Targeting Apoptosis in Acute Myeloid Leukaemia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How I Treat Myelofibrosis
From www.bloodjournal.org by guest on October 7, 2014. For personal use only. Prepublished online September 16, 2014; doi:10.1182/blood-2014-07-575373 How I treat myelofibrosis Francisco Cervantes Information about reproducing this article in parts or in its entirety may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests Information about ordering reprints may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#reprints Information about subscriptions and ASH membership may be found online at: http://www.bloodjournal.org/site/subscriptions/index.xhtml Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include digital object identifier (DOIs) and date of initial publication. Blood (print ISSN 0006-4971, online ISSN 1528-0020), is published weekly by the American Society of Hematology, 2021 L St, NW, Suite 900, Washington DC 20036. Copyright 2011 by The American Society of Hematology; all rights reserved. From www.bloodjournal.org by guest on October 7, 2014. For personal use only. Blood First Edition Paper, prepublished online September 16, 2014; DOI 10.1182/blood-2014-07-575373 How I treat myelofibrosis By Francisco Cervantes, MD, PhD, Hematology Department, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain Correspondence: Francisco Cervantes, MD, Hematology Department, Hospital Clínic, Villarroel 170, 08036 Barcelona, Spain. Phone: +34 932275428. -
Targeting BCL-2 in Cancer: Advances, Challenges, and Perspectives
cancers Review Targeting BCL-2 in Cancer: Advances, Challenges, and Perspectives Shirin Hafezi 1 and Mohamed Rahmani 1,2,* 1 Research Institute of Medical & Health Sciences, University of Sharjah, P.O. Box 27272 Sharjah, United Arab Emirates; [email protected] 2 Department of Basic Medical Sciences, College of Medicine, University of Sharjah, P.O. Box 27272 Sharjah, United Arab Emirates * Correspondence: [email protected]; Tel.: +971-6505-7759 Simple Summary: Apoptosis, a programmed form of cell death, represents the main mechanism by which cells die. Such phenomenon is highly regulated by the BCL-2 family of proteins, which includes both pro-apoptotic and pro-survival proteins. The decision whether cells live or die is tightly controlled by a balance between these two classes of proteins. Notably, the pro-survival Bcl-2 proteins are frequently overexpressed in cancer cells dysregulating this balance in favor of survival and also rendering cells more resistant to therapeutic interventions. In this review, we outlined the most important steps in the development of targeting the BCL-2 survival proteins, which laid the ground for the discovery and the development of the selective BCL-2 inhibitor venetoclax as a therapeutic drug in hematological malignancies. The limitations and future directions are also discussed. Abstract: The major form of cell death in normal as well as malignant cells is apoptosis, which is a programmed process highly regulated by the BCL-2 family of proteins. This includes the antiapoptotic proteins (BCL-2, BCL-XL, MCL-1, BCLW, and BFL-1) and the proapoptotic proteins, which can be divided into two groups: the effectors (BAX, BAK, and BOK) and the BH3-only proteins Citation: Hafezi, S.; Rahmani, M. -
XIAP's Profile in Human Cancer
biomolecules Review XIAP’s Profile in Human Cancer Huailu Tu and Max Costa * Department of Environmental Medicine, Grossman School of Medicine, New York University, New York, NY 10010, USA; [email protected] * Correspondence: [email protected] Received: 16 September 2020; Accepted: 25 October 2020; Published: 29 October 2020 Abstract: XIAP, the X-linked inhibitor of apoptosis protein, regulates cell death signaling pathways through binding and inhibiting caspases. Mounting experimental research associated with XIAP has shown it to be a master regulator of cell death not only in apoptosis, but also in autophagy and necroptosis. As a vital decider on cell survival, XIAP is involved in the regulation of cancer initiation, promotion and progression. XIAP up-regulation occurs in many human diseases, resulting in a series of undesired effects such as raising the cellular tolerance to genetic lesions, inflammation and cytotoxicity. Hence, anti-tumor drugs targeting XIAP have become an important focus for cancer therapy research. RNA–XIAP interaction is a focus, which has enriched the general profile of XIAP regulation in human cancer. In this review, the basic functions of XIAP, its regulatory role in cancer, anti-XIAP drugs and recent findings about RNA–XIAP interactions are discussed. Keywords: XIAP; apoptosis; cancer; therapeutics; non-coding RNA 1. Introduction X-linked inhibitor of apoptosis protein (XIAP), also known as inhibitor of apoptosis protein 3 (IAP3), baculoviral IAP repeat-containing protein 4 (BIRC4), and human IAPs like protein (hILP), belongs to IAP family which was discovered in insect baculovirus [1]. Eight different IAPs have been isolated from human tissues: NAIP (BIRC1), BIRC2 (cIAP1), BIRC3 (cIAP2), XIAP (BIRC4), BIRC5 (survivin), BIRC6 (apollon), BIRC7 (livin) and BIRC8 [2]. -
Type of the Paper (Article
Supplementary Material A Proteomics Study on the Mechanism of Nutmeg-induced Hepatotoxicity Wei Xia 1, †, Zhipeng Cao 1, †, Xiaoyu Zhang 1 and Lina Gao 1,* 1 School of Forensic Medicine, China Medical University, Shenyang 110122, P. R. China; lessen- [email protected] (W.X.); [email protected] (Z.C.); [email protected] (X.Z.) † The authors contributed equally to this work. * Correspondence: [email protected] Figure S1. Table S1. Peptide fraction separation liquid chromatography elution gradient table. Time (min) Flow rate (mL/min) Mobile phase A (%) Mobile phase B (%) 0 1 97 3 10 1 95 5 30 1 80 20 48 1 60 40 50 1 50 50 53 1 30 70 54 1 0 100 1 Table 2. Liquid chromatography elution gradient table. Time (min) Flow rate (nL/min) Mobile phase A (%) Mobile phase B (%) 0 600 94 6 2 600 83 17 82 600 60 40 84 600 50 50 85 600 45 55 90 600 0 100 Table S3. The analysis parameter of Proteome Discoverer 2.2. Item Value Type of Quantification Reporter Quantification (TMT) Enzyme Trypsin Max.Missed Cleavage Sites 2 Precursor Mass Tolerance 10 ppm Fragment Mass Tolerance 0.02 Da Dynamic Modification Oxidation/+15.995 Da (M) and TMT /+229.163 Da (K,Y) N-Terminal Modification Acetyl/+42.011 Da (N-Terminal) and TMT /+229.163 Da (N-Terminal) Static Modification Carbamidomethyl/+57.021 Da (C) 2 Table S4. The DEPs between the low-dose group and the control group. Protein Gene Fold Change P value Trend mRNA H2-K1 0.380 0.010 down Glutamine synthetase 0.426 0.022 down Annexin Anxa6 0.447 0.032 down mRNA H2-D1 0.467 0.002 down Ribokinase Rbks 0.487 0.000 -
Discovery of Mcl-1 Inhibitors from Integrated High Throughput and Virtual Screening Received: 9 March 2018 Ahmed S
www.nature.com/scientificreports OPEN Discovery of Mcl-1 inhibitors from integrated high throughput and virtual screening Received: 9 March 2018 Ahmed S. A. Mady1,3, Chenzhong Liao1,8, Naval Bajwa1,9, Karson J. Kump1,4, Accepted: 5 June 2018 Fardokht A. Abulwerdi 1,3,10, Katherine L. Lev1, Lei Miao 1, Sierrah M. Grigsby1,2, Published: xx xx xxxx Andrej Perdih5, Jeanne A. Stuckey6, Yuhong Du7, Haian Fu 7 & Zaneta Nikolovska-Coleska1,2,3,4 Protein-protein interactions (PPIs) represent important and promising therapeutic targets that are associated with the regulation of various molecular pathways, particularly in cancer. Although they were once considered “undruggable,” the recent advances in screening strategies, structure-based design, and elucidating the nature of hot spots on PPI interfaces, have led to the discovery and development of successful small-molecule inhibitors. In this report, we are describing an integrated high-throughput and computational screening approach to enable the discovery of small-molecule PPI inhibitors of the anti- apoptotic protein, Mcl-1. Applying this strategy, followed by biochemical, biophysical, and biological characterization, nineteen new chemical scafolds were discovered and validated as Mcl-1 inhibitors. A novel series of Mcl-1 inhibitors was designed and synthesized based on the identifed difuryl-triazine core scafold and structure-activity studies were undertaken to improve the binding afnity to Mcl- 1. Compounds with improved in vitro binding potency demonstrated on-target activity in cell-based studies. The obtained results demonstrate that structure-based analysis complements the experimental high-throughput screening in identifying novel PPI inhibitor scafolds and guides follow-up medicinal chemistry eforts. -
Supplementary Information Method CLEAR-CLIP. Mouse Keratinocytes
Supplementary Information Method CLEAR-CLIP. Mouse keratinocytes of the designated genotype were maintained in E-low calcium medium. Inducible cells were treated with 3 ug/ml final concentration doxycycline for 24 hours before performing CLEAR-CLIP. One 15cm dish of confluent cells was used per sample. Cells were washed once with cold PBS. 10mls of cold PBS was then added and cells were irradiated with 300mJ/cm2 UVC (254nM wavelength). Cells were then scraped from the plates in cold PBS and pelleted by centrifugation at 1,000g for 2 minutes. Pellets were frozen at -80oC until needed. Cells were then lysed on ice with occasional vortexing in 1ml of lysis buffer (50mM Tris-HCl pH 7.4, 100mM NaCl, 1mM MgCl2, 0.1 mM CaCl2, 1% NP-40, 0.5% Sodium Deoxycholate, 0.1% SDS) containing 1X protease inhibitors (Roche #88665) and RNaseOUT (Invitrogen #10777019) at 4ul/ml final concentration. Next, TurboDNase (Invitrogen #AM2238, 10U), RNase A (0.13ug) and RNase T1 (0.13U) were added and samples were incubated at 37oC for 5 minutes with occasional mixing. Samples were immediately placed on ice and then centrifuged at 16,160g at 4oC for 20 minutes to clear lysate. 25ul of Protein-G Dynabeads (Invitrogen #10004D) were used per IP. Dynabeads were pre-washed with lysis buffer and pre- incubated with 3ul of Wako Anti-Mouse-Ago2 (2D4) antibody. The dynabead/antibody mixture was added to the lysate and rocked for 2 hours at 4oC. All steps after the IP were done on bead until samples were loaded into the polyacrylamide gel. -
The Autism Protein Ube3a/E6AP Remodels Neuronal Dendritic Arborization Via Caspase-Dependent Microtubule Destabilization
The Journal of Neuroscience, January 10, 2018 • 38(2):363–378 • 363 Neurobiology of Disease The Autism Protein Ube3A/E6AP Remodels Neuronal Dendritic Arborization via Caspase-Dependent Microtubule Destabilization Natasha Khatri,1,2 James P. Gilbert,1 Yuda Huo,1 Roozhin Sharaflari,1 Michael Nee,1 Hui Qiao,1 and XHeng-Ye Man1,2 1Department of Biology, Boston University, Boston, Massachusetts 02215, and 2Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118 UBE3A gene copy number variation and the resulting overexpression of the protein E6AP is directly linked to autism spectrum disorders (ASDs).However,theunderlyingcellularandmolecularneurobiologyremainslessclear.HerewereporttheroleofASD-relatedincreased dosage of Ube3A/E6AP in dendritic arborization during brain development. We show that increased E6AP expression in primary cul- tured neurons leads to a reduction in dendritic branch number and length. The E6AP-dependent remodeling of dendritic arborization results from retraction of dendrites by thinning and fragmentation at the tips of dendrite branches, leading to shortening or removal of dendrites. This remodeling effect is mediated by the ubiquitination and degradation of XIAP (X-linked inhibitors of aptosis protein) by E6AP, which leads to activation of caspase-3 and cleavage of microtubules. In vivo, male and female Ube3A 2X ASD mice show decreased XIAP levels, increased caspase-3 activation, and elevated levels of tubulin cleavage. Consistently, dendritic branching and spine density are reduced in cortical neurons of Ube3A 2X ASD mice. In revealing an important role for Ube3A/E6AP in ASD-related developmental alteration in dendritic arborization and synapse formation, our findings provide new insights into the pathogenesis of Ube3A/E6AP- dependent ASD. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Targeting the Ubiquitin System in Glioblastoma', Frontiers in Oncology
Citation for published version: Licchesi, J 2020, 'Targeting the Ubiquitin System in Glioblastoma', Frontiers in Oncology. https://doi.org/10.3389/fonc.2020.574011 DOI: 10.3389/fonc.2020.574011 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link to publication University of Bath Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 24. Sep. 2021 REVIEW published: 25 November 2020 doi: 10.3389/fonc.2020.574011 Targeting the Ubiquitin System in Glioblastoma Nico Scholz 1, Kathreena M. Kurian 2, Florian A. Siebzehnrubl 3 and Julien D. F. Licchesi 1* 1 Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom, 2 Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom, 3 Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, United Kingdom Glioblastoma is the most common primary brain tumor in adults with poor overall outcome and 5-year survival of less than 5%. Treatment has not changed much in the last decade or so, with surgical resection and radio/chemotherapy being the main options. -
Regulation of Apoptosis by XIAP Ubiquitin- Ligase Activity Andrew James Schile
Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2009 Regulation of Apoptosis by XIAP Ubiquitin- Ligase Activity Andrew James Schile Follow this and additional works at: http://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons Recommended Citation Schile, Andrew James, "Regulation of Apoptosis by XIAP Ubiquitin- Ligase Activity" (2009). Student Theses and Dissertations. Paper 125. This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. REGULATION OF APOPTOSIS BY XIAP UBIQUITIN-LIGASE ACTIVITY A Thesis Presented to the Faculty of The Rockefeller University In Partial Fulfillment of the Requirements for The degree of Doctor of Philosophy by Andrew James Schile June 2009 © Copyright by Andrew James Schile 2009 REGULATION OF APOPTOSIS BY XIAP UBIQUITIN-LIGASE ACTIVITY Andrew James Schile, Ph.D. The Rockefeller University 2009 Virtually all animal cells have the known ability to self-destruct by undergoing apoptosis, a morphologically distinct form of programmed cell death. The proper regulation of apoptosis is critical for both development and tissue homeostasis, and inhibition of apoptosis contributes to the development and progression of cancer. Inhibitor of Apoptosis Proteins (IAPs) can bind to and inhibit caspases, the key executioners of apoptosis. Because IAPs are frequently over-expressed in human tumors, they have become major pharmacological targets for developing new cancer therapeutics. Many IAPs contain RING domains that function as E3 ubiquitin-ligases to regulate the abundance of IAPs themselves and their binding partners by engaging the ubiquitin system. -
BCL-2 Inhibitors for Chronic Lymphocytic Leukemia
L al of euk rn em u i o a J Robak, J Leuk 2015, 3:3 Journal of Leukemia DOI: 10.4172/2329-6917.1000e114 ISSN: 2329-6917 Editorial Open access BCL-2 inhibitors for Chronic Lymphocytic Leukemia Tadeusz Robak* Department of Hematology, Medical University of Lodz, 93-510 Lodz, ul, Ciolkowskiego 2, Poland *Corresponding author: Tadeusz Robak, Department of Hematology, Medical University of Lodz, Copernicus Memorial Hospital, 93-510 Lodz, Ul. Ciolkowskiego 2, Poland, Tel: +48 42 6895191; E-mail: [email protected] Rec date: August 10, 2015; Acc date: August 12, 2015; Pub date: August 24, 2015 Copyright: © 2015 Robak T. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Editorial cyclophosphamide and rituximab (FCR) or bendamustin-rituximab (BR) regimens in refractory CLL are ongoing (NCT00868413). B-cell chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Europe and North America, with an annual Venetoclax ( GDC-0199, ABT-199, RG7601; Genentech, South San incidence of three to five cases per 100,000 [1]. The approval of Francisco, CA), is a first-in-class, orally bioavailable BCL-2 family rituximab-based immunochemotherapy represented a substantial protein inhibitor that binds with high affinity to BCL-2 and with lower therapeutic advance in CLL [2]. However, currently available therapies affinity to the other BCL-2 family proteins Bcl-xL, Bcl-w and Mcl-1 are only partially efficient, and there is an obvious need to develop [14]. -
New Insights Into the Cellular Temporal Response to Proteostatic Stress
TOOLS AND RESOURCES New insights into the cellular temporal response to proteostatic stress Justin Rendleman1†, Zhe Cheng1†, Shuvadeep Maity1†, Nicolai Kastelic2, Mathias Munschauer2, Kristina Allgoewer1, Guoshou Teo1, Yun Bin Matteo Zhang1, Amy Lei1, Brian Parker1, Markus Landthaler2,3, Lindsay Freeberg4, Scott Kuersten4, Hyungwon Choi5,6, Christine Vogel1* 1Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States; 2Berlin Institute for Medical Systems Biology, Max Delbru¨ ck Center for Molecular Medicine, Berlin, Germany; 3Integrative Research Institute for the Life Sciences, Institute of Biology, Humboldt University, Berlin, Germany; 4Illumina Inc, Madison, United States; 5National University of Singapore, Singapore; 6Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore Abstract Maintaining a healthy proteome involves all layers of gene expression regulation. By quantifying temporal changes of the transcriptome, translatome, proteome, and RNA-protein interactome in cervical cancer cells, we systematically characterize the molecular landscape in response to proteostatic challenges. We identify shared and specific responses to misfolded proteins and to oxidative stress, two conditions that are tightly linked. We reveal new aspects of the unfolded protein response, including many genes that escape global translation shutdown. A subset of these genes supports rerouting of energy production in the mitochondria. We also find that many genes change at multiple levels, in either the same or opposing directions, and at different time points. We highlight a variety of putative regulatory pathways, including the stress- dependent alternative splicing of aminoacyl-tRNA synthetases, and protein-RNA binding within the 3’ untranslated region of molecular chaperones. These results illustrate the potential of this information-rich resource.