, and to do so, they must be able to replace the animal-derived proteins currently in use as techno-functional food ingredients. This poses challenges because plant proteins are oftentimes storage proteins with a high molecular weight and low water solubility. One promising approach to overcome these limitations is the glycation of plant proteins. The covalent bonding between the proteins and different carbohydrates created via the initial stage of the Maillard reaction can improve the techno-functional characteristics of these proteins without the involvement of potentially toxic chemicals. However, compared to studies with animal-derived proteins, glycation studies on plant proteins are currently still underrepresented in literature. This review provides an overview of the existing studies on the glycation of the major groups of plant proteins with different carbohydrates Citation: Kutzli, I.; Weiss, J.; Gibis, using different preparation methods. Emphasis is put on the reaction conditions used for glycation M. Glycation of Plant Proteins Via as well as the modifications to physicochemical properties and techno-functionality.
    [Show full text]
  • Biotechnological Routes to Biomass Conversion
    Biotechnological Routes to Biomass Conversion James D. McMillan National Bioenergy Center National Renewable Energy Laboratory DOE/NASULGC Biomass & Solar Energy Workshops August 3-4, 2004 The Unique Role of Biomass While the growing need for sustainable electric power can be met by other renewables… Biomass is our only renewable source of carbon-based fuels and chemicals Biomass Conversion Technology “Platforms” Sugar Platform Sugars, Lignins (Aromatics) (Hydrolysis) Residues Combined Fuels, Biomass Heat & Chemicals, Power & Materials By-products Thermochemical Platform CO, H2, Bio-oil (Gasification, Pyrolysis) Outline • Biomass Basics • Overview of Conversion Options • Details of Enzyme-based Technology • Biorefining Now and in the Future Biomass Feedstock Types • “Starchy”: Grains (e.g., corn and wheat) • “Oily”: Seeds (e.g., soya and rape) • “Fibrous”: Lignocellulose (e.g., ag and forestry residues, grasses, trees, etc. ¾ Emphasis of today’s presentation will be conversion of lignocellulosic biomass – Comparison to illustrate the differences between starchy and fibrous feedstocks: corn grain versus corn stover Corn Grain vs. Corn Stover http://maize.agron.iastate.edu/corngrows.html http://www.bisonfarm.com/images/fsp-corn.jpg GRAIN STOVER http://arnica.csustan.edu/key/corn.jpg Biomass Basics • Grain contains – ≥80% carbohydrates, dry basis – Major component is starch • Lignocellulosic biomass contains – 60-70% carbohydrates, dry basis – Major components are cellulose, hemicellulose, and lignin • Biomass types exhibit differences in
    [Show full text]
  • An Introduction to Polysaccharide Biotechnology, Second Edition
    BIOCHEMISTRY BIOTECHNOLOGY AN INTRODUCTION TO POLYSACCHARIDE Stephen E. Harding • Michael P. Tombs An Introduction to Gary G. Adams • Berit Smestad Paulsen POLYSACCHARIDE Kari Tvete Inngjerdingen • Hilde Barsett BIOTECHNOLOGY An Introduction to SECOND EDITION Polysaccharides and related high molecular weight glycans are hugely diverse with wide application in biotechnology and great opportunities for further exploitation. POLYSACCHARIDE An Introduction to Polysaccharide Biotechnology – a second edition of the popular original text by Tombs and Harding – introduces students, researchers, clinicians and industrialists to the properties of some of the key materials involved, how these are applied, some of the economic factors concerning their production and how they BIOTECHNOLOGY are characterised for regulatory purposes. FEATURES • Basic properties of polysaccharides and how they are very different to proteins SECOND EDITION • How these properties are affected by enzymes and how the effects of enzymes can be controlled • An introduction to some ‘patent preferred’ methodologies for polysaccharide EDITION SECOND characterisation, such as molecular weight distribution • Applications in biopharma, food and other industries • The application of marker-assisted selection to fruit ripening and preservation, the development of glycovaccines against meningitis and other serious diseases • Barsett Paulsen • Inngjerdingen • Adams Harding • Tombs • A whole chapter dedicated to a case study on bioactivity and how modern research is unlocking the way polysaccharides are at the core of many HG HG traditional medicines • Further Reading sections for follow up K23616 6000 Broken Sound Parkway, NW Suite 300, Boca Raton, FL 33487 RG-I RG-II 711 Third Avenue New York, NY 10017 2 Park Square, Milton Park Abingdon, Oxon OX14 4RN, UK www.crcpress.com An Introduction to Polysaccharide Biotechnology An Introduction to Polysaccharide Biotechnology By Stephen E.
    [Show full text]
  • Screening for Polysaccharide Endo-Hydrolases Using Insoluble Dyed Polysaccharide
    Screening for Polysaccharide endo-Hydrolases using Insoluble Dyed Polysaccharide 04/17 BACKGROUND Insoluble dyed substrates can be used to detect enzymatic activities in both agar plate and microtiter plate assays. These methods allow for high throughput screening of multiple samples and are accurate, cost effective and easily performed. The substrates as traditionally supplied (e.g. AZCL-Amylose) are granular and quickly settle from substrate suspensions, making routine pipetting non-reproducible. Also, when added to agar plates, they rapidly settle to the bottom of the plate before the agar sets. Consequently, the substrates are not ideal in their current form for their intended uses. To resolve this limitation, Megazyme has investigated alternative ways to dry and mill these substrates to produce materials of a finer particle size which resolve many of the identified limitations. In the preparation of agar plates, the molten agar takes some minutes to solidify and during this time, settling of the insoluble substrate occurs, even with the finer particle size. In order to prevent this, we have evaluated various additives to increase the viscosity of the agar preparations and thus reduce “settling” problems. It was found that xanthan gum (0.5% w/v) effectively prevents settling (Figure 1). As a result, the substrate particles remain closer to the gel surface, resulting in an increased sensitivity of the assay (Figure 2). Xanthan gum is available from Megazyme (cat. no. P-XANTH). Figure 1. Settling of AZCL-Amylose (I-AZAMY) in agar/xanthan gum preparations. a) AZCL-Amylose (0.1% w/v) in agar (2% w/v) with no added xanthan gum.
    [Show full text]
  • Linked Poly-N-Acetyl Neuraminic Acid, The
    A HUMAN MONOCLONAL MACROGLOBULIN WITH SPECIFICITY FOR a(2--3-8)-LINKED POLY-N-ACETYL NEURAMINIC ACID, THE CAPSULAR POLYSACCHARIDE OF GROUP B MENINGOCOCCI AND ESCHERICHIA COLI K1, WHICH CROSSREACTS WITH POLYNUCLEOTIDES AND WITH DENATURED DNA BY ELVIN A. KABAT,*,$,§ KATHERINE G. NICKERSON,° JERRY LIAO,* LIONEL GROSSBARD, 11 ELLIOTT F . OSSERMAN, 11 EVA GLICKMAN," LEONARD CHESS,° JOHN B . ROBBINS,' RACHEL SCHNEERSON,' AND YONGHONG YANG' From the Departments of *Microbiology, *Genetics and Development, *Neurology, and ~IMedicine, College ofPhysicians and Surgeons, Columbia University, New York; and the 'National Institute of Child Health and Development, National Institutes ofHealth, Bethesda, Maryland The a(2 -).8)-linked N-acetyl neuraminic acid (NeuNAc) polymer has unique properties that distinguish it from other bacterial capsular polysaccharides (CPS) .' It is the major virulence factor of two human pathogens, the group B meningococcus, and Escherichia coli K1 (1, 2) . However, unlike almost all other capsular polysaccharides, this polymer, either purified or on formalin-inactivated whole bacteria, is either nonimmunogenic or elicits low levels of antibodies in a small proportion of recipients (3) . Moreover, it is susceptible to rapid hydrolysis by a mammalian enzyme, neuraminidase, resulting in degradation of the antigen . The a(2 -* 8) glycosidic linkage of this polysaccharide is identical to that of the terminal NeuNAc residues of gangliosides and some neural glycoproteins (4, 5) . The poor immunogenicity of this polysaccharide, therefore, has been explained by the structural similarity of this antigen with the host's tissues . Individuals whose serum electrophoresis patterns showed monoclonal peaks were screened with our collection of polysaccharides (6, 7) . We have found an 81-yr-old man (NOV) whose monoclonal IgM antibody showed a precipitin line by the Ouchterlony method with both group B meningococcal and E .
    [Show full text]
  • Hydrocolloids As Food Emulsifiers and Stabilizers
    Food Structure Volume 12 Number 4 Article 3 1993 Hydrocolloids as Food Emulsifiers and Stabilizers Nissim Garti Dov Reichman Follow this and additional works at: https://digitalcommons.usu.edu/foodmicrostructure Part of the Food Science Commons Recommended Citation Garti, Nissim and Reichman, Dov (1993) "Hydrocolloids as Food Emulsifiers and Stabilizers," Food Structure: Vol. 12 : No. 4 , Article 3. Available at: https://digitalcommons.usu.edu/foodmicrostructure/vol12/iss4/3 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Food Structure by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Food Structure, Vol. 12, 1993 (Pages 411-426) 1046-705X/93$5.00+ .00 Scanning Microscopy International, Chicago (AMF O'Hare), IL 60666 USA HYDROCOLWIDS AS FOOD EMULSIFIERS AND STABILIZERS Nissim Garti and Dov Reichman Casali Institute of Applied Chemistry, School of Applied Science and Technology The Hebrew University of Jerusalem, Jerusalem, Israel 91904 Abstract Introduction Hydrocolloids are water-soluble biopolymers con­ Water soluble high molecular weight polysaccha­ sisting of high molecular weight polysaccharides known rides have been known for generations as food stabi­ as viscosity builders, gelification agents and stabilizers lizers; the main application being modification of the of food systems. rheological properties of aqueous systems, viscosity Several hydrocolloids such as gum arabic (acacia), builders, gelification agents and stabilizers (Whistler, tragacanth, xanthan and certain modified gums have 1973; Glicksman, 1969; BeMiller, 1988; Dickinson, been mentioned as food additives having special func­ 1988). tions such as: "retardation of precipitation of dispersed The primary beneficial effect was related to the abil­ solid particles and coalescence of oil droplets".
    [Show full text]
  • The Galactan Series of Oligosaccharides
    Proceedings of the Iowa Academy of Science Volume 59 Annual Issue Article 28 1952 The Galactan Series of Oligosaccharides Gene M. Wild Iowa State College Dexter French Iowa State College Let us know how access to this document benefits ouy Copyright ©1952 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Wild, Gene M. and French, Dexter (1952) "The Galactan Series of Oligosaccharides," Proceedings of the Iowa Academy of Science, 59(1), 226-230. Available at: https://scholarworks.uni.edu/pias/vol59/iss1/28 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Wild and French: The Galactan Series of Oligosaccharides The Galactan Series of Oligosaccharides1 By GENE M. WILD AND DEXTER FRENCH In most biochemistry text books, stachyose is given as the classic example for a tetrasaccharide. Some books list for a pentasaccha­ ride, verbascose. Stachyose was first described in 1890 by von Planta and Schulze (1), who first isolated it and crystallized it from the rhizomes of Stachys tuberifera, the Japanese artichoke. They described it as a non-reducing trisaccharide, [a]D - + 148°, com­ posed of fructose, glucose and galactose. In 1903, Tanret (2) established stachyose as a tetrasaccharide when he showed that it was identical with what he had named manneotetrose from ash manna (3). Since that time, stachyose has been isolated from many different plants.
    [Show full text]