Neuroanatomical Correlates of Human Reasoning

Total Page:16

File Type:pdf, Size:1020Kb

Neuroanatomical Correlates of Human Reasoning Neuroanatomical Correlates of Human Reasoning Vinod Goel and Brian Gold York University Shitij Kapur Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/10/3/293/1758328/089892998562744.pdf by guest on 18 May 2021 University of Toronto and Rotman Research Institute of Baycrest Centre Sylvain Houle University of Toronto Abstract ■ One of the important questions cognitive theories of rea- semantically comprehended sets of three sentences. In the soning must address is whether logical reasoning is inherently deductive reasoning conditions subjects determined whether sentential or spatial. A sentential model would exploit nonspa- the third sentence was entailed by the ªrst two sentences. tial (linguistic) properties of representations whereas a spatial The areas of activation in each reasoning condition were model would exploit spatial properties of representations. In conªned to the left hemisphere and were similar to each other general terms, the linguistic hypothesis predicts that the lan- and to activation reported in previous studies. They included guage processing regions underwrite human reasoning proc- the left inferior frontal gyrus (Brodmann areas 45, 47), a portion esses, and the spatial hypothesis suggests that the neural of the left middle frontal gyrus (Brodmann area 46), the left structures for perception and motor control contribute the middle temporal gyrus (Brodmann areas 21, 22), a region of the basic representational building blocks used for high-level logi- left lateral inferior temporal gyrus and superior temporal gyrus 15 cal and linguistic reasoning. We carried out a [ O] H2O PET (Brodmann areas 22, 37), and a portion of the left cingulate imaging study to address this issue. gyrus (Brodmann areas 32, 24). There was no signiªcant right- Twelve normal volunteers performed three types of deduc- hemisphere or parietal activation. These results are consistent tive reasoning tasks (categorical syllogisms, three-term spatial with previous neuroimaging studies and raise questions about relational items, and three-term nonspatial relational items) the level of involvement of classic spatial regions in reasoning while their regional cerebral blood ºow pattern was recorded about linguistically presented spatial relations. ■ 15 using [ O] H2O PET imaging. In the control condition subjects INTRODUCTION light strikes it, the leather is scored by six almost parallel cuts. Obviously they have been caused by Reasoning is the process of evaluating given information someone who has very carelessly scraped round and reaching conclusions that are not explicitly stated. the edges of the sole in order to remove crusted Here is literature’s most celebrated reasoner (Conan mud from it. Hence, you see, my double deduction Doyle’s Sherlock Holmes in Scandal in Bohemia) im- that you had been out in vile weather, and that you pressing his friend Watson: had a particularly malignant boot-slicking specimen of the London slavery. As to your practice, if a gentle- Then he stood before the ªre, and looked me over man walks into my rooms, smelling of iodoform, in his singular introspective fashion. with a black mark of nitrate of silver upon his right “Wedlock suits you,” he remarked. And in prac- fore-ªnger, and a bulge on the side of his top-hat to tice again, I observe, You did not tell me that you show where he has secreted his stethoscope, I intended to go into harness.” must be dull indeed if I do not pronounce him to “Then how do you know?” be an active member of the medical profession.” “I see it, I deduce it. How do I know that you have been getting yourself very wet lately, and that you More mundane examples are the following: Upon be- have a most clumsy and careless servant girl?” ing told that George is a bachelor, I automatically infer “It is simplicity itself,” said he; “my eyes tell me that that George is not married. Or upon learning that Linda on the inside of your left shoe, just where the ªre- will not come to my barbecue if it rains on Saturday, and © 1998 Massachusetts Institute of Technology Journal of Cognitive Neuroscience 10:3, pp. 293–302 Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089892998562744 by guest on 25 September 2021 noting that it is indeed raining on Saturday, I do not set of representations. Sentential representations are associ- a place for her. Although not as impressive as Holmes’ ated with “mental logic” models (Braine, 1978; Rips, conclusions, our conclusions emerge in a straightforward 1994). Spatial representations are typically associated way from the provided information. with the mental model theory of reasoning (Bauer & Human reasoning—the ability to draw such conclu- Johnson-Laird, 1993; Johnson-Laird, 1994; Johnson-Laird sions—lies at the core of higher-level cognition and is an & Byrne, 1991). Mental models do not have to be spatial, important area of study in cognitive science. On a ªrst but insofar as structural relations are preserved in the pass, the cognitive literature on reasoning can be divided mapping from world to model, arguments involving spa- into the study of deduction and induction. Deductive tial relations will involve spatial encoding. arguments can be evaluated for validity. Validity is a In general terms, the linguistic hypothesis predicts Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/10/3/293/1758328/089892998562744.pdf by guest on 18 May 2021 function of the relationship between premises and con- that the language processing regions underwrite human clusion and involves the claim that the premises provide reasoning processes, and the spatial hypothesis suggests absolute grounds for accepting the conclusion. Argu- that the neural structures for perception and motor ments in which the premises provide only limited control contribute the basic representational building grounds for accepting the conclusion are broadly called blocks used for high-level logic and linguistic reasoning. inductive arguments. While invalid, inductive arguments However, most of what we know about human reason- can be evaluated for plausibility or reasonableness. But, ing is informed by behavioral data and computational whereas, validity can be reduced to a function of the considerations. Little is known about the neuroanatomi- logical structure of sentences and arguments, induction cal correlates of reasoning processes. This is of course is a function of the content of the sentences and our not a criticism. Given the absence of robust animal knowledge of the world. It is usually a matter of knowing models of reasoning, it is inevitable. But recent advances which properties generalize in the required manner and in vivo positron emission tomography (PET) and func- which do not. tional magnetic resonance imaging (fMRI) techniques The illustrations we began with provide examples of have made it possible to probe the neurophysiological both argument types. Holmes’ conclusions take us far basis of human reasoning. Such explorations allow us to beyond the given information, and despite Doyle’s insis- map out the neuroanatomical correlates of reasoning tence, are not deductions, in the technical sense of the processes. They also provide data points to inform the word. They are instances of induction. What Holmes development of cognitive models. observes does not provide absolute grounds for accept- Goel, Gold, Kapur, and Houle (1997) carried out a ing the conclusion he draws. For example, it is plausible study to explore the neuroanatomical correlates of in- that the “six almost parallel cuts” on Watson’s left shoe ductive and deductive reasoning using paradigms were “caused by someone who has very carelessly adopted from the cognitive reasoning literature. They scraped round the edges of the sole in order to remove had 10 normal volunteers perform deductive and induc- crusted mud from it.” But it is equally plausible that tive reasoning tasks while their regional cerebral blood 15 someone was trying to scrape grease from the soles or ºow (rCBF) pattern was recorded using the [ O] H2O that the shoe scraped against a sharp object while Wat- PET imaging technique. Subjects were presented with son was wearing it. arguments of the following type and asked to make Our more mundane examples are instances of deduc- judgments about validity and plausibility:1 tion. They do not take us beyond the given information. 1. All men are mortal; Socrates is a man The conclusions are contained within the premises and ∴ Socrates is mortal are independent of the content of the sentences. For 2. If Socrates is a cat, he has 9 lives; Socrates is a cat example, given the information that Linda will not come ∴ Socrates has 9 lives to my barbecue if it is raining, and it is indeed raining, 3. Socrates is a cat, Socrates has 32 teeth the only possible conclusion is that Linda will not come. ∴ All cats have 32 teeth Furthermore, the same conclusion holds irrespective of 4. Socrates is a cat; Socrates has a broken tooth whether the individual in question is Linda or Mary or ∴ All cats have a broken tooth whether the event in question is a barbecue or a dinner party. The deduction condition resulted in activation of the Over the years a number of sophisticated cognitive left inferior frontal gyrus (Brodmann areas 45, 47) and a and computational models of deductive reasoning have region of the left superior occipital gyrus (Brodmann been developed (Evans, Newstead, & Byrne, 1993; area 19). The induction condition resulted in activation Johnson-Laird, 1993, 1994; Newell, 1980, 1990; Polk & of a large area comprised of the left medial frontal gyrus, Newell, 1995). One important question these models the left cingulate gyrus, and the left superior frontal have to address is whether logical reasoning is inher- gyrus (Brodmann areas 8, 9, 24, 32). Other frontal areas ently sentential or spatial. A sentential model would ex- activated were the orbital aspect of the left inferior ploit nonspatial (linguistic) properties of representations frontal gyrus (Brodmann area 47) and the left middle whereas a spatial model would exploit spatial properties frontal gyrus (Brodmann area 10).
Recommended publications
  • Cortical Modulation of Pupillary Function: Systematic Review
    Cortical modulation of pupillary function: systematic review Costanza Peinkhofer1,2,*, Gitte M. Knudsen1,3,4, Rita Moretti2,5 and Daniel Kondziella1,4,6,* 1 Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark 2 Medical Faculty, University of Trieste, Trieste, Italy 3 Neurobiology Research Unit, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark 4 Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark 5 Department of Medical, Surgical and Health Sciences, Neurological Unit, Trieste University Hospital, Cattinara, Trieste, Italy 6 Department of Neuroscience, Norwegian University of Technology and Science, Trondheim, Norway * These authors contributed equally to this work. ABSTRACT Background. The pupillary light reflex is the main mechanism that regulates the pupillary diameter; it is controlled by the autonomic system and mediated by subcortical pathways. In addition, cognitive and emotional processes influence pupillary function due to input from cortical innervation, but the exact circuits remain poorly understood. We performed a systematic review to evaluate the mechanisms behind pupillary changes associated with cognitive efforts and processing of emotions and to investigate the cerebral areas involved in cortical modulation of the pupillary light reflex. Methodology. We searched multiple databases until November 2018 for studies on cortical modulation of pupillary function in humans and non-human primates. Of 8,809 papers screened, 258 studies
    [Show full text]
  • Connectivity of BA46 Involvement in the Executive Control of Language
    Alfredo Ardila, Byron Bernal and Monica Rosselli Psicothema 2016, Vol. 28, No. 1, 26-31 ISSN 0214 - 9915 CODEN PSOTEG Copyright © 2016 Psicothema doi: 10.7334/psicothema2015.174 www.psicothema.com Connectivity of BA46 involvement in the executive control of language Alfredo Ardila1, Byron Bernal2 and Monica Rosselli3 1 Florida International University, 2 Miami Children’s Hospital and 3 Florida Atlantic University Abstract Resumen Background: Understanding the functions of different brain areas has Estudio de la conectividad del AB46 en el control ejecutivo del lenguaje. represented a major endeavor of contemporary neurosciences. Modern Antecedentes: la comprensión de las funciones de diferentes áreas neuroimaging developments suggest cognitive functions are associated cerebrales representa una de las mayores empresas de las neurociencias with networks rather than with specifi c areas. Objectives. The purpose contemporáneas. Los estudios contemporáneos con neuroimágenes of this paper was to analyze the connectivity of Brodmann area (BA) 46 sugieren que las funciones cognitivas se asocian con redes más que con (anterior middle frontal gyrus) in relation to language. Methods: A meta- áreas específi cas. El propósito de este estudio fue analizar la conectividad analysis was conducted to assess the language network in which BA46 is del área de Brodmann 46 (BA46) (circunvolución frontal media anterior) involved. The DataBase of Brainmap was used; 19 papers corresponding con relación al lenguaje. Método: se llevó a cabo un meta-análisis para to 60 experimental conditions with a total of 245 subjects were included. determinar el circuito o red lingüística en la cual participa BA46. Se utilizó Results: Our results suggest the core network of BA46.
    [Show full text]
  • Dorsolateral Prefrontal Cortex-Based Control with an Implanted Brain–Computer Interface
    www.nature.com/scientificreports OPEN Dorsolateral prefrontal cortex‑based control with an implanted brain–computer interface Sacha Leinders 1, Mariska J. Vansteensel 1, Mariana P. Branco 1, Zac V. Freudenburg1, Elmar G. M. Pels1, Benny Van der Vijgh1, Martine J. E. Van Zandvoort2, Nicolas F. Ramsey1* & Erik J. Aarnoutse 1 The objective of this study was to test the feasibility of using the dorsolateral prefrontal cortex as a signal source for brain–computer interface control in people with severe motor impairment. We implanted two individuals with locked‑in syndrome with a chronic brain–computer interface designed to restore independent communication. The implanted system (Utrecht NeuroProsthesis) included electrode strips placed subdurally over the dorsolateral prefrontal cortex. In both participants, counting backwards activated the dorsolateral prefrontal cortex consistently over the course of 47 and 22months, respectively. Moreover, both participants were able to use this signal to control a cursor in one dimension, with average accuracy scores of 78 ± 9% (standard deviation) and 71 ± 11% (chance level: 50%), respectively. Brain– computer interface control based on dorsolateral prefrontal cortex activity is feasible in people with locked‑in syndrome and may become of relevance for those unable to use sensorimotor signals for control. Locked-in syndrome (LIS) is characterized by intact cognition and (almost) complete loss of voluntary movement1. Brain–computer interface (BCI) systems allow computer control with brain activity and can there- fore provide an alternative communication channel to people with LIS. BCI systems depending on self-initiated modulation of brain activity generally measure from sensorimotor areas, e.g.2–9. However, not all people with LIS may be able to reliably modulate sensorimotor activity, due to for instance atrophy secondary to neurode- generative disease10,11, damage afer stroke or injury, or atypical neural activity 12.
    [Show full text]
  • Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans Ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai
    Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai To cite this version: Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai. Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex. Frontiers in Neuroanatomy, Frontiers, 2018, 12, pp.93. 10.3389/fnana.2018.00093. hal-01929541 HAL Id: hal-01929541 https://hal.archives-ouvertes.fr/hal-01929541 Submitted on 21 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 19 November 2018 doi: 10.3389/fnana.2018.00093 Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans J. ten Donkelaar 1*†, Nathalie Tzourio-Mazoyer 2† and Jürgen K. Mai 3† 1 Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands, 2 IMN Institut des Maladies Neurodégénératives UMR 5293, Université de Bordeaux, Bordeaux, France, 3 Institute for Anatomy, Heinrich Heine University, Düsseldorf, Germany The gyri and sulci of the human brain were defined by pioneers such as Louis-Pierre Gratiolet and Alexander Ecker, and extensified by, among others, Dejerine (1895) and von Economo and Koskinas (1925).
    [Show full text]
  • Efficacy of Transcranial Magnetic Stimulation Targets for Depression
    Efficacy of Transcranial Magnetic Stimulation Targets for Depression Is Related to Intrinsic Functional Connectivity with the Subgenual Cingulate Michael D. Fox, Randy L. Buckner, Matthew P. White, Michael D. Greicius, and Alvaro Pascual-Leone Background: Transcranial magnetic stimulation (TMS) to the left dorsolateral prefrontal cortex (DLPFC) is used clinically for the treatment of depression. However, the antidepressant mechanism remains unknown and its therapeutic efficacy remains limited. Recent data suggest that some left DLPFC targets are more effective than others; however, the reasons for this heterogeneity and how to capitalize on this information remain unclear. Methods: Intrinsic (resting state) functional magnetic resonance imaging data from 98 normal subjects were used to compute functional connectivity with various left DLPFC TMS targets employed in the literature. Differences in functional connectivity related to differences in previously reported clinical efficacy were identified. This information was translated into a connectivity-based targeting strategy to identify optimized left DLPFC TMS coordinates. Results in normal subjects were tested for reproducibility in an independent cohort of 13 patients with depression. Results: Differences in functional connectivity were related to previously reported differences in clinical efficacy across a distributed set of cortical and limbic regions. Dorsolateral prefrontal cortex TMS sites with better clinical efficacy were more negatively correlated (anticorre- lated) with the subgenual cingulate. Optimum connectivity-based stimulation coordinates were identified in Brodmann area 46. Results were reproducible in patients with depression. Conclusions: Reported antidepressant efficacy of different left DLPFC TMS sites is related to the anticorrelation of each site with the subgenual cingulate, potentially lending insight into the antidepressant mechanism of TMS and suggesting a role for intrinsically anticor- related networks in depression.
    [Show full text]
  • The Prefrontal Cortex
    Avens Publishing Group Inviting Innovations Open Access Review Article J Hum Anat Physiol July 2017 Volume:1, Issue:1 © All rights are reserved by Ogeturk. AvensJournal Publishing of Group Inviting Innovations Human Anatomy The Prefrontal Cortex: A Basic & Physiology Embryological, Histological, Anatomical, and Functional Ramazan Fazıl Akkoc and Murat Ogeturk* Department of Anatomy, Firat University, Turkey Guideline *Address for Correspondence Murat Ogeturk, Firat University, Faculty of Medicine, 23119 Elazig, Turkey, Tel: +90-424-2370000 (ext: 4654); Fax: +90-424-2379138; Keywords: Prefrontal cortex; Working memory; Frontal lobe E-Mail: [email protected] Abstract Submission: 24 May, 2017 Accepted: 11 July, 2017 The prefrontal cortex (PFC) unites, processes and controls the Published: 19 August, 2017 information coming from cortex and subcortical structures, and Copyright: © 2017 Akkoc RF. This is an open access article distributed decides and executes goal-oriented behavior. A major function of PFC under the Creative Commons Attribution License, which permits is to maintain the attention. Furthermore, it has many other functions unrestricted use, distribution, and reproduction in any medium, provided including working memory, problem solving, graciousness, memory, the original work is properly cited. and intellectuality. PFC is well developed in humans and localized to the anterior of the frontal lobe. This article presents a systematic review and detailed summary of embryology, histology, anatomy, functions and lesions of PFC. I. Lamina zonalis: Contains few Cajal horizontal cells. The axons of Martinotti cells located at deep layers, the last branches of the apical dendrites of pyramidal cells, and the last branches Introduction of the afferent nerve fibers extend to this lamina.
    [Show full text]
  • Neural Correlates Underlying Change in State Self-Esteem Hiroaki Kawamichi 1,2,3, Sho K
    www.nature.com/scientificreports OPEN Neural correlates underlying change in state self-esteem Hiroaki Kawamichi 1,2,3, Sho K. Sugawara2,4,5, Yuki H. Hamano2,5,6, Ryo Kitada 2,7, Eri Nakagawa2, Takanori Kochiyama8 & Norihiro Sadato 2,5 Received: 21 July 2017 State self-esteem, the momentary feeling of self-worth, functions as a sociometer involved in Accepted: 11 January 2018 maintenance of interpersonal relations. How others’ appraisal is subjectively interpreted to change Published: xx xx xxxx state self-esteem is unknown, and the neural underpinnings of this process remain to be elucidated. We hypothesized that changes in state self-esteem are represented by the mentalizing network, which is modulated by interactions with regions involved in the subjective interpretation of others’ appraisal. To test this hypothesis, we conducted task-based and resting-state fMRI. Participants were repeatedly presented with their reputations, and then rated their pleasantness and reported their state self- esteem. To evaluate the individual sensitivity of the change in state self-esteem based on pleasantness (i.e., the subjective interpretation of reputation), we calculated evaluation sensitivity as the rate of change in state self-esteem per unit pleasantness. Evaluation sensitivity varied across participants, and was positively correlated with precuneus activity evoked by reputation rating. Resting-state fMRI revealed that evaluation sensitivity was positively correlated with functional connectivity of the precuneus with areas activated by negative reputation, but negatively correlated with areas activated by positive reputation. Thus, the precuneus, as the part of the mentalizing system, serves as a gateway for translating the subjective interpretation of reputation into state self-esteem.
    [Show full text]
  • An Analysis of Functional Neuroimaging Studies of Dorsolateral Prefrontal Cortical Activity in Depression
    Psychiatry Research: Neuroimaging 148 (2006) 33–45 www.elsevier.com/locate/psychresns An analysis of functional neuroimaging studies of dorsolateral prefrontal cortical activity in depression Paul B. Fitzgeralda,⁎, Tom J. Oxleya, Angela R. Lairdb, Jayashri Kulkarnia, Gary F. Eganc, Zafiris J. Daskalakisd aAlfred Psychiatry Research Centre, The Alfred and Monash University Department of Psychological Medicine, Commercial Rd, Melbourne, Victoria 3004, Australia bResearch Imaging Center, The University of Texas Health Science Center, San Antonio, San Antonio, TX, USA cHoward Florey Institute, The University of Melbourne, Victoria, Australia dCentre for Addiction and Mental Health, Clarke Division, Toronto, Ontario, Canada Received 22 December 2005; received in revised form 28 March 2006; accepted 10 April 2006 Abstract Repetitive transcranial magnetic stimulation (rTMS) is currently undergoing active investigation for use in the treatment of major depression. Recent research has indicated that current methods used to localize the site of stimulation in dorsolateral prefrontal cortex (DLPFC) are significantly inaccurate. However, little information is available on which to base a choice of stimulation site. The aim of the current study was to systematically examine imaging studies in depression to attempt to identify whether there is a pattern of imaging results that suggests an optimal site of stimulation localization. We analysed all imaging studies published prior to 2005 that examined patients with major depression. Studies reporting activation in DLPFC were identified. The DLPFC regions identified in these studies were analysed using the Talairach and Rajkowska–Goldman-Rakic coordinate systems. In addition, we conducted a quantitative meta-analysis of resting studies and studies of serotonin reuptake inhibitor antidepressant treatment.
    [Show full text]
  • Healthy and Abnormal Development of the Prefrontal Cortex
    Developmental Neurorehabilitation, October 2009; 12(5): 279–297 Healthy and abnormal development of the prefrontal cortex MEGAN SPENCER-SMITH1,2 & VICKI ANDERSON1,2,3 1Murdoch Childrens Research Institute, Melbourne, Australia, 2University of Melbourne, Melbourne, Australia, and 3Royal Children’s Hospital, Melbourne, Australia (Received 8 October 2008; accepted 3 June 2009) Abstract Background: While many children with brain conditions present with cognitive, behavioural, emotional, academic and social impairments, other children recover with seemingly few impairments. Animal studies and preliminary child studies have identified timing of brain lesion as a key predictor in determining functional outcome following early brain lesions. Review: This research suggests that knowledge of healthy developmental processes in brain structure and function is essential for better understanding functional recovery and outcome in children with brain lesions. This review paper aims to equip researchers with current knowledge of key principles of developmental processes in brain structure and function. Timetables for development of the prefrontal cortex (PFC), a brain region particularly vulnerable to lesions due to its protracted developmental course, are examined. In addition, timetables for development of executive skills, which emerge in childhood and have a prolonged developmental course that parallels development of the PFC, are also discussed. Conclusions: Equipped with this knowledge, researchers are now in a better position to understand functional
    [Show full text]
  • Supplementary Tables
    Supplementary Tables: ROI Atlas Significant table grey matter Test ROI # Brainetome area beta volume EG pre vs post IT 8 'superior frontal gyrus, part 4 (dorsolateral area 6), right', 0.773 17388 11 'superior frontal gyrus, part 6 (medial area 9), left', 0.793 18630 12 'superior frontal gyrus, part 6 (medial area 9), right', 0.806 24543 17 'middle frontal gyrus, part 2 (inferior frontal junction), left', 0.819 22140 35 'inferior frontal gyrus, part 4 (rostral area 45), left', 1.3 10665 67 'paracentral lobule, part 2 (area 4 lower limb), left', 0.86 13662 EG pre vs post ET 20 'middle frontal gyrus, part 3 (area 46), right', 0.934 28188 21 'middle frontal gyrus, part 4 (ventral area 9/46 ), left' 0.812 27864 31 'inferior frontal gyrus, part 2 (inferior frontal sulcus), left', 0.864 11124 35 'inferior frontal gyrus, part 4 (rostral area 45), left', 1 10665 50 'orbital gyrus, part 5 (area 13), right', -1.7 22626 67 'paracentral lobule, part 2 (area 4 lower limb), left', 1.1 13662 180 'cingulate gyrus, part 3 (pregenual area 32), right', 0.9 10665 261 'Cerebellar lobule VIIb, vermis', -1.5 729 IG pre vs post IT 16 middle frontal gyrus, part 1 (dorsal area 9/46), right', -0.8 27567 24 'middle frontal gyrus, part 5 (ventrolateral area 8), right', -0.8 22437 40 'inferior frontal gyrus, part 6 (ventral area 44), right', -0.9 8262 54 'precentral gyrus, part 1 (area 4 head and face), right', -0.9 14175 64 'precentral gyrus, part 2 (caudal dorsolateral area 6), left', -1.3 18819 81 'middle temporal gyrus, part 1 (caudal area 21), left', -1.4 14472
    [Show full text]
  • Functional Brain Imaging in Apraxia
    OBSERVATION Functional Brain Imaging in Apraxia David A. Kareken, PhD; Frederick Unverzagt, PhD; Karen Caldemeyer, MD; Martin R. Farlow, MD; Gary D. Hutchins, PhD Background: An extensive literature describes struc- sults of the neurological examination were normal. There tural lesions in apraxia, but few studies have used func- was ideomotor apraxia of both hands (command, imita- tional neuroimaging. We used positron emission tomog- tion, and object) and buccofacial apraxia. The patient raphy (PET) to characterize relative cerebral glucose could recognize meaningful gestures performed by the metabolism in a 65-year-old, right-handed woman with examiner and discriminate between his accurate and awk- progressive decline in ability to manipulate objects, write, ward pantomime. The magnetic resonance image showed and articulate speech. moderate generalized atrophy and mild ischemic changes. Positron emission tomographic scans showed abnormal Objective: To characterize functional brain organiza- fludeoxyglucose F 18 uptake in the posterior frontal, tion in apraxia. supplementary motor, and parietal regions, the left af- fected more than the right. Focal metabolic deficit was Design and Methods: The patient underwent a neu- present in the angular gyrus, an area hypothesized to store rological examination, neuropsychological testing, mag- conceptual knowledge of skilled movement. netic resonance imaging, and fludeoxyglucose F 18 PET. The patient’s magnetic resonance image was coregis- Conclusions: Greater parietal than frontal physiologi- tered to her PET image, which was compared with the cal dysfunction and preserved gesture recognition are not PET images of 7 right-handed, healthy controls. Hemi- consistent with the theory that knowledge of limb praxis spheric regions of interest were normalized by calcrine is stored in the dominant parietal cortex.
    [Show full text]
  • Shared Neural Resources of Rhythm and Syntax: an ALE Meta-Analysis Matthew Heard A, B and Yune S
    bioRxiv preprint doi: https://doi.org/10.1101/822676; this version posted October 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Shared neural resources of rhythm and syntax: An ALE Meta-Analysis Matthew Heard a, b and Yune S. Lee a, b, c † a Department of Speech and Hearing Sciences, The Ohio State University b Neuroscience Graduate Program, The Ohio State University c Chronic Brain Injury, Discovery Theme, The Ohio State University, Columbus, OH 43210, USA † Corresponding author. Email address [email protected] Abstract A growing body of evidence has highlighted behavioral connections between musical rhythm and linguistic syntax, suggesting that these may be mediated by common neural resources. Here, we performed a quantitative meta-analysis of neuroimaging studies using activation likelihood estimate (ALE) to localize the shared neural structures engaged in a representative set of musical rhythm (rhythm, beat, and meter) and linguistic syntax (merge movement, and reanalysis). Rhythm engaged a bilateral sensorimotor network throughout the brain consisting of the inferior frontal gyri, supplementary motor area, superior temporal gyri/temporoparietal junction, insula, the intraparietal lobule, and putamen. By contrast, syntax mostly recruited the left sensorimotor network including the inferior frontal gyrus, posterior superior temporal gyrus, premotor cortex, and supplementary motor area. Intersections between rhythm and syntax maps yielded overlapping regions in the left inferior frontal gyrus, left supplementary motor area, and bilateral insula—neural substrates involved in temporal hierarchy processing and predictive coding. Together, this is the first neuroimaging meta-analysis providing detailed anatomical overlap of sensorimotor regions recruited for musical rhythm and linguistic syntax.
    [Show full text]