How I Treat Myelofibrosis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
European Iron Club 7
EUROPEAN IRON CLUB 7 - 10 MEETING IN April INNSBRUCK 2016 Programme Kein Eisen unter der Oberfläche Novartis Pharma GmbH Stella-Klein-Loew-Weg 17 | 1020 Wien www.novartispharma.at | +43 1 866 57-0 Erstellungsdatum 02/2016 | AT1602436490 CONTENTS Welcome 6 Committees 7 Masterclass in Iron Therapies 8 Thursday, 7 April 2016 European Iron Club Annual Meeting 10 Friday, 8 April 2016 European Iron Club Annual Meeting 20 Saturday, 9 April 2016 Scientific Programme 31 Kein Eisen Sunday, 10 April 2016 Innsbruck city map 34 unter der General Information 35 Exhibitors & Sponsors 40 Oberfläche Drug labels 41 Notes 42 Novartis Pharma GmbH 3 Stella-Klein-Loew-Weg 17 | 1020 Wien www.novartispharma.at | +43 1 866 57-0 Erstellungsdatum 02/2016 | AT1602436490 CONGRESS INFORMATION DATES CONGRESS ORGANISER Masterclass in Iron Therapies PCO TYROL CONGRESS Thursday, 7 April, 2016 MMag. Ina Kähler Mechthild Walter European Iron Club Annual Rennweg 3 Meeting 6020 Innsbruck Friday, 8 April – Saturday, 9 April, Austria 2016 T: +43 (0) 512 575600 F: +43 (0) 512 575607 Non HFE Hemochromatosis E: [email protected] Registry Meeting I: www.pco-tyrolcongress.at Sunday, 10 April, 2016 Meeting of Patient Organisations Sunday, 10 April, 2016 EXHIBITION MANAGEMENT AND SPONSORING VENUE (THU - SAT) S12! STUDIO12 GMBH CONGRESS INNSBRUCK Ralph Kerschbaumer Rennweg 3 Kaiser Josef Straße 9 6020 Innsbruck 6020 Innsbruck Austria Austria www.cmi.at T: +43 (0) 512 890438 F: +43 (0) 512 890438 15 E: [email protected] I: www.studio12.co.at VENUE (SUN) AUSTRIA TREND HOTEL Rennweg 12a -
Thrombopoietin Supports the Continuous Growth of Cytokine-Dependent Human Leukemia Cell Lines HG Drexler, M Zaborski and H Quentmeier
Leukemia (1997) 11, 541–551 1997 Stockton Press All rights reserved 0887-6924/97 $12.00 Thrombopoietin supports the continuous growth of cytokine-dependent human leukemia cell lines HG Drexler, M Zaborski and H Quentmeier DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Cultures, Mascheroder Weg 1 B, D-38124 Braunschweig, Germany Hematopoiesis is a complex process of regulated cellular pro- nate membrane receptor. This binding triggers a series of intra- liferation and differentiation from the primitive stem cells to the cellular mediators involved in the growth factor’s signaling final fully differentiated cell. The long and extensive search for a factor specifically regulating megakaryocytopoiesis led to the pathways. Recently, a novel hematopoietic growth factor, cloning of a hormone, here called thrombopoietin (TPO), that termed thrombopoietin (TPO), was cloned and shown to be a specifically promotes proliferation and differentiation of the megakaryocytic lineage-associated growth and differentiation megakaryocytic lineage. The availability of recombinant TPO factor. Binding of TPO to its receptor, c-MPL, mediates plei- and its imminent clinical use has made a more detailed under- otropic effects on megakaryocyte development in vitro and in standing of its effects on hematopoietic cells more urgent. Nor- vivo. TPO is clearly the primary regulator of this cell lineage mal megakaryocyto- and thrombopoiesis occurs predomi- nantly in the bone marrow, a difficult organ to study in situ, acting at all levels of megakaryocytopoiesis and thrombopo- particularly in humans, due to the low numbers of megakary- iesis (reviewed in Ref. 1). ocytic progenitors and the consequent difficult isolation as The availability of TPO will be of considerable clinical pure populations. -
Side Effects of Molecular-Targeted Therapies in Solid Cancers : a New Challenge in Cancer Therapy Management
Side effects of molecular-targeted therapies in solid cancers : a new challenge in cancer therapy management Ahmad Awada, MD, PhD Medical Oncology Clinic Institut Jules Bordet Université Libre de Bruxelles (U.L.B.) Brussels, Belgium PLAN OF THE LECTURE 1. Concept 2. Achievements on the management of side effects 3. Remaining challenges 4. New challenges with the development of molecular-targeted therapies 5. Conclusions Reducing the cancer- related problems and the side effects of the SUPPORTIVE CARE = medicine administered to treat the disease SIDE EFFECTS OF CANCER THERAPY: ACHIEVEMENTS Side effect Preventive & Therapeutic intervention • Febrile neutropenia • G-CSF, Anti-infectives • Anemia • Epoetine •Mucositis •Laser therapy, Palifermin • Nausea & Vomiting • 5-HT3 and neurokin-1-receptor antagonists •Thromboembolic •LMW Heparin events • Cardiomyopathy • Liposomal formulations, Dexrazonane (anthracyclines) MANAGEMENT OF SIDE EFFECTS : REMAINING CHALLENGES • Alopecia • Thrombocytopenia ( ! Promising Thrombopoietin- mimetics are under investigation) • Asthenia MOLECULAR TARGETS AND THERAPIES (1) Drug Class Mechanism of action Main tumor indication Gefitinib* Small molecule TK inhibitor of EGFR NSCLC (Iressa) Erlotinib* Small molecule TK inhibitor of EGFR NSCLC (Tarceva) Cetuximab* Monoclonal Antibody Blocks EGFR Colorectal, Head & (Erbitux) Neck, NSCLC Monoclonal Panitumumab* Antibody Blocks EGFR Colorectal (Vectibix) * Investigational in BC TK : tyrosine kinase; EGFR : epidermal growth factor receptor MOLECULAR TARGETS AND THERAPIES -
DOPTELET (Avatrombopag) RATIONALE for INCLUSION IN
DOPTELET (avatrombopag) RATIONALE FOR INCLUSION IN PA PROGRAM Background Doptelet is a thrombopoietin (TPO) receptor agonist used to increase platelet counts. Doptelet (avatrombopag) is an orally bioavailable, small molecule TPO receptor agonist that stimulates proliferation and differentiation of megakaryocytes from bone marrow progenitor cells resulting in an increased production of platelets. Doptelet does not compete with TPO for binding to the TPO receptor and has an additive effect with TPO on platelet production (1). Regulatory Status FDA approved indication: Doptelet is a thrombopoietin receptor agonist indicated for the treatment of: (1) 1. Thrombocytopenia in adult patients with chronic liver disease who are scheduled to undergo a procedure. 2. Thrombocytopenia in adult patients with chronic immune thrombocytopenia who have had an insufficient response to a previous treatment. Doptelet should not be administered to patients with chronic liver disease in an attempt to normalize platelet counts (1). Doptelet is a thrombopoietin (TPO) receptor agonist and TPO receptor agonists have been associated with thrombotic and thromboembolic complications in patients with chronic liver disease. A Doppler ultrasound is a noninvasive test that can be used to estimate the blood flow through blood vessels by bouncing high-frequency sound waves (ultrasound) off circulating red blood cells. A Doppler ultrasound may help determine if Doptelet therapy is appropriate for a patient (1-2). The safety and effectiveness of Doptelet in pediatric patients have not been established (1). Summary Doptelet is a thrombopoietin (TPO) receptor agonist used to increase platelet counts. Doptelet (avatrombopag) is an orally bioavailable, small molecule TPO receptor agonist that stimulates proliferation and differentiation of megakaryocytes from bone marrow progenitor cells resulting in an increased production of platelets. -
Insights Into the Cellular Mechanisms of Erythropoietin-Thrombopoietin Synergy
Papayannopoulou et al.: Epo and Tpo Synergy Experimental Hematology 24:660-669 (19961 661 @ 1996 International Society for Experimental Hematology Rapid Communication ulation with fluorescence microscopy. Purified subsets were grown in plasma clot and methylcellulose clonal cultures and in suspension cultures using the combinations of cytokines Insights into the cellular mechanisms cadaveric bone marrow cells obtained from Northwest described in the text. Single cells from the different subsets Center, Puget Sound Blood Bank (Seattle, WA), were were. also deposited (by FACS) on 96-well plates containing of erythropoietin-thrombopoietin synergy washed, and incubated overnight in IMDM with 10% medmm and cytokines. Clonal growth from single-cell wells calf serum on tissue culture plates to remove adherent were double-labeled with antiglycophorin A-PE and anti Thalia Papayannopoulou, Martha Brice, Denise Farrer, Kenneth Kaushansky From the nonadherent cells, CD34+ cells were isolated CD41- FITC between days 10 and 19. direct immunoadherence on anti-CD34 monoclonal anti University of Washington, Department of Medicine, Seattle, WA (mAb)-coated plates, as previously described [15]. Purity Immunocytochemistry Offprint requests to: Thalia Papayannopoulou, MD, DrSci, University of Washington, isolated CD34+ cells ranged from 80 to 96% by this For immunocytochemistry, either plasma clot or cytospin cell Division of Hematology, Box 357710, Seattle, WA 98195-7710 od. Peripheral blood CD34 + cells from granulocyte preparations were used. These were fixed at days 6-7 and (Received 24 January 1996; revised 14 February 1996; accepted 16 February 1996) ulating factor (G-CSF)-mobilized normal donors 12-13 with pH 6.5 Histochoice (Amresco, Solon, OH) and provided by Dr. -
Tracks 1-9 David P Steensma, MD Select Excerpts from the Interview
INTERVIEW David P Steensma, MD Dr Steensma is Faculty Member in the Adult Leukemia Program at Dana-Farber Cancer Institute and Associate Professor of Medicine at Harvard Medical School in Boston, Massachusetts. Tracks 1-9 Track 1 Novel agents under investigation for Track 6 Case discussion: A 68-year-old man FLT3-ITD-mutated acute myeloid with postpolycythemia vera myelofi- leukemia (AML) brosis whose symptoms begin to recur Track 2 Activity and tolerability of the orally after 2 years of ruxolitinib therapy administered inhibitor of FLT3/AXL Track 7 Activity and toxicities of novel JAK gilteritinib (ASP2215) in AML inhibitors — pacritinib, momelotinib — Track 3 Recent developments in myelodys- in myeloproliferative disorders plastic syndromes (MDS) Track 8 Case discussion: A 65-year-old woman Track 4 Clinical experience with lenalidomide with hydroxyurea-resistant polycythemia for patients with MDS with and vera treated with ruxolitinib without del(5q) Track 9 Clinical experience with dosing and Track 5 Management of MDS in patients with continuation of ruxolitinib therapy disease progression on a hypomethyl- in patients experiencing treatment- ating agent associated cytopenias Select Excerpts from the Interview Tracks 1-2 DR LOVE: Would you discuss some of the most promising new agents and strate- gies under investigation for patients with acute myeloid leukemia (AML)? DR STEENSMA: One area of interest involves investigation of agents targeting FLT3 mutations, which are driver mutations commonly associated with AML. The 2 general classes of FLT3 mutations are internal tandem duplication (ITD) mutations and tyrosine kinase domain (TKD) mutations. Both constitutively activate the FLT3 receptor, but ITD mutations tend to be associated with more proliferative disease and a poorer prognosis, and they’re more common than TKD mutations. -
WO 2014/194127 Al 4 December 2014 (04.12.2014) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/194127 Al 4 December 2014 (04.12.2014) P O P C T (51) International Patent Classification: Songyuan; c/o Plexxikon Inc., 9 1 Bolivar Drive, Berkeley, C07D 213/75 (2006.01) C07D 487/04 (2006.01) California 94710 (US). SPEVAK, Wayne; c/o Plexxikon C07D 417/04 (2006.01) A61K 31/519 (2006.01) Inc., 9 1 Bolivar Drive, Berkeley, California 94710 (US). C07D 471/04 (2006.01) HABETS, Gaston G.; c/o Plexxikon Inc., 9 1 Bolivar Drive, Berkeley, California 94710 (US). BURTON, Betsy; (21) International Application Number: c/o Plexxikon Inc., 9 1 Bolivar Drive, Berkeley, California PCT/US20 14/040076 94710 (US). (22) International Filing Date: (74) Agents: TANNER, Lorna L. et al; Sheppard Mullin 29 May 2014 (29.05.2014) Richter & Hampton LLP, 379 Lytton Avenue, Palo Alto, (25) Filing Language: English California 94301-1479 (US). (26) Publication Language: English (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (30) Priority Data: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 61/829,190 30 May 2013 (30.05.2013) US BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (71) Applicant: PLEXXIKON INC. [US/US]; 1 Bolivar DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, Drive, Berkeley, California 94710 (US). HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (72) Inventors: ZHANG, Chao; c/o Plexxikon Inc., 9 1 Bolivar MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, Drive, Berkeley, California 94710 (US). -
The Molecular Mechanisms That Control Thrombopoiesis
The molecular mechanisms that control thrombopoiesis Kenneth Kaushansky J Clin Invest. 2005;115(12):3339-3347. https://doi.org/10.1172/JCI26674. Review Series Our understanding of thrombopoiesis — the formation of blood platelets — has improved greatly in the last decade, with the cloning and characterization of thrombopoietin, the primary regulator of this process. Thrombopoietin affects nearly all aspects of platelet production, from self-renewal and expansion of HSCs, through stimulation of the proliferation of megakaryocyte progenitor cells, to support of the maturation of these cells into platelet-producing cells. The molecular and cellular mechanisms through which thrombopoietin affects platelet production provide new insights into the interplay between intrinsic and extrinsic influences on hematopoiesis and highlight new opportunities to translate basic biology into clinical advances. Find the latest version: https://jci.me/26674/pdf Review series The molecular mechanisms that control thrombopoiesis Kenneth Kaushansky Department of Medicine, Division of Hematology/Oncology, University of California, San Diego, San Diego, California, USA. Our understanding of thrombopoiesis — the formation of blood platelets — has improved greatly in the last decade, with the cloning and characterization of thrombopoietin, the primary regulator of this process. Thrombopoietin affects nearly all aspects of platelet production, from self-renewal and expansion of HSCs, through stimulation of the proliferation of megakaryocyte progenitor cells, to support of the maturation of these cells into platelet-pro- ducing cells. The molecular and cellular mechanisms through which thrombopoietin affects platelet production provide new insights into the interplay between intrinsic and extrinsic influences on hematopoiesis and highlight new opportunities to translate basic biology into clinical advances. -
Targeting BCL-2 in Cancer: Advances, Challenges, and Perspectives
cancers Review Targeting BCL-2 in Cancer: Advances, Challenges, and Perspectives Shirin Hafezi 1 and Mohamed Rahmani 1,2,* 1 Research Institute of Medical & Health Sciences, University of Sharjah, P.O. Box 27272 Sharjah, United Arab Emirates; [email protected] 2 Department of Basic Medical Sciences, College of Medicine, University of Sharjah, P.O. Box 27272 Sharjah, United Arab Emirates * Correspondence: [email protected]; Tel.: +971-6505-7759 Simple Summary: Apoptosis, a programmed form of cell death, represents the main mechanism by which cells die. Such phenomenon is highly regulated by the BCL-2 family of proteins, which includes both pro-apoptotic and pro-survival proteins. The decision whether cells live or die is tightly controlled by a balance between these two classes of proteins. Notably, the pro-survival Bcl-2 proteins are frequently overexpressed in cancer cells dysregulating this balance in favor of survival and also rendering cells more resistant to therapeutic interventions. In this review, we outlined the most important steps in the development of targeting the BCL-2 survival proteins, which laid the ground for the discovery and the development of the selective BCL-2 inhibitor venetoclax as a therapeutic drug in hematological malignancies. The limitations and future directions are also discussed. Abstract: The major form of cell death in normal as well as malignant cells is apoptosis, which is a programmed process highly regulated by the BCL-2 family of proteins. This includes the antiapoptotic proteins (BCL-2, BCL-XL, MCL-1, BCLW, and BFL-1) and the proapoptotic proteins, which can be divided into two groups: the effectors (BAX, BAK, and BOK) and the BH3-only proteins Citation: Hafezi, S.; Rahmani, M. -
Discovery of Mcl-1 Inhibitors from Integrated High Throughput and Virtual Screening Received: 9 March 2018 Ahmed S
www.nature.com/scientificreports OPEN Discovery of Mcl-1 inhibitors from integrated high throughput and virtual screening Received: 9 March 2018 Ahmed S. A. Mady1,3, Chenzhong Liao1,8, Naval Bajwa1,9, Karson J. Kump1,4, Accepted: 5 June 2018 Fardokht A. Abulwerdi 1,3,10, Katherine L. Lev1, Lei Miao 1, Sierrah M. Grigsby1,2, Published: xx xx xxxx Andrej Perdih5, Jeanne A. Stuckey6, Yuhong Du7, Haian Fu 7 & Zaneta Nikolovska-Coleska1,2,3,4 Protein-protein interactions (PPIs) represent important and promising therapeutic targets that are associated with the regulation of various molecular pathways, particularly in cancer. Although they were once considered “undruggable,” the recent advances in screening strategies, structure-based design, and elucidating the nature of hot spots on PPI interfaces, have led to the discovery and development of successful small-molecule inhibitors. In this report, we are describing an integrated high-throughput and computational screening approach to enable the discovery of small-molecule PPI inhibitors of the anti- apoptotic protein, Mcl-1. Applying this strategy, followed by biochemical, biophysical, and biological characterization, nineteen new chemical scafolds were discovered and validated as Mcl-1 inhibitors. A novel series of Mcl-1 inhibitors was designed and synthesized based on the identifed difuryl-triazine core scafold and structure-activity studies were undertaken to improve the binding afnity to Mcl- 1. Compounds with improved in vitro binding potency demonstrated on-target activity in cell-based studies. The obtained results demonstrate that structure-based analysis complements the experimental high-throughput screening in identifying novel PPI inhibitor scafolds and guides follow-up medicinal chemistry eforts. -
Overview of Current Targeted Anti-Cancer Drugs for Therapy in Onco-Hematology
medicina Review Overview of Current Targeted Anti-Cancer Drugs for Therapy in Onco-Hematology Stefania Crisci 1 , Filomena Amitrano 2, Mariangela Saggese 1, Tommaso Muto 3, Sabrina Sarno 4, Sara Mele 1, Pasquale Vitale 1, Giuseppina Ronga 1, Massimiliano Berretta 5 and Raffaele Di Francia 6,* 1 Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione “G. Pascale” IRCCS, 80131 Naples, Italy 2 Gruppo Oncologico Ricercatori Italiano GORI ONLUS, 33100 Pordenone, Italy 3 Hematology and Cellular Immunology (Clinical Biochemistry) A.O. dei Colli Monaldi Hospital, 80131 Naples, Italy 4 Anatomia Patologica, Istituto Nazionale Tumori, Fondazione “G. Pascale” IRCCS, 80131 Naples, Italy 5 Department of Medical Oncology, CRO National Cancer Institute, 33081 Aviano (PN), Italy 6 Italian Association of Pharmacogenomics and Molecular Diagnostics (IAPharmagen), 60125 Ancona, Italy * Correspondence: [email protected] Received: 12 May 2019; Accepted: 24 July 2019; Published: 28 July 2019 Abstract: The upgraded knowledge of tumor biology and microenviroment provides information on differences in neoplastic and normal cells. Thus, the need to target these differences led to the development of novel molecules (targeted therapy) active against the neoplastic cells’ inner workings. There are several types of targeted agents, including Small Molecules Inhibitors (SMIs), monoclonal antibodies (mAbs), interfering RNA (iRNA) molecules and microRNA. In the clinical practice, these new medicines generate a multilayered step in pharmacokinetics (PK), which encompasses a broad individual PK variability, and unpredictable outcomes according to the pharmacogenetics (PG) profile of the patient (e.g., cytochrome P450 enzyme), and to patient characteristics such as adherence to treatment and environmental factors. This review focuses on the use of targeted agents in-human phase I/II/III clinical trials in cancer-hematology. -
Eltrombopag – an Oral Thrombopoietin Agonist
European Review for Medical and Pharmacological Sciences 2012; 16: 743-746 Eltrombopag – an oral thrombopoietin agonist V. SHARMA, H. RANDHAWA, A. SHARMA, S. AGGARWAL Department of Medicine, University College of Medical Sciences, New Delhi (India) Abstract. – The therapy for immune of the thrombocytopenia. The two major throm- thrombocytopenic purpura (ITP) has evolved in bopoietin agonists which have a role in the man- the recent past. In certain cases therapy for ITP agement of the thrombocytopenia, especially the remains inadequate. Thrombopoietin receptor agonists are the latest addition to the armamen- immune thrombocytopenic purpura (ITP), in- 2 tarium to manage the thrombocytopenia. While clude romiplostim and eltrombopag . Romi- romiplostim was the first second generation plostim is a peptibody administered as once a thrombopoietin agonist to become available, el- week subcutaneous injection in non-responding trombopag is particularly attractive as it is an or relapsing ITP. Eltrombopag is a non peptide orally bioavailable agent. This review focuses on thrombopoietin agonist which has also been the use, safety and efficacy of eltrombopag in various clinical conditions. found to be efficacious in similar conditions. The fact that it is orally bioavailable makes eltrom- Key Words: bopag a more attractive option. Thrombopoietin agonists, Eltrombopag, Immune Chemistry and Structure thrombocytopenic purpura. Eltrombopag, a non-peptide synthetic throm- bopoietin receptor agonist, is a biaryl hydrazone with a molecular weight of 564.6 Dalton. Mechanism of Action Introduction Thrombopoietin, a cytokine produced in the liver, acts on the thrombopoietin receptors Thrombocytopenia (platelet count <100.000/μL) (TPO-R) which are present on the megakary- can accompany a multitude of conditions including ocytes.