Making Basic Period Pigments at Home
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural Colourants with Ancient Concept and Probable Uses
JOURNAL OF ADVANCED BOTANY AND ZOOLOGY Journal homepage: http://scienceq.org/Journals/JABZ.php Review Open Access Natural Colourants With Ancient Concept and Probable Uses Tabassum Khair1, Sujoy Bhusan2, Koushik Choudhury2, Ratna Choudhury3, Manabendra Debnath4 and Biplab De2* 1 Department of Pharmaceutical Sciences, Assam University, Silchar, Assam, India. 2 Regional Institute of Pharmaceutical Science And Technology, Abhoynagar, Agartala, Tripura, India. 3 Rajnagar H. S. School, Agartala, Tripura, India. 4 Department of Human Physiology, Swami Vivekananda Mahavidyalaya, Mohanpur, Tripura, India. *Corresponding author: Biplab De, E-mail: [email protected] Received: February 20, 2017, Accepted: April 15, 2017, Published: April 15, 2017. ABSTRACT: The majority of natural colourants are of vegetable origin from plant sources –roots, berries, barks, leaves, wood and other organic sources such as fungi and lichens. In the medicinal and food products apart from active constituents there are several other ingredients present which are used for either ethical or technical reasons. Colouring agent is one of them, known as excipients. The discovery of man-made synthetic dye in the mid-19th century triggered a long decline in the large-scale market for natural dyes as practiced by the villagers and tribes. The continuous use of synthetic colours in textile and food industry has been found to be detrimental to human health, also leading to environmental degradation. Biocolours are extracted by the villagers and certain tribes from natural herbs, plants as leaves, fruits (rind or seeds), flowers (petals, stamens), bark or roots, minerals such as prussian blue, red ochre & ultramarine blue and are also of insect origin such as lac, cochineal and kermes. -
Ayesha Altaf Env Sci 2018 LCWU PRR.Pdf
NATURAL COLORANTS AS PHOTOSENSITIZER FOR DYE-SENSITIZED SOLAR CELLS (DSSCs) FOR GREEN ECONOMY By Ayesha Altaf DEPARTMENT OF ENVIRONMENTAL SCIENCE LAHORE COLLEGE FOR WOMEN UNIVERSITY, LAHORE, PAKISTAN 2018 NATURAL COLORANTS AS PHOTOSENSITIZER FOR DYE-SENSITIZED SOLAR CELLS (DSSCs) FOR GREEN ECONOMY A THESIS SUBMITTED TO LAHORE COLLEGE FOR WOMEN UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSPHY IN ENVIRONMENTAL SCIENCE By Ayesha Altaf Registration No. 14-PhD/LCWU-193 Supervisor: Prof. Dr. Tahira Aziz Mughal Co-Supervisor: Dr. Zafar Iqbal DEPARTMENT OF ENVIRONMENTAL SCIENCE LAHORE COLLEGE FOR WOMEN UNIVERSITY, LAHORE, PAKISTAN 2018 Declaration Form This is to certify that the research work described in this thesis submitted by Mrs. Ayesha Altaf to Department of Environmental Sciences, Lahore College for Women University has been carried out under my direct supervision. I have personally gone through the raw data and certify the correctness and authenticity of all results reported herein. I further certify that thesis data have not been use in part or full, in a manuscript already submitted or in the process of submission in Partial/complete fulfillment of the award of any other degree from any other institution or home or abroad. I also certified that the enclosed manuscript, has been to paid under my supervision and I endorse its evaluation for the award of Ph.D degree through the official procedure of University. ________________ __________________ Prof. Dr. Tahira Aziz Mughal Dr. Zafar Iqbal (Supervisor) (Co- Supervisor) Date: ___________ Date: ___________ _________________ Date: ___________ External Examiner ________________ Date: ___________ Chairperson Department of Environmental Science LCWU, Lahore Stamp ______________________ Controller of Examination LCWU, Lahore. -
Use of Orcein in Detecting Hepatitis B Antigen in Paraffin Sections of Liver
J Clin Pathol: first published as 10.1136/jcp.35.4.430 on 1 April 1982. Downloaded from J Clin Pathol 1982;35:430-433 Use of orcein in detecting hepatitis B antigen in paraffin sections of liver P KIRKPATRICK From the Department ofHistopathology, John Radcliffe Hospital, Headington, Oxjord OX3 9DU SUMMARY This study has shown that different supplies/batches of orcein perform differently and may fail. The "natural" forms generally performed better although the most informative results were obtained with a "synthetic" product. Orcein dye solutions can be used soon after preparation and for up to 7 days without the need for differentiation. After 10 days or so the staining properties become much less selective. Non-specific staining severely reduces contrast and upon differentiation overall contrast is reduced and the staining of elastin is reduced. Copper-associated protein positivity gradually fails and after 14 days is lost. For demonstrating HBsAg in paraffin sections of liver, it is best to use orcein dye preparations that are no older than 7 days and to test each batch of orcein against a known positive control. Orcein dye solutions are now commonly used for the was evaluated. detection of hepatitis B surface antigen (HBsAg) Eight samples of orcein were supplied by: Sigma copyright. and copper-associated protein in paraffin sections London Chemical ("natural" batch Nos 89C-0264 of liver.' It is generally believed that orcein dyes and 59C-0254 and "synthetic" batch Nos 31 F-0441); from a single source should be used. 2-6 Variable Raymond A Lamb ("natural" batch No 5094); results are obtained with different reagents perhaps Difco Laboratories ("natural" batch No 3220); because of different manufacturing procedures or BDH Chemicals ("synthetic" batch No 5575420A); significant batch variations. -
Chromosomal Staining Comparison of Plant Cells with Black Glutinous Rice (Oryza Sativa L.) and Lac (Laccifer Lacca Kerr)
© 2010 The Japan Mendel Society Cytologia 75(1): 89–97, 2010 Chromosomal Staining Comparison of Plant Cells with Black Glutinous Rice (Oryza sativa L.) and Lac (Laccifer lacca Kerr) Praween Supanuam1, Alongkoad Tanomtong1,*, Sirilak Thiprautree1, Somret Sikhruadong2 and Bhuvadol Gomontean3 1 Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand 2 Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Muang, Mahasarakham 44000, Thailand 3 Department of Biology, Faculty of Science, Mahasarakham University, Kantarawichai, Maha Sarakam, 44150, Thailand Received October 10, 2009; accepted February 8, 2010 Summary The study on chromosomal staining comparison of plant cells with natural dyes was carried out to compromise the use of expensive dyes. Dyes from black glutinous rice (Oryza sativa L.) and Lac (Laccifer lacca Kerr) were extracted using acetic acid, ethanol, butanol and hexane with the concentration levels of 30%, 45% and 60%, respectively. The pH was then adjusted from 1 to 7, the natural extracted dyes were used to stain the chromosomes of spider lily (Hymenocallis littoralis Salisb.) root cells, which were ongoing mitotic cell division, using the squash technique. The results showed that the natural extract dyes were capable of chromosome staining and cell division observing. Natural dyes which showed well-stained chromosome included 45% acetic acid-extracted black glutinous rice dye (pH 1–3), 45% butanol-extracted black glutinous rice dye (pH 1–3) and 60% ethanol-extracted Lac dye (pH 1–3). We also concluded that all other extracts have no significant quality as chromosomal staining indication. Key words Natural dye, Chromosome staining, Black glutinous rice (Oryza sativa L.), Lac (Laccifer lacca Kerr), Spider lily (Hymenocallis littoralis Salisb). -
Student Safety Sheets Dyes, Stains & Indicators
Student safety sheets 70 Dyes, stains & indicators Substance Hazard Comment Solid dyes, stains & indicators including: DANGER: May include one or more of the following Acridine orange, Congo Red (Direct dye 28), Crystal violet statements: fatal/toxic if swallowed/in contact (methyl violet, Gentian Violet, Gram’s stain), Ethidium TOXIC HEALTH with skin/ if inhaled; causes severe skin burns & bromide, Malachite green (solvent green 1), Methyl eye damage/ serious eye damage; may cause orange, Nigrosin, Phenolphthalein, Rosaniline, Safranin allergy or asthma symptoms or breathing CORR. IRRIT. difficulties if inhaled; may cause genetic defects/ cancer/damage fertility or the unborn child; causes damages to organs/through prolonged or ENVIRONMENT repeated exposure. Solid dyes, stains & indicators including Alizarin (1,2- WARNING: May include one or more of the dihydroxyanthraquinone), Alizarin Red S, Aluminon (tri- following statements: harmful if swallowed/in ammonium aurine tricarboxylate), Aniline Blue (cotton / contact with skin/if inhaled; causes skin/serious spirit blue), Brilliant yellow, Cresol Red, DCPIP (2,6-dichl- eye irritation; may cause allergic skin reaction; orophenolindophenol, phenolindo-2,6-dichlorophenol, HEALTH suspected of causing genetic PIDCP), Direct Red 23, Disperse Yellow 7, Dithizone (di- defects/cancer/damaging fertility or the unborn phenylthiocarbazone), Eosin (Eosin Y), Eriochrome Black T child; may cause damage to organs/respiratory (Solochrome black), Fluorescein (& disodium salt), Haem- HARMFUL irritation/drowsiness or dizziness/damage to atoxylin, HHSNNA (Patton & Reeder’s indicator), Indigo, organs through prolonged or repeated exposure. Magenta (basic Fuchsin), May-Grunwald stain, Methyl- ene blue, Methyl green, Orcein, Phenol Red, Procion ENVIRON. dyes, Pyronin, Resazurin, Sudan I/II/IV dyes, Sudan black (Solvent Black 3), Thymol blue, Xylene cyanol FF Solid dyes, stains & indicators including Some dyes may contain hazardous impurities and Acid blue 40, Blue dextran, Bromocresol green, many have not been well researched. -
Reviewanthraquinones, the Dr Jekyll and Mr Hyde of the Food Pigment
Food Research International 65 (2014) 132–136 Contents lists available at ScienceDirect Food Research International journal homepage: www.elsevier.com/locate/foodres Review Anthraquinones, the Dr Jekyll and Mr Hyde of the food pigment family Laurent Dufossé ⁎ Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments, Université de La Réunion, ESIROI Agroalimentaire, Parc Technologique, 2 rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de La Réunion, France article info abstract Article history: Anthraquinones constitute the largest group of quinoid pigments with about 700 compounds described. Their Received 28 January 2014 role as food colorants is strongly discussed in the industry and among scientists, due to the 9,10-anthracenedione Received in revised form 9 September 2014 structure, which is a good candidate for DNA interaction, with subsequent positive and/or negative effect(s). Accepted 18 September 2014 Benefits (Dr Jekyll) and inconveniences (Mr Hyde) of three anthraquinones from a plant (madder color), an Available online 28 September 2014 insect (cochineal extract) and filamentous fungi (Arpink Red) are presented in this review. For example excellent Keywords: stability in food formulation and variety of hues are opposed to allergenicity and carcinogenicity. All the anthra- Anthraquinone quinone molecules are not biologically active and research effort is requested for this strange group of food Color pigments. Pigment © 2014 Elsevier Ltd. All rights reserved. Madder Carmine Filamentous fungi Contents 1. Introduction............................................................. -
Dyes, Pigments and Other Colouring Matter; Paints and Varnishes; Putty and Other Mastics; Inks
ITC (HS), 2012 SCHEDULE 1 – IMPORT POLICY Section VI Chapter-32 CHAPTER 32 TANNING OR DYEING EXTRACTS; TANNINS AND THEIR DERIVATIVES; DYES, PIGMENTS AND OTHER COLOURING MATTER; PAINTS AND VARNISHES; PUTTY AND OTHER MASTICS; INKS NOTES: 1. This Chapter does not cover: (a) Separate chemically defined elements or compounds [except those of heading 3203 or 3204, inorganic products of a kind used as lumino-phores (heading 3206), glass obtained from fused quartz or other fused silica in the forms provided for in heading 3207, and also dyes and other colouring matter put up in forms or packings for retail sale, of heading 3212]; (b) Tannates or other tannin derivatives of products of headings 2936 to 2939, 2941 or 3501 to 3504; or (c) Mastics of asphalt or other bituminous mastics (heading 2715). 2. Heading 3204 includes mixtures of stabilised diazonium salts and couplers for the production of azo dyes. 3. Headings 3203, 3204, 3205 and 3206 apply also to preparations based on colouring matter (including, in the case of heading 3206, colouring pigments of heading 2530 or Chapter 28, metal flakes and metal powders), of a kind used for colouring any material or used as ingredients in the manufacture of colouring preparations. The headings do not apply, however, to pigments dispersed in non-aqueous media, in liquid or paste form, of a kind used in the manufacture of paints, including enamels (heading 3212), or to other preparations of heading 3207, 3208, 3209, 3210, 3212, 3213 or 3215. 4. Heading 3208 includes solutions (other than collodions) consisting of any of the products specified in headings 3901 to 3913 in volatile organic solvents when the weight of the solvent exceeds 50 per cent of the weight of the solution. -
Textile Society of America Newsletter 27:2 — Fall 2015 Textile Society of America
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Textile Society of America Newsletters Textile Society of America Fall 2015 Textile Society of America Newsletter 27:2 — Fall 2015 Textile Society of America Follow this and additional works at: https://digitalcommons.unl.edu/tsanews Part of the Art and Design Commons Textile Society of America, "Textile Society of America Newsletter 27:2 — Fall 2015" (2015). Textile Society of America Newsletters. 71. https://digitalcommons.unl.edu/tsanews/71 This Article is brought to you for free and open access by the Textile Society of America at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Textile Society of America Newsletters by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. VOLUME 27. NUMBER 2. FALL, 2015 Cover Image: Collaborative work by Pat Hickman and David Bacharach, Luminaria, 2015, steel, animal membrane, 17” x 23” x 21”, photo by George Potanovic, Jr. page 27 Fall 2015 1 Newsletter Team BOARD OF DIRECTORS Roxane Shaughnessy Editor-in-Chief: Wendy Weiss (TSA Board Member/Director of External Relations) President Designer and Editor: Tali Weinberg (Executive Director) [email protected] Member News Editor: Ellyane Hutchinson (Website Coordinator) International Report: Dominique Cardon (International Advisor to the Board) Vita Plume Vice President/President Elect Editorial Assistance: Roxane Shaughnessy (TSA President) and Vita Plume (Vice President) [email protected] Elena Phipps Our Mission Past President [email protected] The Textile Society of America is a 501(c)3 nonprofit that provides an international forum for the exchange and dissemination of textile knowledge from artistic, cultural, economic, historic, Maleyne Syracuse political, social, and technical perspectives. -
The Many Shades of Cochineal Red Workshop Review and Recap
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Textile Society of America Symposium Proceedings Textile Society of America 9-2012 The Many Shades of Cochineal Red Workshop Review and Recap Tal Landeau Workshop Scholarship Recipient Follow this and additional works at: https://digitalcommons.unl.edu/tsaconf Landeau, Tal, "The Many Shades of Cochineal Red Workshop Review and Recap" (2012). Textile Society of America Symposium Proceedings. 706. https://digitalcommons.unl.edu/tsaconf/706 This Article is brought to you for free and open access by the Textile Society of America at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Textile Society of America Symposium Proceedings by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The Many Shades of Cochineal Red Workshop Review and Recap Tal Landeau Workshop Scholarship Recipient Michel Garcia’s workshop The Many Shades of Cochineal Red at the in Arlington Arts Center in Arlington, Virginia, was packed with multiple steaming pots, a couple of blown fuses and multiple vibrant hues of red, purples and oranges. Garcia demonstrated how the selection of mordanting processes used in conjunction with cochineal dye resulted in different nuances of the color red in the final dyed cloth and yarn. As a bonus and demonstration of other reds from natural dyes, Garcia also used madder to dye more fiber. The three mordanting methods outlined by Garcia were what he called the classical method, the forgotten method and the unknown method. The classical method uses the mineral salt alum (aluminum sulfate) and cream of tartar to mordant the fiber. -
(12) United States Patent (10) Patent No.: US 6,602,594 B2 Miyata Et Al
USOO66O2594B2 (12) United States Patent (10) Patent No.: US 6,602,594 B2 Miyata et al. (45) Date of Patent: Aug. 5, 2003 (54) IRREVERSIBLE HEAT-SENSITIVE 4,756,758. A 7/1988 Lent et al. .................... 106/22 COMPOSITION 4,797.243 A * 1/1989 Wolbrom .................... 264/126 4,931,420 A 6/1990 Asano et al. ............... 503/205 (75) Inventors: Sachie Miyata, Kawagoe (JP); Hiromichi Mizusawa, Hannou (JP); FOREIGN PATENT DOCUMENTS Daisuke Harumoto, Sakado (JP) WO WO 98/02314 * 1/1998 (73) Assignee: Nichiyu Giken Kogyo Co., Ltd. (JP) (*) Notice: Subject to any disclaimer, the term of this * cited by examiner patent is extended or adjusted under 35 U.S.C. 154(b) by 122 days. Primary Examiner B. Hamilton Hess (74) Attorney, Agent, or Firm-Parkhurst & Wendel, L.L.P. (21) Appl. No.: 09/839,265 (57) ABSTRACT (22) Filed: Apr. 23, 2001 (65) Prior Publication Data An irreversible heat-Sensitive composition comprises a mix ture of a granular or powdery heat-fusible Substance having US 2001/0044014 A1 Nov. 22, 2001 a melting point corresponding to a temperature to be (30) Foreign Application Priority Data recorded and a granular or powdery dyestuff diffusible into Apr. 25, 2000 (JP) ....................................... 2000-124431 the fused heat-fusible Substance through dispersion or dis Jan. 29, 2001 (JP) ...... ... 2001-020557 Solution. A heat-Sensitive ink comprises the irreversible Jan. 29, 2001 (JP) ....................................... 2001-020558 heat-Sensitive composition and an ink vehicle capable of (51) Int. Cl." ............................ B41M 5/30; B41M 5/36 diffusing the fused heat-fusible substance therein. A heat (52) U.S. -
Evaluation of the Dyeability of the New Eco-Friendly Regenerated Cellulose
Fibers and Polymers 2008, Vol.9, No.2, 152-159 Evaluation of the Dyeability of the New Eco-friendly Regenerated Cellulose Woo Sub Shim*, Joonseok Koh1, Jung Jin Lee2, Ik Soo Kim3, and Jae Pil Kim4 Textile Engineering, Chemistry & Science Department, North Carolina State University, Raleigh, NC 27695-8301, USA 1Department of Textile Engineering, Konkuk University, Seoul 143-701, Korea 2Department of Textile Engineering, Dankook University, Seoul 140-714, Korea 3Chemical R&D Center, SK Chemicals, Suwon 440-745, Korea 4School of Material Science & Engineering, Seoul National University, Seoul 151-742, Korea (Received September 3, 2007; Revised November 7, 2007; Accepted January 12, 2008) Abstract: Three commercial dyes-direct, reactive, and vat dye-were applied to the new regenerated cellulose fiber which was prepared from cellulose acetate fiber through the hydrolysis of acetyl groups with an environmentally friendly manufacturing process. The effect of salt, alkali, liquor ratio, temperature, and leveling agent on the dyeing behavior and fastness were eval- uated and compared with regular viscose rayon. From the results, we found that new regenerated cellulose fiber exhibited bet- ter dyeability and fastness than regular viscose rayon. Keywords: Regenerated cellulose fiber, Dye, Dyeability, Fastness, Viscose rayon Introduction absorption processing [7]. We claim this regenerated cellulose fiber offers environ- Cellulose as a raw material has been used in fiber form as mental advantages over other conventional regenerated a component of paper, textiles, film, and flexible packing fibers because it dose not emit toxic materials such as carbon material. The excellent fiber-forming properties of the cellulose disulfide and heavy metal ions [8]. -
SECTION-VI 296 CHAPTER-32 Tanning Or Dyeing Extracts
SECTION-VI 296 CHAPTER-32 CHAPTER 32 Tanning or dyeing extracts; tannins and their derivatives; dyes, pigments and other colouring matter; paints and varnishes; putty and other mastics; inks NOTES: 1. This Chapter does not cover : (a) separate chemically defined elements or compounds [except those of heading 3203 or 3204, inorganic products of a kind used as lumino-phores (heading 3206), glass obtained from fused quartz or other fused silica in the forms provided for in heading 3207, and also dyes and other colouring matter put up in forms or packings for retail sale, of heading 3212]; (b) tannates or other tannin derivatives of products of headings 2936 to 2939, 2941 or 3501 to 3504; or (c) mastics of asphalt or other bituminous mastics (heading 2715). 2. Heading 3204 includes mixtures of stabilised diazonium salts and couplers for the production of azo dyes. 3. Headings 3203, 3204, 3205 and 3206 apply also to preparations based on colouring matter (including, in the case of heading 3206, colouring pigments of heading 2530 or Chapter 28, metal flakes and metal powders), of a kind used for colouring any material or used as ingredients in the manufacture of colouring preparations. The headings do not apply, however, to pigments dispersed in non-aqueous media, in liquid or paste form, of a kind used in the manufacture of paints, including enamels (heading 3212), or to other preparations of heading 3207, 3208, 3209, 3210, 3212, 3213 or 3215. 4. Heading 3208 includes solutions (other than collodions) consisting of any of the products specified in headings 3901 to 3913 in volatile organic solvents when the weight of the solvent exceeds 50 per cent.