English Edition, with the Addition of an Index, Was Prepared by ICCROM, Which Is Responsible for the Scientific Quality of the Translation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural Colourants with Ancient Concept and Probable Uses
JOURNAL OF ADVANCED BOTANY AND ZOOLOGY Journal homepage: http://scienceq.org/Journals/JABZ.php Review Open Access Natural Colourants With Ancient Concept and Probable Uses Tabassum Khair1, Sujoy Bhusan2, Koushik Choudhury2, Ratna Choudhury3, Manabendra Debnath4 and Biplab De2* 1 Department of Pharmaceutical Sciences, Assam University, Silchar, Assam, India. 2 Regional Institute of Pharmaceutical Science And Technology, Abhoynagar, Agartala, Tripura, India. 3 Rajnagar H. S. School, Agartala, Tripura, India. 4 Department of Human Physiology, Swami Vivekananda Mahavidyalaya, Mohanpur, Tripura, India. *Corresponding author: Biplab De, E-mail: [email protected] Received: February 20, 2017, Accepted: April 15, 2017, Published: April 15, 2017. ABSTRACT: The majority of natural colourants are of vegetable origin from plant sources –roots, berries, barks, leaves, wood and other organic sources such as fungi and lichens. In the medicinal and food products apart from active constituents there are several other ingredients present which are used for either ethical or technical reasons. Colouring agent is one of them, known as excipients. The discovery of man-made synthetic dye in the mid-19th century triggered a long decline in the large-scale market for natural dyes as practiced by the villagers and tribes. The continuous use of synthetic colours in textile and food industry has been found to be detrimental to human health, also leading to environmental degradation. Biocolours are extracted by the villagers and certain tribes from natural herbs, plants as leaves, fruits (rind or seeds), flowers (petals, stamens), bark or roots, minerals such as prussian blue, red ochre & ultramarine blue and are also of insect origin such as lac, cochineal and kermes. -
Chemical Synthesis of a Very Long-Chain Fatty Acid, Hexacosanoic Acid (C26:0), and the Ceramide Containing Hexacosanoic Acid
J Nutr Sci Vitaminol, 61, 222–227, 2015 Chemical Synthesis of a Very Long-Chain Fatty Acid, Hexacosanoic Acid (C26:0), and the Ceramide Containing Hexacosanoic Acid Yoshinori YAMAMOTO, Toshimasa ITOH and Keiko YAMAMOTO* Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3–3165 Higashi-Tamagawagakuen, Machida, Tokyo 194–8543, Japan (Received December 24, 2014) Summary Hexacosanoic acid (C26:0) (1), a very long-chain fatty acid, is related to vari- ous diseases such as adrenoleukodystrophy (ALD), adrenomyeloneuropathy (AMN) and atherosclerosis. As the level of 1 higher than the normal is related to diseases above, hexa- cosanoic acid (1) and the ceramide 2, which contains 1, are thought to play an important role in various tissues. Hexacosanoic acid (1) is known to be a waxy solid and to be hard to dissolve in water as well as organic solvents. Due to this physical property, it is not easy to handle hexacosanoic acid (1) in a laboratory. Therefore, efficient chemical synthesis of the compounds 1 and 2 has not been reported. Here, we report a versatile synthetic method for hexacosanoic acid (1) and the ceramide 2 containing the fatty acid 1. Synthesis of hexa- cosanoic acid (1) was achieved by applying the coupling of two alkyl units as a key step. Ceramide 2 was efficiently synthesized by applying the reported procedure together with hexacosanoic acid (1) synthesized here. This synthetic strategy has an advantage of getting various carbon chain length fatty acids and their ceramides by using a variety of carbon chain units. This method is also applicable for large-scale synthesis. -
• Waxes Are Simple Lipids Containing Fatty Acid Joined to Long Chin Alcohol
Waxes • Waxes are simple lipids containing fatty acid joined to long chin alcohol • They are esters of saturated long chain FA and long chain alcohol • In plants they are coatings that prevent water loss by leaves. • They are water insoluble soft solids with low melting point. • The can be obtained from – Insects – Minerals • Paraffin • Beeswax – Plants – Animal • Carnuba • Cocoa butter • Spermaceti 6/28/2020 1 Beeswax • Beeswax is the purified wax obtained from honeycomb of hive bee, Apis mellifera Linn and other species. • White beeswax is obtained by treating yellow beeswax chemically with potassium permanganate, chromic acid or chlorine or charcoal • When cold, yellow wax is brittle and when broken, shows presence of a dull, granular, non-crystalline fracture. • Yellow wax is insoluble in water and sparingly soluble in cold alcohol. • It is completely soluble in chloroform, ether, and fixed or volatile oils, partly soluble in cold benzene or in carbon disulphide. 6/28/2020 2 Beeswax… • Beeswax contains – myricin, which is melissyl palmitate; melting point 64°C, – Free cerotic acid (C26H52O2), – Myricyl alcohol (C30H61OH) – Melissic acid, some unsaturated acids of the oleic series, ceryl alcohol, and 12 to 13% higher hydrocarbons are present. • Beeswax is used in the preparation of ointments, plaster, and polishes. 6/28/2020 3 Cocoa butter • Synonyms: theobroma oil, cocao beans, semina theobromatis. • obtained from roasted seeds of Theobroma cacao Linn. • Cocoa seeds contain nearly 50% of cocoa butter. preparation Separation of seed from pod Fermentation at 30-40°C for 3-6 days Roasting at 100-140°C Cooling & nibbling Hot rolling to get butter Purification 6/28/2020 4 Cocoa butter… • Cocoa butter is yellowish white solid and brittle below 25°C. -
Final Recovery Plan Southwestern Willow Flycatcher (Empidonax Traillii Extimus)
Final Recovery Plan Southwestern Willow Flycatcher (Empidonax traillii extimus) August 2002 Prepared By Southwestern Willow Flycatcher Recovery Team Technical Subgroup For Region 2 U.S. Fish and Wildlife Service Albuquerque, New Mexico 87103 Approved: Date: Disclaimer Recovery Plans delineate reasonable actions that are believed to be required to recover and/or protect listed species. Plans are published by the U.S. Fish and Wildlife Service, sometimes prepared with the assistance of recovery teams, contractors, State agencies, and others. Objectives will be attained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Recovery plans do not necessarily represent the views nor the official positions or approval of any individuals or agencies involved in the plan formulation, other than the U.S. Fish and Wildlife Service. They represent the official position of the U.S. Fish and Wildlife Service only after they have been signed by the Regional Director or Director as approved. Approved Recovery plans are subject to modification as dictated by new findings, changes in species status, and the completion of recovery tasks. Some of the techniques outlined for recovery efforts in this plan are completely new regarding this subspecies. Therefore, the cost and time estimates are approximations. Citations This document should be cited as follows: U.S. Fish and Wildlife Service. 2002. Southwestern Willow Flycatcher Recovery Plan. Albuquerque, New Mexico. i-ix + 210 pp., Appendices A-O Additional copies may be purchased from: Fish and Wildlife Service Reference Service 5430 Governor Lane, Suite 110 Bethesda, Maryland 20814 301/492-6403 or 1-800-582-3421 i This Recovery Plan was prepared by the Southwestern Willow Flycatcher Recovery Team, Technical Subgroup: Deborah M. -
Peroxisomal Fatty Acid Beta-Oxidation in Relation to the Accumulation Of
Peroxisomal fatty acid beta-oxidation in relation to the accumulation of very long chain fatty acids in cultured skin fibroblasts from patients with Zellweger syndrome and other peroxisomal disorders. R J Wanders, … , A W Schram, J M Tager J Clin Invest. 1987;80(6):1778-1783. https://doi.org/10.1172/JCI113271. Research Article The peroxisomal oxidation of the long chain fatty acid palmitate (C16:0) and the very long chain fatty acids lignocerate (C24:0) and cerotate (C26:0) was studied in freshly prepared homogenates of cultured skin fibroblasts from control individuals and patients with peroxisomal disorders. The peroxisomal oxidation of the fatty acids is almost completely dependent on the addition of ATP, coenzyme A (CoA), Mg2+ and NAD+. However, the dependency of the oxidation of palmitate on the concentration of the cofactors differs markedly from that of the oxidation of lignocerate and cerotate. The peroxisomal oxidation of all three fatty acid substrates is markedly deficient in fibroblasts from patients with the Zellweger syndrome, the neonatal form of adrenoleukodystrophy and the infantile form of Refsum disease, in accordance with the deficiency of peroxisomes in these patients. In fibroblasts from patients with X-linked adrenoleukodystrophy the peroxisomal oxidation of lignocerate and cerotate is impaired, but not that of palmitate. Competition experiments indicate that in fibroblasts, as in rat liver, distinct enzyme systems are responsible for the oxidation of palmitate on the one hand and lignocerate and cerotate on the other hand. Fractionation studies indicate that in rat liver activation of cerotate and lignocerate to cerotoyl-CoA and lignoceroyl-CoA, respectively, occurs in two subcellular fractions, the endoplasmic reticulum and the peroxisomes but not in the mitochondria. -
Making Basic Period Pigments at Home
Making Basic Period Pigments at Home KWHSS – July 2019 Barony of Coeur d’Ennui Kingdom of Calontir Mistress Aidan Cocrinn, O.L., Barony of Forgotten Sea, Kingdom of Calontir Mka Holly Cochran [email protected] Contents Introduction .................................................................................................................................................. 3 Safety Rules: .................................................................................................................................................. 4 Basic References ........................................................................................................................................... 5 Other important references:..................................................................................................................... 6 Blacks ............................................................................................................................................................ 8 Lamp black ................................................................................................................................................ 8 Vine black .................................................................................................................................................. 9 Bone Black ................................................................................................................................................. 9 Whites ........................................................................................................................................................ -
Planning Commission
Revised Arborist Report 300 Montague Expressway Milpitas, CA Prepared for: Trumark Companies 4185 Blackhawk Plaza Circle, Suite 200 Danville, CA 94506 Prepared by: HortScience, Inc. 2150 Rheem Dr., Suite A Pleasanton, CA 94588 October, 2011 Revised Arborist Report 300 Montague Expressway Milpitas Table of Contents Page Introduction and Overview 1 Survey Methods 1 Description of Trees 2 Suitability for Preservation 4 Evaluation of Impacts 5 Tree Preservation Guidelines 7 List of Tables Table 1. Tree condition and frequency of occurrence 3 Table 2. Suitability for Preservation 5 Table 3. Recommendations for preservation 6 Attachments Tree Assessment Form Tree Assessment Map Revised Arborist Report, Trumark Companies HortScience, Inc. 300 Montague Expressway, Milpitas Page 1 Introduction and Overview Trumark Companies are proposing to redevelop the property located at 300 Montague Expressway, in Milpitas. The site is triangular, bordered by Montague Expressway to the west and Trade Zone Blvd. to the south. Currently, the site is an office complex, with a vegetated berm along the western and southern boundaries. The three buildings are centrally located with peripheral parking and landscaping throughout. The plan proposes to construct 92 attached town homes and 42 single-family homes, for a total of 134 homes. HortScience, Inc. was asked to prepare an Arborist Report for the site. This report provides the following information: 1. An evaluation of the health and structural condition of all trees growing within and adjacent to the project area based on a visual inspection of external conditions. 2. An assessment of the impacts of constructing the proposed project on the trees. 3. Guidelines for tree preservation during the design, construction and maintenance phases of development. -
View Data Sheet
PRODUCT DATA SHEET Hexacosanoic acid Catalog number: 1251 Molecular Weight: 397 Common Name: C26:0 Fatty acid; cerotic acid Storage: room temperature Source: synthetic Purity: TLC: 99%, GC >99% Solubility: chloroform, ethyl ether TLC System: hexane/ethyl ether/acetic acid CAS number: 506-46-7 (85:15:1 by vol.) Molecular Formula: C 26 H52 O2 Appearance: solid HO O Application Notes: This high purity very long chain fatty acid (VLCFA) is ideal as a standard and for biological studies. X-linked adrenoleukodystrophy (X-ALD) is an inherited disorder of peroxisomal metabolism and is characterized by deficient β- oxidation of saturated very long chain fatty acids such as hexacosanoic acid. Indeed, some studies show hexacosanoic acid as the most prevalent VLCFA in X-ALD, causing oxidative damage of proteins early on in the disease. 1 Hexacosanoic acid has also been found to be closely linked to a high risk of atherosclerosis and metabolic syndrome. 2 In plants, VLCFA are converted to long chain hydrocarbons which are used to make waxes that are essential to their survival. 3 VLCFA acylated to sphingolipids are critical in many biological functions 4 and substantial amounts are found to be amide-linked to the long- chain sphingoid base sphinganine, forming a ceramide, which constitutes the lipid backbone of sphingomyelin and other sphingolipids. VLCFA can often be found in esterified linkages with cholesterol, gangliosides, galactocerebrosides, sphingomyelin, and phosphatidylcholine. In myelin, VLCFA are important in increasing the structural stability. Selected References: 1. S. Fourcade et al. “Valproic acid induces antioxidant effects in X-linked adrenoleukodystrophy” Human Molecular Genetics , vol. -
Gum Arabic: More Than an Edible Emulsifier
1 Gum Arabic: More Than an Edible Emulsifier Mariana A. Montenegro1, María L. Boiero1, Lorena Valle2 and Claudio D. Borsarelli2 1Departamento de Química, Universidad Tecnológica Nacional- Facultad Regional Villa María, Córdoba 2Laboratorio de Cinética y Fotoquímica, Instituto de Química del Noroeste Argentino (INQUINOA-CONICET) Universidad Nacional de Santiago del Estero, Santiago del Estero Argentina 1. Introduction Gum Arabic (GA) or Acacia gum is an edible biopolymer obtained as exudates of mature trees of Acacia senegal and Acacia seyal which grow principally in the African region of Sahe in Sudan. The exudate is a non-viscous liquid, rich in soluble fibers, and its emanation from the stems and branches usually occurs under stress conditions such as drought, poor soil fertility, and injury (Williams & Phillips, 2000). The use of GA dates back to the second millennium BC when the Egyptians used it as an adhesive and ink. Throughout the time, GA found its way to Europe and it started to be called "gum arabic" because was exported from Arabian ports. Chemically, GA is a complex mixture of macromolecules of different size and composition (mainly carbohydrates and proteins). Today, the properties and features of GA have been widely explored and developed and it is being used in a wide range of industrial sectors such as textiles, ceramics, lithography, cosmetics and pharmaceuticals, encapsulation, food, etc. Regarding food industry, it is used as a stabilizer, a thickener and/or an emulsifier agent (e.g., soft drink syrup, gummy candies and creams) (Verbeken et al., 2003). In the pharmaceutical industry, GA is used in pharmaceutical preparations and as a carrier of drugs since it is considered a physiologically harmless substance. -
(Acacia Senegal, (L.) Willd) Plantation on Yield of Some Traditional Field Crops in Southern Darfur
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KhartoumSpace The Effect of Spacing of Hashab (Acacia senegal, (L.) Willd) Plantation on Yield of some Traditional Field Crops in Southern Darfur. BY Mustafa Abdalla Nasreldin B.Sc. (Agriculture), University of Zagazig (Egypt), 1990 M.Sc. Forestry, University of Khartoum, 1996 A Thesis Submitted to University of Khartoum in Fulfillment of the Requirements for Ph. D. (Forestry) Agroforestry. Supervisor Professor Dr. Salah Eldin Goda Hussein Department of Silviculture Faculty of Forestry University of Khartoum December 2004 i Dedication To the soul of my father. To my mother and to my family. With deep love and respect, for their patience and encouragement. ii Acknowledgement I wish to express my sincere thanks and gratitude to Professor Dr. Salah Eldin Goda Hussein for his close and helpful supervision. My thanks also due to the Director of Forestry Research Center (ARC) Prof. Ahmed Ali Salih and to the Co-ordinator of Gum Arabic Research Dr. Mohammed Mukhtar Balal for their financial support to accomplish the fieldwork of this research. My special thanks are due to my colleagues and the staff of Nyala Research Station for their help particularly Mohamed Salah Eldin Mohmamed for his help in introducing the digital pictures in the computer and editing the figures and Amna Ibrahim Elzein for typing assistance . I am really indebted to the Agricultural Research Corporation (ARC) and to The National Training Administration on behalf of the government of the Sudan who offered me the opportunity of the study. And finally, my thanks and prayers to Allah for completion of this study. -
Factors Affecting the Quality of Acacia Senegal Gums
Factors affecting the quality of Acacia senegal gums Item Type Thesis or dissertation Authors Hamouda, Yasir Citation Hamouda, Y. (2017). Factors affecting the quality of Acacia senegal gums. (Doctoral dissertation). University of Chester, United Kingdom. Publisher University of Chester Download date 04/10/2021 01:43:40 Item License http://creativecommons.org/licenses/by-nc-nd/4.0/ Link to Item http://hdl.handle.net/10034/620895 Factors affecting the quality of Acacia senegal gums Thesis submitted in accordance with the requirements of the University of Chester for the degree of Doctor of Philosophy by Yasir Hamouda April 2017 DECLARATION The material being presented for examination is my own work and has not been submitted for an award of this or another HEI except in minor particulars which are explicitly noted in the body of the thesis. Where research pertaining to the thesis was undertaken collaboratively, the nature and extent of my individual contribution has been made explicit. Signed …………………………………………………(Candidate) Date……………………………………………………… ii Acknowledgements I would like to thank the following ñ Prof. S. Al-Assaf for supervision, advice, help and encouragement. ñ Prof. G. O. Phillips for his support and help. ñ The members of Glyn O. Phillips Hydrocolloids Research Centre in Glyndwr University. ñ The members of Glyndwr University. ñ The members of University of Chester. ñ The members of Sudanese National Forestry Corporation. ñ My family for their encouragement and support. iii Abstract Gum arabic is a natural gummy exudate from acacia trees and exhibits natural built-in variations commonly associated with hydrocolloids. This study is concerned with the determination of factors which could influence its properties and functionality. -
Crown Pacific Fine Foods 2019 Specialty Foods
Crown Pacific Fine Foods 2019 Specialty Foods Specialty Foods | Bulk Foods | Food Service | Health & Beauty | Confections Crown Pacific Fine Foods Order by Phone, Fax or Email 8809 South 190th Street | Kent, WA 98031 P: (425) 251-8750 www.crownpacificfinefoods.com | www.cpff.net F: (425) 251-8802 | Toll-free fax: (888) 898-0525 CROWN PACIFIC FINE FOODS TERMS AND CONDITIONS Please carefully review our Terms and Conditions. By ordering SHIPPING from Crown Pacific Fine Foods (CPFF), you acknowledge For specific information about shipping charges for extreme and/or reviewing our most current Terms and Conditions. warm weather, please contact (425) 251‐8750. CREDIT POLICY DELIVERY Crown Pacific Fine Foods is happy to extend credit to our You must have someone available to receive and inspect customers with a completed, current and approved credit your order. If you do not have someone available to receive your application on file. In some instances if credit has been placed order on your scheduled delivery day, you may be subject to a on hold and/or revoked, you may be required to reapply for redelivery and/or restocking fee. credit. RETURNS & CREDITS ORDER POLICY Please inspect and count your order. No returns of any kind When placing an order, it is important to use our item number. without authorization from your sales representative. This will assure that you receive the items and brands that you want. MANUFACTURER PACK SIZE AND LABELING Crown Pacific Fine Foods makes every effort to validate To place an order please contact our Order Desk: manufacturer pack sizes as well as other items such as Phone: 425‐251‐8750 labeling and UPC’s.