Identifying the Druggable Interactome of EWS-FLI1 Reveals MCL-1 Dependent Differential Sensitivities of Ewing Sarcoma Cells to Apoptosis Inducers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How I Treat Myelofibrosis
From www.bloodjournal.org by guest on October 7, 2014. For personal use only. Prepublished online September 16, 2014; doi:10.1182/blood-2014-07-575373 How I treat myelofibrosis Francisco Cervantes Information about reproducing this article in parts or in its entirety may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests Information about ordering reprints may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#reprints Information about subscriptions and ASH membership may be found online at: http://www.bloodjournal.org/site/subscriptions/index.xhtml Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include digital object identifier (DOIs) and date of initial publication. Blood (print ISSN 0006-4971, online ISSN 1528-0020), is published weekly by the American Society of Hematology, 2021 L St, NW, Suite 900, Washington DC 20036. Copyright 2011 by The American Society of Hematology; all rights reserved. From www.bloodjournal.org by guest on October 7, 2014. For personal use only. Blood First Edition Paper, prepublished online September 16, 2014; DOI 10.1182/blood-2014-07-575373 How I treat myelofibrosis By Francisco Cervantes, MD, PhD, Hematology Department, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain Correspondence: Francisco Cervantes, MD, Hematology Department, Hospital Clínic, Villarroel 170, 08036 Barcelona, Spain. Phone: +34 932275428. -
Targeting BCL-2 in Cancer: Advances, Challenges, and Perspectives
cancers Review Targeting BCL-2 in Cancer: Advances, Challenges, and Perspectives Shirin Hafezi 1 and Mohamed Rahmani 1,2,* 1 Research Institute of Medical & Health Sciences, University of Sharjah, P.O. Box 27272 Sharjah, United Arab Emirates; [email protected] 2 Department of Basic Medical Sciences, College of Medicine, University of Sharjah, P.O. Box 27272 Sharjah, United Arab Emirates * Correspondence: [email protected]; Tel.: +971-6505-7759 Simple Summary: Apoptosis, a programmed form of cell death, represents the main mechanism by which cells die. Such phenomenon is highly regulated by the BCL-2 family of proteins, which includes both pro-apoptotic and pro-survival proteins. The decision whether cells live or die is tightly controlled by a balance between these two classes of proteins. Notably, the pro-survival Bcl-2 proteins are frequently overexpressed in cancer cells dysregulating this balance in favor of survival and also rendering cells more resistant to therapeutic interventions. In this review, we outlined the most important steps in the development of targeting the BCL-2 survival proteins, which laid the ground for the discovery and the development of the selective BCL-2 inhibitor venetoclax as a therapeutic drug in hematological malignancies. The limitations and future directions are also discussed. Abstract: The major form of cell death in normal as well as malignant cells is apoptosis, which is a programmed process highly regulated by the BCL-2 family of proteins. This includes the antiapoptotic proteins (BCL-2, BCL-XL, MCL-1, BCLW, and BFL-1) and the proapoptotic proteins, which can be divided into two groups: the effectors (BAX, BAK, and BOK) and the BH3-only proteins Citation: Hafezi, S.; Rahmani, M. -
Discovery of Mcl-1 Inhibitors from Integrated High Throughput and Virtual Screening Received: 9 March 2018 Ahmed S
www.nature.com/scientificreports OPEN Discovery of Mcl-1 inhibitors from integrated high throughput and virtual screening Received: 9 March 2018 Ahmed S. A. Mady1,3, Chenzhong Liao1,8, Naval Bajwa1,9, Karson J. Kump1,4, Accepted: 5 June 2018 Fardokht A. Abulwerdi 1,3,10, Katherine L. Lev1, Lei Miao 1, Sierrah M. Grigsby1,2, Published: xx xx xxxx Andrej Perdih5, Jeanne A. Stuckey6, Yuhong Du7, Haian Fu 7 & Zaneta Nikolovska-Coleska1,2,3,4 Protein-protein interactions (PPIs) represent important and promising therapeutic targets that are associated with the regulation of various molecular pathways, particularly in cancer. Although they were once considered “undruggable,” the recent advances in screening strategies, structure-based design, and elucidating the nature of hot spots on PPI interfaces, have led to the discovery and development of successful small-molecule inhibitors. In this report, we are describing an integrated high-throughput and computational screening approach to enable the discovery of small-molecule PPI inhibitors of the anti- apoptotic protein, Mcl-1. Applying this strategy, followed by biochemical, biophysical, and biological characterization, nineteen new chemical scafolds were discovered and validated as Mcl-1 inhibitors. A novel series of Mcl-1 inhibitors was designed and synthesized based on the identifed difuryl-triazine core scafold and structure-activity studies were undertaken to improve the binding afnity to Mcl- 1. Compounds with improved in vitro binding potency demonstrated on-target activity in cell-based studies. The obtained results demonstrate that structure-based analysis complements the experimental high-throughput screening in identifying novel PPI inhibitor scafolds and guides follow-up medicinal chemistry eforts. -
BCL-2 Inhibitors for Chronic Lymphocytic Leukemia
L al of euk rn em u i o a J Robak, J Leuk 2015, 3:3 Journal of Leukemia DOI: 10.4172/2329-6917.1000e114 ISSN: 2329-6917 Editorial Open access BCL-2 inhibitors for Chronic Lymphocytic Leukemia Tadeusz Robak* Department of Hematology, Medical University of Lodz, 93-510 Lodz, ul, Ciolkowskiego 2, Poland *Corresponding author: Tadeusz Robak, Department of Hematology, Medical University of Lodz, Copernicus Memorial Hospital, 93-510 Lodz, Ul. Ciolkowskiego 2, Poland, Tel: +48 42 6895191; E-mail: [email protected] Rec date: August 10, 2015; Acc date: August 12, 2015; Pub date: August 24, 2015 Copyright: © 2015 Robak T. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Editorial cyclophosphamide and rituximab (FCR) or bendamustin-rituximab (BR) regimens in refractory CLL are ongoing (NCT00868413). B-cell chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Europe and North America, with an annual Venetoclax ( GDC-0199, ABT-199, RG7601; Genentech, South San incidence of three to five cases per 100,000 [1]. The approval of Francisco, CA), is a first-in-class, orally bioavailable BCL-2 family rituximab-based immunochemotherapy represented a substantial protein inhibitor that binds with high affinity to BCL-2 and with lower therapeutic advance in CLL [2]. However, currently available therapies affinity to the other BCL-2 family proteins Bcl-xL, Bcl-w and Mcl-1 are only partially efficient, and there is an obvious need to develop [14]. -
2P2idb : Une Base De Données Dediée a La Druggabilité Des
Aix-Marseille Université CRCM, Inserm UMR 1068, CNRS UMR 7258 --------- a Centre de Recherche en Cancérologie de Marseille --------- Thèse de Doctorat Bioinformatique, Biochimie Structurale et Génomique 2P2I DB : UNE BASE DE DONNÉES DEDIÉE A LA DRUGGABILITÉ DES INTERACTIONS PROTÉINE-PROTÉINE Présentée par Raphaël BOURGEAS Sous la direction du Dr. Philippe ROCHE Devant le jury composé de : Pr. Pedro Coutinho - Président du Jury Dr. Maria Miteva - Rapporteur Dr. Françoise Ochsenbein - Rapporteur Dr. Philippe Roche - Directeur de thèse Soutenance le 20 décembre 2012 TABLE DES MATIERES TABLE DES MATIERES ............................................................................................. 5 REMERCIEMENTS ...................................................................................................... 8 LISTE DES ABREVIATIONS .................................................................................. 10 AVANT-PROPOS ...................................................................................................... 11 LISTE DES PUBLICATIONS ................................................................................... 13 INTRODUCTION ...................................................................................................... 15 PREAMBULE ............................................................................................................................. 15 I.1 LES PROTEINES , CIBLES MOLECULAIRES THERAPEUTIQUES ............................................. 15 I.2 LE XX EME SIECLE : L’ERE DES ENZYMES -
Phenotype-Based Drug Screening Reveals Association Between Venetoclax Response and Differentiation Stage in Acute Myeloid Leukemia
Acute Myeloid Leukemia SUPPLEMENTARY APPENDIX Phenotype-based drug screening reveals association between venetoclax response and differentiation stage in acute myeloid leukemia Heikki Kuusanmäki, 1,2 Aino-Maija Leppä, 1 Petri Pölönen, 3 Mika Kontro, 2 Olli Dufva, 2 Debashish Deb, 1 Bhagwan Yadav, 2 Oscar Brück, 2 Ashwini Kumar, 1 Hele Everaus, 4 Bjørn T. Gjertsen, 5 Merja Heinäniemi, 3 Kimmo Porkka, 2 Satu Mustjoki 2,6 and Caroline A. Heckman 1 1Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki; 2Hematology Research Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki; 3Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland; 4Department of Hematology and Oncology, University of Tartu, Tartu, Estonia; 5Centre for Cancer Biomarkers, De - partment of Clinical Science, University of Bergen, Bergen, Norway and 6Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland ©2020 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2018.214882 Received: December 17, 2018. Accepted: July 8, 2019. Pre-published: July 11, 2019. Correspondence: CAROLINE A. HECKMAN - [email protected] HEIKKI KUUSANMÄKI - [email protected] Supplemental Material Phenotype-based drug screening reveals an association between venetoclax response and differentiation stage in acute myeloid leukemia Authors: Heikki Kuusanmäki1, 2, Aino-Maija -
Selective Targeting of Antiapoptotic BCL-2 Proteins in Cancer
Received: 21 July 2017 Revised: 5 May 2018 Accepted: 12 May 2018 DOI: 10.1002/med.21516 REVIEW ARTICLE Selective targeting of antiapoptotic BCL-2 proteins in cancer Ahmet Can Timucin1,2 Huveyda Basaga2 Ozgur Kutuk3 1Faculty of Engineering and Natural Sciences, Department of Chemical and Biological Engineering, Uskudar University, Uskudar, Istanbul, Turkey 2Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Tuzla, Istanbul, Turkey 3Department of Medical Genetics, Adana Medical and Research Center, School of Medicine, Baskent University, Yuregir, Adana, Turkey Correspondence Ahmet Can Timucin, Faculty of Engineering and Abstract Natural Sciences, Department of Chemical and Circumvention of apoptotic machinery is one of the distinctive prop- Biological Engineering, Uskudar University, erties of carcinogenesis. Extensively established key effectors of Altunizade Mahallesi, Haluk Turksoy Sk. No:14, 34662 Uskudar, Istanbul, Turkey. such apoptotic bypass mechanisms, the antiapoptotic BCL-2 (apop- Email: [email protected]/ can- tosis regulator BCL-2) proteins, determine the response of cancer [email protected] cells to chemotherapeutics. Within this background, research and development of antiapoptotic BCL-2 inhibitors were considered to have a tremendous amount of potential toward the discovery of novel pharmacological modulators in cancer. In this review, mile- stone achievements in the development of selective antiapoptotic BCL-2 proteins inhibitors for BCL-2, BCL-XL (BCL-2-like protein 1), and MCL-1 (induced myeloid leukemia cell differentiation protein MCL-1) were summarized and their future implications were dis- cussed. In the first section, the design and development of BCL- 2/BCL-XL dual inhibitor navitoclax, as well as the recent advances and clinical experience with selective BCL-2 inhibitor venetoclax, were synopsized. -
A Method to Identify Physical, Chemical and Biological Factors That Trigger Bcl-Xl-Mediated Apoptosis
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.13.904714; this version posted January 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A method to identify physical, chemical and biological factors that trigger Bcl-xL-mediated apoptosis Aleksandr Ianevski 1, Evgeny Kulesskiy 2, Klara Krpina 1, Guofeng Lou 3, Yahyah Aman 3, Andrii Bugai 4, Koit Aasumets 5, Yevhen Akimov 2, Daria Bulanova 2, Kiira Gildemann 5, Albert F. Arutyunyan 6, Olga Yu. Susova 7, Alexei L. Zhuze 6, Valentyn Oksenych 1, Hilde Lysvand 1, Joachim M. Gerhold 5, Magnar Bjørås 1, Pål Johansen 8, Anders Waage 1, Caroline Heckman 2, Evandro F. Fang 3, Denis E. Kainov 1,2,5 * 1 Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7028, Norway. 2 Institute for Molecular Medicine Finland, FIMM, University of Helsinki 00014, Finland 3 Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog 1478, Norway 4 Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki 00014, Finland 5 Institute of Technology, University of Tartu, Tartu 50090, Estonia 6 Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Moscow 119991, Russia 7 Institute of Carcinogenesis, FSBI “N.N. Blokhin National Medical Research Center of Oncology”, The Ministry of Health of the Russian Federation, Moscow, Russia 8 Department of Dermatology, University of Zurich, Zurich, Switzerland * To whom correspondence should be addressed. -
WO 2017/223239 Al 28 December 2017 (28.12.2017) W !P O PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2017/223239 Al 28 December 2017 (28.12.2017) W !P O PCT (51) International Patent Classification: Published: A61K 31/445 (2006.01) C07D 471/04 (2006.01) — with international search report (Art. 21(3)) A61K 31/437 {2006.01) — before the expiration of the time limit for amending the (21) International Application Number: claims and to be republished in the event of receipt of PCT/US20 17/038609 amendments (Rule 48.2(h)) (22) International Filing Date: 2 1 June 2017 (21 .06.2017) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/352,820 2 1 June 2016 (21 .06.2016) 62/456,526 08 February 2017 (08.02.2017) (71) Applicant: X4 PHARMACEUTICALS, INC. [US/US]; 955 Massachusetts Avenue; 4th Floor, Cambridge, Massa chusetts 02139 (US). (72) Inventors: BOURQUE, Elyse Marie Josee; 3115 Racine Street, Unit 214, Bellingham, Washington 98226 (US). SK- ERLJ, Renato; 12 Crocker Circle, West Newton, Massa chusetts 02465 (US). (74) Agent: REID, Andrea L., C. et al; One International Place, 40th Floor, 100 Oliver Street, Boston, Massachusetts 021 10-2605 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. -
Rational Strategies for Combining Bcl-2 Inhibition with Targeted Drugs for Anti-Tumor Synergy
Schwab E, Chen JA, Huynh JC, Ji J, Arora M, Cho M, Kim EJ. Rational Strategies for Combining Bcl-2 Inhibition with Targeted Drugs for Anti-Tumor Synergy. J Cancer Treatment Diagn. (2019);3(4):7-13 Journal of Cancer Treatment and Diagnosis Review Article Open Access Rational Strategies for Combining Bcl-2 Inhibition with Targeted Drugs for Anti-Tumor Synergy Erin Schwab1, Justin A. Chen1, Jasmine C. Huynh1, Jingran Ji1, Mili Arora1, May Cho1, Edward J. Kim1* 1Department of Internal Medicine, University of California Davis, USA Article Info ABSTRACT Article Notes Based on the well-established importance of dysregulated apoptosis as a Received: August 28, 2019 hallmark of cancer, there has been robust interest in development of targeted Accepted: October 10, 2019 drugs to promote cancer cell apoptosis. A promising target for promoting *Correspondence: apoptosis is the Bcl-2 family of proteins. Bcl-2 family proteins are crucial in Dr. Edward J. Kim, UC Davis Comprehensive Cancer Center, maintaining balance between cell survival and death through regulation 4501 X Street, Suite 3016, Sacramento, CA 95817 USA; of apoptotic signaling pathways via pro-survival and pro-apoptotic family Telephone No: (916) 734-3772; Fax No: (916) 734-7946; Email: members. To date, there has been limited efficacy with Bcl-2 inhibition alone [email protected]. in clinical development with benefit restricted to hematologic malignancies. © 2019 Kim EJ. This article is distributed under the terms of However, combination approaches to inhibition of Bcl-2 and other oncogenic the Creative Commons Attribution 4.0 International License. signaling pathways have provided evidence for potential anti-tumor synergy. -
Obatoclax Kills Anaplastic Thyroid Cancer Cells by Inducing Lysosome Neutralization and Necrosis
www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 23 Obatoclax kills anaplastic thyroid cancer cells by inducing lysosome neutralization and necrosis Devora Champa1, Arturo Orlacchio1, Bindi Patel1, Michela Ranieri1, Anton A Shemetov2, Vladislav V Verkhusha2, Ana Maria Cuervo1, Antonio Di Cristofano1 1Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA 2Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA Correspondence to: Antonio Di Cristofano, email: [email protected] Keywords: thyroid cancer, lysosomes, necrosis, autophagy, obatoclax Received: March 16, 2016 Accepted: April 16, 2016 Published: April 30, 2016 ABSTRACT Poorly differentiated and anaplastic thyroid carcinomas are very aggressive, almost invariably lethal neoplasms for which no effective treatment exists. These tumors are intrinsically resistant to cell death, even when their driver oncogenic signaling pathways are inhibited. We have undertaken a detailed analysis, in mouse and human thyroid cancer cells, of the mechanism through which Obatoclax, a pan-inhibitor of the anti-apoptotic proteins of the BCL2 family, effectively reduces tumor growth in vitro and in vivo. We demonstrate that Obatoclax does not induce apoptosis, but rather necrosis of thyroid cancer cells, and that non-transformed thyroid cells are significantly less affected by this compound. Surprisingly, we show that Obatoclax rapidly localizes to the lysosomes and induces loss of acidification, block of lysosomal fusion with autophagic vacuoles, and subsequent lysosomal permeabilization. Notably, prior lysosome neutralization using different V-ATPase inhibitors partially protects cancer cells from the toxic effects of Obatoclax. Although inhibition of autophagy does not affect Obatoclax-induced cell death, selective down-regulation of ATG7, but not of ATG5, partially impairs Obatoclax effects, suggesting the existence of autophagy- independent functions for ATG7. -
Identification of Anisomycin, Prodigiosin and Obatoclax As Compounds with Broad-Spectrum Anti-Parasitic Activity
UCSF UC San Francisco Previously Published Works Title Identification of anisomycin, prodigiosin and obatoclax as compounds with broad-spectrum anti-parasitic activity. Permalink https://escholarship.org/uc/item/9qz9r8pc Journal PLoS neglected tropical diseases, 14(3) ISSN 1935-2727 Authors Ehrenkaufer, Gretchen Li, Pengyang Stebbins, Erin E et al. Publication Date 2020-03-20 DOI 10.1371/journal.pntd.0008150 Peer reviewed eScholarship.org Powered by the California Digital Library University of California PLOS NEGLECTED TROPICAL DISEASES RESEARCH ARTICLE Identification of anisomycin, prodigiosin and obatoclax as compounds with broad- spectrum anti-parasitic activity Gretchen Ehrenkaufer1, Pengyang Li2, Erin E. Stebbins3, Monica M. Kangussu- 1 4 5 5 5 Marcolino , Anjan Debnath , Corin V. White , Matthew S. MoserID , Joseph DeRisi , 6 6,7,8 4 4 Jolyn Gisselberg , Ellen Yeh , Steven C. WangID , Ana Hervella Company , Ludovica Monti4, Conor R. Caffrey4, Christopher D. Huston3, Bo Wang2,9, 1,7 Upinder SinghID * a1111111111 a1111111111 1 Division of Infectious Diseases, Department of Internal Medicine, Stanford University, Stanford, CA, United States of America, 2 Department of Bioengineering, Stanford University, Stanford, CA, United States of a1111111111 America, 3 Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, a1111111111 United States of America, 4 Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of a1111111111 Pharmacy and Pharmaceutical Sciences, University of California,