Hydrocolloids As Food Emulsifiers and Stabilizers

Total Page:16

File Type:pdf, Size:1020Kb

Hydrocolloids As Food Emulsifiers and Stabilizers Food Structure Volume 12 Number 4 Article 3 1993 Hydrocolloids as Food Emulsifiers and Stabilizers Nissim Garti Dov Reichman Follow this and additional works at: https://digitalcommons.usu.edu/foodmicrostructure Part of the Food Science Commons Recommended Citation Garti, Nissim and Reichman, Dov (1993) "Hydrocolloids as Food Emulsifiers and Stabilizers," Food Structure: Vol. 12 : No. 4 , Article 3. Available at: https://digitalcommons.usu.edu/foodmicrostructure/vol12/iss4/3 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Food Structure by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Food Structure, Vol. 12, 1993 (Pages 411-426) 1046-705X/93$5.00+ .00 Scanning Microscopy International, Chicago (AMF O'Hare), IL 60666 USA HYDROCOLWIDS AS FOOD EMULSIFIERS AND STABILIZERS Nissim Garti and Dov Reichman Casali Institute of Applied Chemistry, School of Applied Science and Technology The Hebrew University of Jerusalem, Jerusalem, Israel 91904 Abstract Introduction Hydrocolloids are water-soluble biopolymers con­ Water soluble high molecular weight polysaccha­ sisting of high molecular weight polysaccharides known rides have been known for generations as food stabi­ as viscosity builders, gelification agents and stabilizers lizers; the main application being modification of the of food systems. rheological properties of aqueous systems, viscosity Several hydrocolloids such as gum arabic (acacia), builders, gelification agents and stabilizers (Whistler, tragacanth, xanthan and certain modified gums have 1973; Glicksman, 1969; BeMiller, 1988; Dickinson, been mentioned as food additives having special func­ 1988). tions such as: "retardation of precipitation of dispersed The primary beneficial effect was related to the abil­ solid particles and coalescence of oil droplets". The role ity of the hydrocolloid to interact with water and change of these gums as emulsifiers remained somewhat ob­ its rheological properties. However, the functionality of scure. The present review is an attempt to bring the rel­ certain hydrocolloids was correlated also to phenomena evant studies together and to throw some light on the such as: "retardation of precipitation of dispersed solid functionalities of the gums as surface active agents and particles", "decreased creaming rates of oil droplets and food emulsifiers. In addition, some recent results foams", "prevention of aggregation of dispersed parti­ obtained in our laboratory are discussed. cles", "prevention of syneresis of gelled systems contain­ Gum arabic is compared to colloidal microcrystal ­ ing oils", and "retardation of coalescence of oil droplets" line-cellulose (M CC) and galactomannans (recent results) (Dickinson, 1988). Those functionalities are difficult to in view of their abihty to reduce surface tensions, inter­ explain in terms of viscosity and water-gum interactions. facial tensions and to stabilize oil in water emulsions via Adsorption onto, or interaction with the oil phase had to the 'steric' and 'mechanical' stabilization mechani sms. be considered in oil-in-water emulsions. Adsorption of It is demonstrated that while gum arabic adsorbs solid particles had to be adapted for solid dispersions of strongly and effectively onto the oil droplets via its solid particles in aqueous systems (fadros and Vincent, proteinaceous moieties, guar gum and locust bean gum 1983). (LBG) adsorb weakly and for the most part only Most of the water soluble polysaccharides are "precipitate" on the oil surface, and form birefringent known to be high molecular weight polymers with a lim­ layers of the polymer oriented with its hydrophobic ited number of repeating monomers composing the poly­ mannose backbone facing the oil. The stabilization with mer, low hydrophobicity and limited flexibility (derived MCC is claimed to be achieved via adsorption of solid from the rotational restrictions of the functional groups), particles on the oil droplets (mechanical stabilization). and interfacial density packing limitations. This is con­ trary to proteins that are composed of both hydrophilic Key Words: Hydrocolloids, food emulsifiers, food sta­ and hydrophobic moieties, which display a high degree bilizers, food emulsions, gums, galactomannans, gum of flexibility and hydrophobicity (Figure I; Yalpani, arabic. 1988). It is therefore believed that gums will adsorb (onto solid or liquid surfaces) very slowly, weakly and with very limited surface load if at all (Stainsby, 1988). Nevertheless, certain polysaccharides, i.e., gum Paper received June 22, 1993 arabic (Banerji, 1952; Silber and Mizrahi, 1975), Manuscript received November 26, 1993 xanthan (Prud'homme and Long, 1983), and tragacanth Direct inquiries to N. Garti (Dea and Madden, 1986; Bergenstabl et al., 1986; Telephone number: 972 2 633779 Yokoyama er al., 1988) have been noted to display spe­ FAX number: 972 2 520262 cific surface activities and stabilize dispersed particles of oil droplets in aqueous systems. 411 N. Garti and D. Reichman HYDROCOLLOID • s '- a HrfffH .;- 0 ~H,OH--0~ - - 0 H 0 OH ~ 1J1 , G(d I /kT PEPTIDE Ill Figure 1. Comparison of polysaccharide and peptide chain conformation. Chain conformations are deter­ mined by tbe dihedral angle Y, and ¢ between adjacent peptides and sugar rings, or planar peptide groups. - s Broken lines indicate "virtual bonds" representing individual residues (Yalpani, 1988). Figure 2. Interaction free energy G(d), in units of kT, Dickinson and Stainsby (1988) distinguish between as a function of surface-to-surface separation d for pairs emulsifiers and stabilizers in food systems and stress the of polymer-coated particles: (I) thin polymer layer; (II) difference between the two using an interesting defini­ thick polymer layer (good solvent); and (III) thick poly­ tion: "An emulsifier is a single chemical or mixture of mer layer (poor solvent); ---- shows Van der Waals components having the capacity for promoting emulsion interaction (Dickinson, 1988). formation and short term stabilization by interfacial ac­ tion. A stabilizer is a single chemical component o r b mixture of components which can offer long tenn stabili­ ty on an emulsion, possibly by a mechanism involving adsorption but not necessarily so." This definition will '_{L~ ·~~;;;;; be referred to as a guideline for determining efficacy of , ) ;;; )))J)j)J))}) ;;;;;;; ;; ;;;;;;; an emulsifier or stabilizer later in this paper. In considering stability witb respect to coalescence d and flocculation, it is important to distinguish between adsorbing polymers and non-adsorbing polymers . Covering particle surfaces with a thick protective layer of adsorbing polymer inhibits coalescence. The coated particles strongly repel one another at close range through a combination of polymeric elastic and osmotic effects, and at this point, tbe colloid is said to be - d - sterically stabilized. This type of stabilization is most effectively achieved using copolymers having a combina­ tion of anchoring groups and dangling chains. The an­ choring groups should have a strong affinity for tbe sur­ face and a low affinity for the continuous phase, and the opposite is true for tbe dangling chains. In addition, tbere should be enough adsorbing copolymer to cover tbe particle surface quite completely, and tbe layer thick­ Figure 3. Sketches of interfacial configurations of ness should be sufficient for two particles to be prevent­ chains witb adsorbing ( • l and non-adsorbing (0) ed from approaching a pair separation of which tbe in­ groups: (a, top left) copolymer; (b, top right) homo­ terparticle (Van der Waals) attraction is of an apprecia­ polymer; (c, bottom left) bridging; (d, bottom right) ble magnitude in relation to tbe thermal energy, kT. A depletion (Dickinson, 1988). 412 Hydrocolloids as Food Emulsifiers and Stabilizers high molecul ar mass favors thick film formation and ,---- - - ------- thus good steric stabilization (Figure 2). A homopoly­ mer composed of many identical ad sorbing segments is not a good steric stabilizer, since it produces too thin a layer, leading to free energy interaction with an attrac­ tive minimum, whose depth may be several kT (Figure 3). Where surface coverage is incomplete, a single polymer chain may become attached to more than one particle, as illustrated in Figure 3. Such bridging fl oc­ culation is most likely when the polymer concentration is approximately half of that required for saturation 0 coverage (Dickinson, 1988). As a result, it seems clear that proteins known to 24------.-----.------.------1 have significant hydrophobicity and flexibility, can readi­ 0 10 15 20 ly adsorb onto particles or oil droplets, and therefore, Gum arabic concentration (% w/w) will be considered as emul sifiers with short term stabili­ ty action on dispersed particles (termed "steric stabili­ Figure 4. The average droplet diameter of emulsions zation mechanism" by Dickinson and Stainsby, 1988). (20% w/w orange oil) as a function of gum arabic con­ Hydrocolloids, on the other hand, will be considered as centration. Measurements were performed on diluted stabilizers with limited adsorption ability and long term dispersions (1/1000) with distilled water using a ZM stability (termed "depletion stabilization mechanism" by model Coulter counter equipped with a 50 I'm orifice Dickinson and Stainsby, 1988). electrode. Recent studies have concentrated on the role of gum arabic as an emulsifier,
Recommended publications
  • BASICS of the FODMAP DIET Elizabeth English RD, CLC OBJECTIVES
    BASICS OF THE FODMAP DIET Elizabeth English RD, CLC OBJECTIVES Describe sources of FODMAP carbohydrate Recognize appropriate patient populations for the FODMAP diet Identify high FODMAP foods which are necessary to restrict when following the FODMAP diet Identify low FODMAP foods which are allowed when following the FODMAP diet FODMAP • Fermentable • Oligosaccharides • Disaccharides • Monosaccharides • And • Polyols POPULATION • Prevalence of IBS varies between 8% - 20% of the US population depending on diagnostic criteria and population evaluated • Most studies report a higher prevalence of IBS in women than men • Average medical expenditure for IBS in the US is estimated to be $1.35 billion in direct costs and $205 million in indirect costs • IBS accounts for almost half of all visits to gastroenterologists MAGGE & LEMBO . GASTORENTEROLOGY & HEPATOLOGY 2012 KIDS • Kids with FGID (functional gastrointestinal disorders) report lower quality of life than healthy controls •Increased incidence of school absenteeism •Decreased energy •Less likely to be physically active •Less likely to be involved in school activities •Increased feelings of sadness and loneliness YOUSSEF ET AL. PEDIATRICS 2014 TARGET POPULATION • Patients diagnosed with functional gastrointestinal diseases (FGIDs) including IBS, abdominal migrane & childhood functional abdominal pain • Diagnosis by exclusion • Celiac disease • IBD • Food allergies • EoE • Cancer • Gastritis FODMAP HISTORY • Sue Shepherd developed the FODMAP diet in 1999 at her Shepherd Works RD practice • Realized that FODMAP foods were triggers for IBS • In 2005, the first paper describing FODMAPs was published with Dr. Peter Gibson • In 2006, the first research trial was a retrospective audit of patients with IBS and fructose malabsorption on a low fructose/fructan diet with 74% of patients reporting symptomatic improvement on this dietary regimen • Early research continued until 2009 when the FODMAP diet became well known throughout the digestive community BARRETT & GIBSON.
    [Show full text]
  • Gum Arabic: More Than an Edible Emulsifier
    1 Gum Arabic: More Than an Edible Emulsifier Mariana A. Montenegro1, María L. Boiero1, Lorena Valle2 and Claudio D. Borsarelli2 1Departamento de Química, Universidad Tecnológica Nacional- Facultad Regional Villa María, Córdoba 2Laboratorio de Cinética y Fotoquímica, Instituto de Química del Noroeste Argentino (INQUINOA-CONICET) Universidad Nacional de Santiago del Estero, Santiago del Estero Argentina 1. Introduction Gum Arabic (GA) or Acacia gum is an edible biopolymer obtained as exudates of mature trees of Acacia senegal and Acacia seyal which grow principally in the African region of Sahe in Sudan. The exudate is a non-viscous liquid, rich in soluble fibers, and its emanation from the stems and branches usually occurs under stress conditions such as drought, poor soil fertility, and injury (Williams & Phillips, 2000). The use of GA dates back to the second millennium BC when the Egyptians used it as an adhesive and ink. Throughout the time, GA found its way to Europe and it started to be called "gum arabic" because was exported from Arabian ports. Chemically, GA is a complex mixture of macromolecules of different size and composition (mainly carbohydrates and proteins). Today, the properties and features of GA have been widely explored and developed and it is being used in a wide range of industrial sectors such as textiles, ceramics, lithography, cosmetics and pharmaceuticals, encapsulation, food, etc. Regarding food industry, it is used as a stabilizer, a thickener and/or an emulsifier agent (e.g., soft drink syrup, gummy candies and creams) (Verbeken et al., 2003). In the pharmaceutical industry, GA is used in pharmaceutical preparations and as a carrier of drugs since it is considered a physiologically harmless substance.
    [Show full text]
  • (Acacia Senegal, (L.) Willd) Plantation on Yield of Some Traditional Field Crops in Southern Darfur
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KhartoumSpace The Effect of Spacing of Hashab (Acacia senegal, (L.) Willd) Plantation on Yield of some Traditional Field Crops in Southern Darfur. BY Mustafa Abdalla Nasreldin B.Sc. (Agriculture), University of Zagazig (Egypt), 1990 M.Sc. Forestry, University of Khartoum, 1996 A Thesis Submitted to University of Khartoum in Fulfillment of the Requirements for Ph. D. (Forestry) Agroforestry. Supervisor Professor Dr. Salah Eldin Goda Hussein Department of Silviculture Faculty of Forestry University of Khartoum December 2004 i Dedication To the soul of my father. To my mother and to my family. With deep love and respect, for their patience and encouragement. ii Acknowledgement I wish to express my sincere thanks and gratitude to Professor Dr. Salah Eldin Goda Hussein for his close and helpful supervision. My thanks also due to the Director of Forestry Research Center (ARC) Prof. Ahmed Ali Salih and to the Co-ordinator of Gum Arabic Research Dr. Mohammed Mukhtar Balal for their financial support to accomplish the fieldwork of this research. My special thanks are due to my colleagues and the staff of Nyala Research Station for their help particularly Mohamed Salah Eldin Mohmamed for his help in introducing the digital pictures in the computer and editing the figures and Amna Ibrahim Elzein for typing assistance . I am really indebted to the Agricultural Research Corporation (ARC) and to The National Training Administration on behalf of the government of the Sudan who offered me the opportunity of the study. And finally, my thanks and prayers to Allah for completion of this study.
    [Show full text]
  • Factors Affecting the Quality of Acacia Senegal Gums
    Factors affecting the quality of Acacia senegal gums Item Type Thesis or dissertation Authors Hamouda, Yasir Citation Hamouda, Y. (2017). Factors affecting the quality of Acacia senegal gums. (Doctoral dissertation). University of Chester, United Kingdom. Publisher University of Chester Download date 04/10/2021 01:43:40 Item License http://creativecommons.org/licenses/by-nc-nd/4.0/ Link to Item http://hdl.handle.net/10034/620895 Factors affecting the quality of Acacia senegal gums Thesis submitted in accordance with the requirements of the University of Chester for the degree of Doctor of Philosophy by Yasir Hamouda April 2017 DECLARATION The material being presented for examination is my own work and has not been submitted for an award of this or another HEI except in minor particulars which are explicitly noted in the body of the thesis. Where research pertaining to the thesis was undertaken collaboratively, the nature and extent of my individual contribution has been made explicit. Signed …………………………………………………(Candidate) Date……………………………………………………… ii Acknowledgements I would like to thank the following ñ Prof. S. Al-Assaf for supervision, advice, help and encouragement. ñ Prof. G. O. Phillips for his support and help. ñ The members of Glyn O. Phillips Hydrocolloids Research Centre in Glyndwr University. ñ The members of Glyndwr University. ñ The members of University of Chester. ñ The members of Sudanese National Forestry Corporation. ñ My family for their encouragement and support. iii Abstract Gum arabic is a natural gummy exudate from acacia trees and exhibits natural built-in variations commonly associated with hydrocolloids. This study is concerned with the determination of factors which could influence its properties and functionality.
    [Show full text]
  • Gum Arabic: a Case Study of Nigeria
    United Nations Conference on Trade and Development ROUND TABLE: THE ECONOMICS OF GUM ARABIC IN AFRICA 27 April 2018, Geneva The economic, social and environmental relevance of gum arabic with a focus on the major challenges and opportunities for producing countries of Africa: A case study of Nigeria By Tunde Mustapha Minister, Permanent Mission of the Federal Republic of Nigeria to the United Nations Office and other international organizations in Geneva The views expressed are those of the author and do not necessarily reflect the views of UNCTAD. THE ECONOMIC, SOCIAL AND ENVIRONMENTAL RELEVANCE OF GUM ARABIC WITH A FOCUS ON THE MAJOR CHALLENGES AND OPPORTUNITIES FOR PRODUCING COUNTRIES OF AFRICA: A CASE STUDY OF NIGERIA. 2 • Land area: 923 Million square NIGERIA IN km. CONTEXT • Population: 190 million, 2.5% annual growth • Economy: GDP of about $500b, Largest economy in Africa • GDP per Capital: $2,376 • Main Resources: Oil, Gas, Cocoa, Rubber etc. 3 GUM ARABIC • Gum Arabic “desert gold of Africa” is the dried exudates obtained from stems and branches of Acacia senegal (L.) Willd or closely related species of Acacia that belong to the family Fabaceae. • The species adapted naturally to the hot, dry and barren regions of Africa particularly in areas along the southern frontiers of Sahara desert including Mauritania, Senegal, Mali, Niger, Nigeria, Chad and Sudan 4 STATUS❖In Nigeria OF estimated GUM ARABIC hectarage PRODUCTIONof gum Arabic IN both NIGERIA cultivated and the wild form (forest reserves) is put at 2.5 million (ha)while the cultivated type comprising of government and private holdings sum up to 12,050.4ha ❖In most states Acacia Senegal occurs along side other gum producing Acacias such as A seyal, ❖ This biodiversity is reminiscent of centres of origin which often constitute centres of biodiversities.
    [Show full text]
  • Gum Arabic for Food Application
    Gum Arabic for Food Application Dairy products Gum Arabic is added to milk and milk products to produce the desired dish or beverage. This includes applications where Gum Arabic is used to suspend the ingredients and impart richness and body to the drink. In this field Gum Arabic is used as an excellent binder of water and as stabilizer. It is applied in the production of ice cream, liquid milk products, sherbets and other products. The addition of Gum Arabic prevents the formation of ice crystals by combining with large quantities of water. The proper amount of milk or cream is mixed with Gum Arabic, then the mixture is heated mildly, poured into molds, cooled and packed. Confectionery products Gum Arabic functions in confections as an emulsifier, sugar crystallization control agent, bulking agent, and film former. In caramels and toffee products, Gum Arabic is emulsification properties aid in the reduction of fat droplet size distribution thus providing stability to the product. It is the recognized preferred natural ingredient for the production of high quality and reduced calories soft candies. Moreover it is an excellent flavor carrier and is used by formulations for the imparting of a clean, long-lasting fresh taste. Gum Arabic is used to emulsify the flavor oils or fats in confections or to retard crystallization in high sucrose confections. Bakery products Gum Arabic is widely used for glossy coatings, sealing of baked goods and effecting binding. Even small quantities of Gum Arabic added to the dough increase the yield, give greater resiliency, improve texture and give longer shelf life.
    [Show full text]
  • Effect of Oral Administration of Aqueous Extract of Moringa Oleifera Seeds, Gum Arabic and Wild Mushroom on Growth Performance of Broiler Chickens
    International Scholars Journals International Journal of Medicinal Plants Research ISSN: 2169-303X Vol. 5 (3), pp. 200-208, March, 2016. Available online at www.internationalscholarsjournals.org © International Scholars Journals Author(s) retain the copyright of this article. Full Length Research Paper Effect of oral administration of aqueous extract of Moringa oleifera seeds, gum arabic and wild mushroom on growth performance of broiler chickens Nuguba Festus*, Sagbodje G. Bright, J. E. Orile and Fajenu Anita Department of Animal Science, Faculty of Agriculture, Nasarawa State University, Keffi, Nasarawa State, Nigeria. Accepted 22 February, 2016 In Nigeria, antibiotics are administered in poultry drinking water for prevention or control of bacterial contamination and to promote growth performance and health of birds. However, these antibiotics have negative effects and this has led to the search for safe and natural alternatives (like photogenic plants products and medicinal mushrooms) to reduce the continuous use of antibiotics in poultry to promote health and nutrition. In this study, the effect of oral administration of different levels of aqueous extract of Moringa oleifera seed, Gum arabic and wild mushroom (Ganoderma sp) and their combination on performance characteristics of broiler chickens were evaluated in comparison with antibiotic. Commercial hybrid (Marshal) broiler chicks were procured at day-old from a hatchery in Nigeria and brooded together for the first one week of age to acclimatise. On day 7, the birds were randomly distributed into different treatment groups, T1 - T8 (10 chicks per group) in duplicates. Group T1 = represent broiler chicks administered orally with Moringa seed aqueous extract, T2 = Gum arabic, T3 = wild Ganoderma, T4 = Moringa seed + Gum arabic, T5 = Moringa seed + wild Ganoderma, T6 = Gum arabic + wild Ganoderma, T7 = Moringa seed + Gum arabic + wild Ganoderma, T8 = antibiotic only as control for comparison.
    [Show full text]
  • Stone Lithography
    STONE LITHOGRAPHY Basic Chemistry Traditionally, the material used to hold a lithographic drawing is a special limestone from Bavaria. In color they vary from creamy buff (soft) to steely blue-grey (harder and denser). Most lithographers prefer the grey stones for their stability, especially for long press runs. The stone slab is prepared so as to have a slight tooth (texture) which is good for both printing and drawing. A greasy drawing tool is used to draw on the surface of the stone, which is then chemically processed. Limestone is a receptive medium, when combined with a thin layer of gum arabic, the tooth of the stone helps to keep the non-image areas damp and clean by increasing the stone’s ability to hold water in a thin film. This thin layer of gum arabic is called the adsorbed gum layer, as it sits just on top of the stone like a skin. At the same time, in the places where the greasy drawing is etched with a mixture of nitric acid and gum arabic, applied to the entire surface, the stone’s surface forms a grease reservoir directly below these areas. The chemical product of the combined grease, acid, and limestone is called oleomanganate of lime and serves as the stone’s memory of the drawing, so that during processing, the image is always there though not always visible. This oleomanganate of lime is a subdermal layer (just below the surface of the stone). Zinc or aluminum can also be used, they are cheaper and more portable, but chemically different.
    [Show full text]
  • Day 1. Yao. Intro to Carbohydrates
    Introduction to Carbohydrates: Basic Concepts, Monosaccharides, Oligosaccharides, and Polysaccharides Dr. Yuan Yao Whistler Center for Carbohydrate Research October 1, 2019 2 History of Carbohydrate Uses & Knowledge 10,000 BCE Sugarcane processing in New Guinea 6000 BCE Sugarcane culture developed in India 6000 BCE Cellulose, as cotton, used by many cultures 4000 BCE Starch used as an adhesive in Egypt 1500 BCE Cotton cloth from India to Persia and China 1000 BCE Use of sucrose in candies, confections, and medicines in Egypt 100 CE Paper made for writing in China 700 CE Paper coated with starch paste to retain ink and provide strength Adapted from John Robyt, Essentials of Carbohydrate Chemistry 3 History of Carbohydrate Uses & Knowledge 1600 CE Sugar refineries developed in Europe 1700 CE Sugar beet developed in Europe for obtaining sucrose 1792 CE A sugar isolated from honey that was different from sucrose 1802 CE A sugar found in grapes that was also different from sucrose 1808 CE Malus developed plane polarized light and observed optical rotation by carbohydrates 1811 CE Acid-hydrolyzed starch produced a sweet crystalline sugar 1820 CE Acid-hydrolyzed cellulose also produced a sweet crystalline sugar 1821 CE Production of dextrins by heating starch: British Gums Adapted from John Robyt, Essentials of Carbohydrate Chemistry 1 4 History of Carbohydrate Uses & Knowledge 1838 CE Sugar from honey, grapes, starch, & cellulose was found to be glucose 1866 CE Kekule changed the name of glucose to dextrose because it rotates plane polarized
    [Show full text]
  • Gums & Resins NTFP Unexplored
    MARKET Gums and Resins NTFP Unexplored Avinash Upadhayay Gums and resins are perhaps the most cording to them, some plants only are Anacardiaceae, Combretaceae, widely used and traded non-wood for- yield gum, others only resins and Meliaceae, Rosaceae and Rutaceae est products other than items con- yet others both gum and resins. sumed directly as food, fodder and 1Inherent characteristic of medicine. Human beings have been Gums: gums using gums and resins in various forms Gums are plant exudations, partly as • Gums can be divided into three for ages. The history of Gum arabic, a natural phenomenon (as part of the types: soluble, insoluble and long recognised as an ideal adhesive, normal metabolism of plants) and semi soluble. Soluble gums dis- stretches back 2000 years. In modern partly as a result of injury to the bark solve in water or form more or less times, gums and resins have been or stem (due to fungal or bacterial at- transparent, viscous and adhe- used the world over as embalming tack). Mostly gums are exuded by the sive solutions as in Indian gum chemicals, incense, medicines (mainly stem, only a few gums are obtained Arabic. Insoluble gum often anti-septic properties and balms), cos- from roots, leaves and other parts of swells with the addition of water metics in paints and for waterproofing the plant. Gums are primarily formed forming gels like the gum karaya. and caulking ships. by the disintegration of internal plant While the semi-soluble gums de- compose completely without Use of gums and resins for domestic MARKET FACTS melting on heating,.
    [Show full text]
  • Bioscience at a Crossroads: the Cosmetics Sector
    Bioscience at a Crossroads Access and Benefit Sharing in a Time of Scientific, Technological and Industry Change: The Cosmetics Sector Bioscience at a Crossroads: Access and Benefit Sharing in a Time of Scientific, Technological and Industry Change: The Cosmetics Sector Rachel Wynberg and Sarah Laird About the Authors and Acknowledgements: Rachel Wynberg holds a Bio-economy Research Chair at the University of Cape Town, South Africa where she is Associate Professor. Sarah Laird is Co-Director of People and Plants International. Both authors have worked on ABS issues for the past 20 years. The Northern Territory Government, Australia, is thanked for their support of earlier research. The following people are gratefully acknowledged for their helpful comments on earlier drafts of this document: Maria Julia Oliva, Katie Beckett, Cyril Lombard, Julien Chupin, Kathryn Garforth, Olivier Rukundo, and Beatriz Gomez. Special thanks are due to Valerie Normand for her invaluable contributions. We thank all those who agreed to be interviewed for this research. Published by: Secretariat of the Convention on Biological Diversity 2013 ISBN Print: 92-9225-491-X Disclaimer: The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the Convention on Biological Diversity concerning the legal status of any country, territory, city or area of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication are those of the authors and do not necessarily reflect those of the Convention on Biological Diversity. This publication may be produced for educational or non-profit purposes without special permission from copyright holders, provided acknowledgment of the source is made.
    [Show full text]
  • Galactose, Natural Sources and Biotech Uses
    Galactose, Natural Sources and Biotech Uses Nowadays, as the science developed, people are more and more interested in two hot topics, global environment and human health. In the near future, as scientists predict, it’s very likely for human to have a new “clean” biofuel coming from carbohydrates and replacing the fossil fuel we are using now, which would be a huge advancement of environmental protection. Also people are learning more about the minute quantity but essential contents in diet, like so-called bifidus factors, which have big affects on health, especially for babies. And interestingly, all of these can be related to the “half milk sugar” (from Chinese) galactose. In this essay, I will give a broad overview of galactose, including its nature source, some functions, related enzymes and future prospects. As from many aspects, galactose would have an important role in future and more sources would be needed, both natural and artificial. So where to start finding new sources of galactose would be an interesting question. And in this essay, I will try to give some opinions to answer this question. 1. What is galactose? Galactose, also named D-galactopyranose, is a simple monosaccharide sugar, sharing the same molecular chemical formula C6H12O6 with glucose and fructose, while they are defined as structure isomers as they have different structures. Galactose has the appearance of white crystal and is less sweet comparing to glucose or fructose. Galactose has an average mass of 180.16 Da. As galactose is consisting of six carbon and one aldehyde group, it is classified as an aldohexose.
    [Show full text]