(ITP)—Focus on Thrombopoietin Receptor Agonists

Total Page:16

File Type:pdf, Size:1020Kb

(ITP)—Focus on Thrombopoietin Receptor Agonists 21 Review Article Page 1 of 21 The treatment of immune thrombocytopenia (ITP)—focus on thrombopoietin receptor agonists David J. Kuter Hematology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA Correspondence to: Professor David J. Kuter, MD, DPhil. Hematology Division, Massachusetts General Hospital, Ste. 118, Room 110, Zero Emerson Place, Boston, MA 02114, USA. Email: [email protected]. Abstract: Immune thrombocytopenia (ITP) is an autoimmune disease characterized by increased platelet destruction along with reduced platelet production. All treatments attempt either to reduce the rate of platelet production or increase the rate of platelet production. There is no known cure but most patients attain a hemostatic platelet count. New treatment guidelines have supported a shift from corticosteroids and splenectomy to newer medical treatments that mitigate the thrombocytopenia and avoid splenectomy. The thrombopoietin receptor agonists (TPO-RA), romiplostim, eltrombopag, and avatrombopag, have markedly altered the treatment of ITP. Response rates of 80–90% are routinely obtained and responses are usually maintained with continued therapy. Data shows that TPO-RA are just as effective in early ITP as in chronic ITP and current guidelines encourage their use as early as 3 months into the disease course, sometimes even earlier. TPO-RA do not need to be continued forever; about a third of patients in the first year and about another third after two years have a remission. Whether TPO-RA affect the ITP pathophysiology and directly cause remission remains unclear. This review provides a personal overview of the diagnosis and treatment of ITP with a focus on the mechanism of action of TPO-RA, their place in the treatment algorithm, unique aspects of their clinical use, adverse effects, and options should they fail. Keywords: Immune thrombocytopenia (ITP); thrombopoietin; rituximab; fostamatinib; splenectomy Received: 17 January 2021; Accepted: 24 February 2021; Published: 31 March 2021. doi: 10.21037/aob-21-23 View this article at: http://dx.doi.org/10.21037/aob-21-23 Introduction Although 18% of patients with platelet counts under 10,000/μL are asymptomatic (5), bleeding is the main risk in While thrombocytopenia is a common consultation for patients with ITP. Patients with ITP often tolerate a degree the hematologist, immune thrombocytopenia (ITP) of thrombocytopenia which in other situations will result still remains a reasonably uncommon explanation. ITP in major bleeding. This probably reflects the young, large, has been defined as an isolated platelet count less than hyperfunctional platelets which is reflected in the normal 100,000/μL with no other explanation (1). It affects 2–4 bleeding time seen in ITP patients (6). per 100,000 individuals annually with an overall prevalence While bleeding remains the main concern in patients of about 10/100,000 individuals (2,3). It is probably much with ITP, two other clinical aspects of ITP warrant more common than we realize in that many patients with attention. The first is that many patients with ITP have modest thrombocytopenia of 50,000–100,000/μL often go a reduced health-related quality of life (HRQoL). While unreported and certainly many individuals with platelet this is often hard to assess and quantify, there is a clear counts between 100,000/μL and the standard normal of relationship between thrombocytopenia and fatigue (7,8). 150,000/μL have some autoimmune pathogenesis despite Although the underlying cause remains unclear, it has been the finding that only 6.9% (95% CI: 4.0–12.0%) progress suggested that circulating cytokines may be involved (9). to ITP (4). Treatment of ITP improves the patient’s HRQoL including © Annals of Blood. All rights reserved. Ann Blood 2021;6:7 | http://dx.doi.org/10.21037/aob-21-23 Page 2 of 21 Annals of Blood, 2021 fatigue with thrombopoietin receptor agonists (TPO-RA) (IC) Group Report (23) in this review. In reference to probably having a greater magnitude of effect (7,10). The these guidelines, it is important to note two things. The second important aspect is that ITP is also a prothrombotic first is that guidelines are not mandates for therapy but as disorder, like all other disorders of increased platelet described by the WHO are “intended to assist providers turnover (11-14). In a well-designed Danish registry study, and recipients of healthcare and other stakeholders to 391 chronic ITP patients were compared with a matched make informed decisions. A recommendation provides reference cohort of 3,128 patients without ITP (13). Overall information about what policymakers, healthcare providers rates of venous thromboembolism were 5.32 (95% CI: or patients should do” (26). The second is that despite 2.86–9.89) per 1,000 patient years for ITP patients versus the claim to be “evidence-based”, they are almost entirely 2.04 (95% CI: 1.45–2.87) per 1,000 years for the controls, expert opinion. For example, all 11 adult recommendations a 2.65 (95% CI: 1.27–5.50) fold increase; thromboses of the ASH Guidelines are “very low certainty of the occurred even at very low platelet counts. Sarpatwari (14) evidence” and only 2 recommendations were “strong” compared 1,070 ITP patients with 4,280 patients without (patients with platelet counts over 30,000/μL rarely ITP (matched for age, gender, primary care practice) in a require therapy, corticosteroids should not be used more UK General Practice Research Database and found that than 6 weeks). There are simply not enough randomized after a median of 47.6 months (range, 3.0–192.5 months) of controlled trials comparing head-to-head different follow-up ITP patients had adjusted hazard ratios of 1.58 treatment algorithms for ITP. (95% CI: 1.01–2.48), 1.37 (95% CI: 0.94–2.00), and 1.41 The purpose of this review is to help understand the (95% CI: 1.04–1.91) for venous, arterial, and combined diagnosis and treatment of adult ITP recognizing the (arterial and venous) thromboembolic events, respectively, limitations of these guidelines and available clinical data. compared with controls. The event rates increased as the In so doing, I will assess the available evidence and explain platelet count decreased. The pathophysiology of the how I apply it in my clinical practice in over 2,000 adult thrombosis remains unclear. ITP patients. In using the personal pronoun, it should be The clinical course of ITP is often variable but a staging recognized that some of what I relate below is my own scheme for the disease has been created wherein the first personal clinical practice which may not be fully “evidence- 3 months are considered newly diagnosed ITP, months ≥3– based”. 12 are considered persistent ITP and after 12 months the disease is considered chronic ITP (1). This staging scheme The pathophysiology of ITP is convenient for disease classification and may have some relationship to the underlying pathophysiology. In general, The pathophysiology of ITP has undergone much adult ITP patients have a very low rate of spontaneous investigation in recent decades and is a disease of both remission without therapy estimated to be between 0.9% (15) increased platelet destruction as well as a disease of and 10.3% (9/87) (16) whereas patients in the newly inappropriately low platelet production. The historical diagnosed and persistent phase may have a remission rate studies of Harrington (27) and others (28-31) showed that with therapy of up to 32% (17). Recent data also show the infusion of plasma or blood products from patients that epitope spreading may be occurring as the disease with ITP caused a decline in platelet counts in healthy progresses (18). There remains much interest as to whether recipients with eventual identification that antiplatelet more aggressive therapy with rituximab (19), recombinant antibodies played a major role in this disorder (28,32,33). thrombopoietin (20) or mycophenolate (MMF) (21) in the Indeed, modern methods detected antiplatelet antibody acute and persistent phase might mitigate the emergence of on the surface of 280 (69%) of 360 ITP patient platelet more chronic disease. samples. Multiple antibodies against multiple antigens were With the introduction of TPO–RA, rituximab and common: of these 280, 145 (52%) had antibodies against all fostamatinib, therapeutic options for treating ITP have 3 major platelet antigens, GPIIb/IIIa, GPIb/IX, and GPIa/ evolved from our prior standard care of corticosteroids IIa; few had antibodies only against GPIb/IX (3.9%) or and splenectomy. These have culminated in a number of GPIa/IIa (0%) (Figure 1). new guidelines for treating ITP (22-25). In particular, I Other studies have shown that platelet production is will rely upon the recent American Society of Hematology inhibited to various degrees in patients with ITP. Platelet (ASH) Guidelines (22) and the International Consensus kinetic studies have shown a normal or reduced rate of © Annals of Blood. All rights reserved. Ann Blood 2021;6:7 | http://dx.doi.org/10.21037/aob-21-23 Annals of Blood, 2021 Page 3 of 21 A Anti-GPIa/IIa N=0 Anti-GPIb/IX N=0 N=11 N=145 B N=0 N=76 Anti-GPIIb/IIIa N=48 C Figure 1 Antiplatelet antibody testing in ITP patients. In 260 ITP patients, 360 assays were performed. In 80 patients (53 in clinical remission; 27 with active disease) all antibody tests were negative (18). platelet production from megakaryocytes (34,35). Indeed, the plasma from 12 of 18 ITP patients inhibited in vitro D megakaryocyte growth by 26–95% (36). T cells may play a role directly in attacking platelets or megakaryocytes and alterations in T regulatory lymphocytes may also open a window for loss of immune tolerance (37). Megakaryocytes in the bone marrow have been shown to undergo apoptosis (38).
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • How I Treat Myelofibrosis
    From www.bloodjournal.org by guest on October 7, 2014. For personal use only. Prepublished online September 16, 2014; doi:10.1182/blood-2014-07-575373 How I treat myelofibrosis Francisco Cervantes Information about reproducing this article in parts or in its entirety may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests Information about ordering reprints may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#reprints Information about subscriptions and ASH membership may be found online at: http://www.bloodjournal.org/site/subscriptions/index.xhtml Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include digital object identifier (DOIs) and date of initial publication. Blood (print ISSN 0006-4971, online ISSN 1528-0020), is published weekly by the American Society of Hematology, 2021 L St, NW, Suite 900, Washington DC 20036. Copyright 2011 by The American Society of Hematology; all rights reserved. From www.bloodjournal.org by guest on October 7, 2014. For personal use only. Blood First Edition Paper, prepublished online September 16, 2014; DOI 10.1182/blood-2014-07-575373 How I treat myelofibrosis By Francisco Cervantes, MD, PhD, Hematology Department, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain Correspondence: Francisco Cervantes, MD, Hematology Department, Hospital Clínic, Villarroel 170, 08036 Barcelona, Spain. Phone: +34 932275428.
    [Show full text]
  • Thrombopoietin Supports the Continuous Growth of Cytokine-Dependent Human Leukemia Cell Lines HG Drexler, M Zaborski and H Quentmeier
    Leukemia (1997) 11, 541–551 1997 Stockton Press All rights reserved 0887-6924/97 $12.00 Thrombopoietin supports the continuous growth of cytokine-dependent human leukemia cell lines HG Drexler, M Zaborski and H Quentmeier DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Cultures, Mascheroder Weg 1 B, D-38124 Braunschweig, Germany Hematopoiesis is a complex process of regulated cellular pro- nate membrane receptor. This binding triggers a series of intra- liferation and differentiation from the primitive stem cells to the cellular mediators involved in the growth factor’s signaling final fully differentiated cell. The long and extensive search for a factor specifically regulating megakaryocytopoiesis led to the pathways. Recently, a novel hematopoietic growth factor, cloning of a hormone, here called thrombopoietin (TPO), that termed thrombopoietin (TPO), was cloned and shown to be a specifically promotes proliferation and differentiation of the megakaryocytic lineage-associated growth and differentiation megakaryocytic lineage. The availability of recombinant TPO factor. Binding of TPO to its receptor, c-MPL, mediates plei- and its imminent clinical use has made a more detailed under- otropic effects on megakaryocyte development in vitro and in standing of its effects on hematopoietic cells more urgent. Nor- vivo. TPO is clearly the primary regulator of this cell lineage mal megakaryocyto- and thrombopoiesis occurs predomi- nantly in the bone marrow, a difficult organ to study in situ, acting at all levels of megakaryocytopoiesis and thrombopo- particularly in humans, due to the low numbers of megakary- iesis (reviewed in Ref. 1). ocytic progenitors and the consequent difficult isolation as The availability of TPO will be of considerable clinical pure populations.
    [Show full text]
  • CD137 Microbead Kit CD137 Microbead + Cells
    CD137 MicroBead Kit human Order no. 130-093-476 Contents 1.2 Background information 1. Description The activation-induced antigen CD137 (4-1BB) is a 30 kDa glycoprotein of the tumor necrosis factor (TNF) receptor 1.1 Principle of the MACS® Separation + + superfamily. It is mainly expressed on activated CD4 and CD8 1.2 Background information T cells, activated B cells, and natural killer cells, but can also be 1.3 Applications found on resting monocytes and dendritic cells. As a costimulatory molecule, CD137 is involved in the activation 1.4 Reagent and instrument requirements and survival of CD4, CD8, and NK cells. Its engagement enhances 2. Protocol expansion of T cells and activates them to secrete cytokines. CD137 has been described to be a suitable marker for antigen- 2.1 Sample preparation specific activation of human CD8+ T cells, as CD137 is not expressed 2.2 Magnetic labeling on resting CD8+ T cells and its expression is reliably induced after 2.3 Magnetic separation 24 hours of stimulation.¹,² 3. Example of a separation using the CD137 MicroBead Kit 1.3 Applications 4. References ● Enrichment of CD137+ T cells for phenotypical and functional 5. Appendix characterization. ● Enrichment of activated antigen-specific T cells after antigen- Warnings specific stimulation. Reagents contain sodium azide. Under acidic conditions sodium 1.4 Reagent and instrument requirements azide yields hydrazoic acid, which is extremely toxic. Azide ● compounds should be diluted with running water before discarding. Buffer: Prepare a solution containing phosphate-buffered These precautions are recommended to avoid deposits in plumbing saline (PBS), pH 7.2, 0.5% bovine serum albumin (BSA), where explosive conditions may develop.
    [Show full text]
  • Side Effects of Molecular-Targeted Therapies in Solid Cancers : a New Challenge in Cancer Therapy Management
    Side effects of molecular-targeted therapies in solid cancers : a new challenge in cancer therapy management Ahmad Awada, MD, PhD Medical Oncology Clinic Institut Jules Bordet Université Libre de Bruxelles (U.L.B.) Brussels, Belgium PLAN OF THE LECTURE 1. Concept 2. Achievements on the management of side effects 3. Remaining challenges 4. New challenges with the development of molecular-targeted therapies 5. Conclusions Reducing the cancer- related problems and the side effects of the SUPPORTIVE CARE = medicine administered to treat the disease SIDE EFFECTS OF CANCER THERAPY: ACHIEVEMENTS Side effect Preventive & Therapeutic intervention • Febrile neutropenia • G-CSF, Anti-infectives • Anemia • Epoetine •Mucositis •Laser therapy, Palifermin • Nausea & Vomiting • 5-HT3 and neurokin-1-receptor antagonists •Thromboembolic •LMW Heparin events • Cardiomyopathy • Liposomal formulations, Dexrazonane (anthracyclines) MANAGEMENT OF SIDE EFFECTS : REMAINING CHALLENGES • Alopecia • Thrombocytopenia ( ! Promising Thrombopoietin- mimetics are under investigation) • Asthenia MOLECULAR TARGETS AND THERAPIES (1) Drug Class Mechanism of action Main tumor indication Gefitinib* Small molecule TK inhibitor of EGFR NSCLC (Iressa) Erlotinib* Small molecule TK inhibitor of EGFR NSCLC (Tarceva) Cetuximab* Monoclonal Antibody Blocks EGFR Colorectal, Head & (Erbitux) Neck, NSCLC Monoclonal Panitumumab* Antibody Blocks EGFR Colorectal (Vectibix) * Investigational in BC TK : tyrosine kinase; EGFR : epidermal growth factor receptor MOLECULAR TARGETS AND THERAPIES
    [Show full text]
  • DOPTELET (Avatrombopag) RATIONALE for INCLUSION IN
    DOPTELET (avatrombopag) RATIONALE FOR INCLUSION IN PA PROGRAM Background Doptelet is a thrombopoietin (TPO) receptor agonist used to increase platelet counts. Doptelet (avatrombopag) is an orally bioavailable, small molecule TPO receptor agonist that stimulates proliferation and differentiation of megakaryocytes from bone marrow progenitor cells resulting in an increased production of platelets. Doptelet does not compete with TPO for binding to the TPO receptor and has an additive effect with TPO on platelet production (1). Regulatory Status FDA approved indication: Doptelet is a thrombopoietin receptor agonist indicated for the treatment of: (1) 1. Thrombocytopenia in adult patients with chronic liver disease who are scheduled to undergo a procedure. 2. Thrombocytopenia in adult patients with chronic immune thrombocytopenia who have had an insufficient response to a previous treatment. Doptelet should not be administered to patients with chronic liver disease in an attempt to normalize platelet counts (1). Doptelet is a thrombopoietin (TPO) receptor agonist and TPO receptor agonists have been associated with thrombotic and thromboembolic complications in patients with chronic liver disease. A Doppler ultrasound is a noninvasive test that can be used to estimate the blood flow through blood vessels by bouncing high-frequency sound waves (ultrasound) off circulating red blood cells. A Doppler ultrasound may help determine if Doptelet therapy is appropriate for a patient (1-2). The safety and effectiveness of Doptelet in pediatric patients have not been established (1). Summary Doptelet is a thrombopoietin (TPO) receptor agonist used to increase platelet counts. Doptelet (avatrombopag) is an orally bioavailable, small molecule TPO receptor agonist that stimulates proliferation and differentiation of megakaryocytes from bone marrow progenitor cells resulting in an increased production of platelets.
    [Show full text]
  • Insights Into the Cellular Mechanisms of Erythropoietin-Thrombopoietin Synergy
    Papayannopoulou et al.: Epo and Tpo Synergy Experimental Hematology 24:660-669 (19961 661 @ 1996 International Society for Experimental Hematology Rapid Communication ulation with fluorescence microscopy. Purified subsets were grown in plasma clot and methylcellulose clonal cultures and in suspension cultures using the combinations of cytokines Insights into the cellular mechanisms cadaveric bone marrow cells obtained from Northwest described in the text. Single cells from the different subsets Center, Puget Sound Blood Bank (Seattle, WA), were were. also deposited (by FACS) on 96-well plates containing of erythropoietin-thrombopoietin synergy washed, and incubated overnight in IMDM with 10% medmm and cytokines. Clonal growth from single-cell wells calf serum on tissue culture plates to remove adherent were double-labeled with antiglycophorin A-PE and anti­ Thalia Papayannopoulou, Martha Brice, Denise Farrer, Kenneth Kaushansky From the nonadherent cells, CD34+ cells were isolated CD41- FITC between days 10 and 19. direct immunoadherence on anti-CD34 monoclonal anti­ University of Washington, Department of Medicine, Seattle, WA (mAb)-coated plates, as previously described [15]. Purity Immunocytochemistry Offprint requests to: Thalia Papayannopoulou, MD, DrSci, University of Washington, isolated CD34+ cells ranged from 80 to 96% by this For immunocytochemistry, either plasma clot or cytospin cell Division of Hematology, Box 357710, Seattle, WA 98195-7710 od. Peripheral blood CD34 + cells from granulocyte preparations were used. These were fixed at days 6-7 and (Received 24 January 1996; revised 14 February 1996; accepted 16 February 1996) ulating factor (G-CSF)-mobilized normal donors 12-13 with pH 6.5 Histochoice (Amresco, Solon, OH) and provided by Dr.
    [Show full text]
  • Antagonist Antibodies Against Various Forms of BAFF: Trimer, 60-Mer, and Membrane-Bound S
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2016/07/19/jpet.116.236075.DC1 1521-0103/359/1/37–44$25.00 http://dx.doi.org/10.1124/jpet.116.236075 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 359:37–44, October 2016 Copyright ª 2016 by The American Society for Pharmacology and Experimental Therapeutics Unexpected Potency Differences between B-Cell–Activating Factor (BAFF) Antagonist Antibodies against Various Forms of BAFF: Trimer, 60-Mer, and Membrane-Bound s Amy M. Nicoletti, Cynthia Hess Kenny, Ashraf M. Khalil, Qi Pan, Kerry L. M. Ralph, Julie Ritchie, Sathyadevi Venkataramani, David H. Presky, Scott M. DeWire, and Scott R. Brodeur Immune Modulation and Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut Received June 20, 2016; accepted July 18, 2016 Downloaded from ABSTRACT Therapeutic agents antagonizing B-cell–activating factor/B- human B-cell proliferation assay and in nuclear factor kB reporter lymphocyte stimulator (BAFF/BLyS) are currently in clinical assay systems in Chinese hamster ovary cells expressing BAFF development for autoimmune diseases; belimumab is the first receptors and transmembrane activator and calcium-modulator Food and Drug Administration–approved drug in more than and cyclophilin ligand interactor (TACI). In contrast to the mouse jpet.aspetjournals.org 50 years for the treatment of lupus. As a member of the tumor system, we find that BAFF trimer activates the human TACI necrosis factor superfamily, BAFF promotes B-cell survival and receptor. Further, we profiled the activities of two clinically ad- homeostasis and is overexpressed in patients with systemic vanced BAFF antagonist antibodies, belimumab and tabalumab.
    [Show full text]
  • TACI:Fc Scavenging B Cell Activating Factor (BAFF) Alleviates Ovalbumin-Induced Bronchial Asthma in Mice
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 39, No. 3, 343-352, June 2007 TACI:Fc scavenging B cell activating factor (BAFF) alleviates ovalbumin-induced bronchial asthma in mice 1,2,3 2 Eun-Yi Moon and Sook-Kyung Ryu the percentage of non-lymphoid cells and no changes were detected in lymphoid cell population. 1 Department of Bioscience and Biotechnology Hypodiploid cell formation in BALF was decreased Sejong University by OVA-challenge but it was recovered by TACI:Fc Seoul 143-747, Korea treatment. Collectively, data suggest that asthmatic 2 Laboratory of Human Genomics symptom could be alleviated by scavenging BAFF Korea Research Institute of Bioscience and Biotechnology (KRIBB) and then BAFF could be a novel target for the Daejeon 305-806, Korea develpoment of anti-asthmatic agents. 3 Corresponding author: Tel, 82-2-3408-3768; Fax, 82-2-466-8768; E-mail, [email protected] Keywords: asthma; B-cell activating factor; ovalbu- and [email protected] min; transmembrane activator and CAML interactor protein Accepted 28 March 2007 Introduction Abbreviations: BAFF, B cell activating factor belonging to TNF- family; BALF, bronchoalveolar lavage fluid; OVA, ovalbumin; PAS, Mature B cell generation and maintenance are regu- periodic acid-Schiff; Prx, peroxiredoxin; TACI, transmembrane lated by B-cell activating factor (BAFF). BAFF is pro- activator and calcium modulator and cyclophilin ligand interactor duced by macrophages or dendritic cells upon stim- ulation with LPS or IFN- . BAFF belongs to the TNF family. Its biological role is mediated by the specific Abstract receptors, B-cell maturation antigen (BCMA), trans- membrane activator and calcium modulator and cy- Asthma was induced by the sensitization and chal- clophilin ligand interactor (TACI) and BAFF receptor, lenge with ovalbumin (OVA) in mice.
    [Show full text]
  • Flow Reagents Single Color Antibodies CD Chart
    CD CHART CD N° Alternative Name CD N° Alternative Name CD N° Alternative Name Beckman Coulter Clone Beckman Coulter Clone Beckman Coulter Clone T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells CD1a T6, R4, HTA1 Act p n n p n n S l CD99 MIC2 gene product, E2 p p p CD223 LAG-3 (Lymphocyte activation gene 3) Act n Act p n CD1b R1 Act p n n p n n S CD99R restricted CD99 p p CD224 GGT (γ-glutamyl transferase) p p p p p p CD1c R7, M241 Act S n n p n n S l CD100 SEMA4D (semaphorin 4D) p Low p p p n n CD225 Leu13, interferon induced transmembrane protein 1 (IFITM1). p p p p p CD1d R3 Act S n n Low n n S Intest CD101 V7, P126 Act n p n p n n p CD226 DNAM-1, PTA-1 Act n Act Act Act n p n CD1e R2 n n n n S CD102 ICAM-2 (intercellular adhesion molecule-2) p p n p Folli p CD227 MUC1, mucin 1, episialin, PUM, PEM, EMA, DF3, H23 Act p CD2 T11; Tp50; sheep red blood cell (SRBC) receptor; LFA-2 p S n p n n l CD103 HML-1 (human mucosal lymphocytes antigen 1), integrin aE chain S n n n n n n n l CD228 Melanotransferrin (MT), p97 p p CD3 T3, CD3 complex p n n n n n n n n n l CD104 integrin b4 chain; TSP-1180 n n n n n n n p p CD229 Ly9, T-lymphocyte surface antigen p p n p n
    [Show full text]
  • Blood Modifier Agents Policy #: Rx.01.208
    Pharmacy Policy Bulletin Title: Blood Modifier Agents Policy #: Rx.01.208 Application of pharmacy policy is determined by benefits and contracts. Benefits may vary based on product line, group, or contract. Some medications may be subject to precertification, age, quantity, or formulary restrictions (ie limits on non-preferred drugs). Individual member benefits must be verified. This pharmacy policy document describes the status of pharmaceutical information and/or technology at the time the document was developed. Since that time, new information relating to drug efficacy, interactions, contraindications, dosage, administration routes, safety, or FDA approval may have changed. This Pharmacy Policy will be regularly updated as scientific and medical literature becomes available. This information may include new FDA-approved indications, withdrawals, or other FDA alerts. This type of information is relevant not only when considering whether this policy should be updated, but also when applying it to current requests for coverage. Members are advised to use participating pharmacies in order to receive the highest level of benefits. Intent: The intent of this policy is to communicate the medical necessity criteria for eltrombopag olamine (Promacta®), fostamatinib disodium (Tavalisse™), avatrombopag (Doptelet®), lusutrombopag (Mulpleta®) as provided under the member's prescription drug benefit. Description: Idiopathic thrombocytopenia purpura (ITP): ITP is an immune disorder in which the blood doesn't clot normally. ITP can cause excessive bruising and bleeding and can be characterized as an unusually low level of platelets, or thrombocytes, in the blood results in ITP. Thrombocytopenia in patients with hepatitis C: Thrombocytopenia can occur in patients with chronic hepatitis C virus (HCV) infection.
    [Show full text]
  • Multiple Technology Appraisal Avatrombopag and Lusutrombopag
    Multiple Technology Appraisal Avatrombopag and lusutrombopag for treating thrombocytopenia in people with chronic liver disease needing an elective procedure [ID1520] Committee papers © National Institute for Health and Care Excellence 2019. All rights reserved. See Notice of Rights. The content in this publication is owned by multiple parties and may not be re-used without the permission of the relevant copyright owner. NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE MULTIPLE TECHNOLOGY APPRAISAL Avatrombopag and lusutrombopag for treating thrombocytopenia in people with chronic liver disease needing an elective procedure [ID1520] Contents: 1 Pre-meeting briefing 2 Assessment Report prepared by Kleijnen Systematic Reviews 3 Consultee and commentator comments on the Assessment Report from: • Shionogi 4 Addendum to the Assessment Report from Kleijnen Systematic Reviews 5 Company submission(s) from: • Dova • Shionogi 6 Clarification questions from AG: • Questions to Shionogi • Clarification responses from Shionogi • Questions to Dova • Clarification responses from Dova 7 Professional group, patient group and NHS organisation submissions from: • British Association for the Study of the Liver (BASL) The Royal College of Physicians supported the BASL submission • British Society of Gastroenterology (BSG) 8 Expert personal statements from: • Vanessa Hebditch – patient expert, nominated by the British Liver Trust • Dr Vickie McDonald – clinical expert, nominated by British Society for Haematology • Dr Debbie Shawcross – clinical expert, nominated by Shionogi © National Institute for Health and Care Excellence 2019. All rights reserved. See Notice of Rights. The content in this publication is owned by multiple parties and may not be re-used without the permission of the relevant copyright owner. MTA: avatrombopag and lusutrombopag for treating thrombocytopenia in people with chronic liver disease needing an elective procedure Pre-meeting briefing © NICE 2019.
    [Show full text]