The HECT E3 Ligase E6AP/UBE3A As a Therapeutic Target in Cancer and Neurological Disorders

Total Page:16

File Type:pdf, Size:1020Kb

The HECT E3 Ligase E6AP/UBE3A As a Therapeutic Target in Cancer and Neurological Disorders cancers Review The HECT E3 Ligase E6AP/UBE3A as a Therapeutic Target in Cancer and Neurological Disorders Asia Owais 1, Rama K. Mishra 2,3 and Hiroaki Kiyokawa 1,* 1 Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA; [email protected] 2 Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA; [email protected] 3 Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60201, USA * Correspondence: [email protected] Received: 30 June 2020; Accepted: 27 July 2020; Published: 29 July 2020 Abstract: The HECT (Homologous to the E6-AP Carboxyl Terminus)-family protein E6AP (E6-associated protein), encoded by the UBE3A gene, is a multifaceted ubiquitin ligase that controls diverse signaling pathways involved in cancer and neurological disorders. The oncogenic role of E6AP in papillomavirus-induced cancers is well known, with its action to trigger p53 degradation in complex with the E6 viral oncoprotein. However, the roles of E6AP in non-viral cancers remain poorly defined. It is well established that loss-of-function alterations of the UBE3A gene cause Angelman syndrome, a severe neurodevelopmental disorder with autosomal dominant inheritance modified by genomic imprinting on chromosome 15q. Moreover, excess dosage of the UBE3A gene markedly increases the penetrance of autism spectrum disorders, suggesting that the expression level of UBE3A must be regulated tightly within a physiologically tolerated range during brain development. In this review, current the knowledge about the substrates of E6AP-mediated ubiquitination and their functions in cancer and neurological disorders is discussed, alongside with the ongoing efforts to pharmacologically modulate this ubiquitin ligase as a promising therapeutic target. Keywords: ubiquitin; viral oncogenesis; oncoproteins; tumor suppressors; Angelman syndrome; autism; small molecules; imprinting; E3 ligase; chromosome 15q 1. Introduction and E6AP Structure Ubiquitination is a major posttranslational modification which governs the fates of modified protein substrates, i.e., changes in stability, subcellular localization and enzymatic activities [1]. The multi-step process of ubiquitination involves the activation, conjugation and ligation of a ubiquitin moiety mediated by E1, E2, and E3 enzymes, respectively. E3 ligases play crucial roles in recruiting substrates and they primarily determine substrate specificity [1]. Aberrant regulation of E3 ligases disrupts diverse cellular functions such as cell cycle control, DNA damage response and cell death, and could shift the balance towards oncogenesis [2]. The human genome encodes more than 600 E3 ligases, which are classified into a few major families based on their structural similarities: RING (Really Interesting New Gene), RBR (ring between ring), Ubox and HECT E3 ligases [3]. In this review, we focus on one of the HECT E3 ligases, E6AP, which is also known as UBE3A and plays roles in oncogenesis, neurodevelopmental disorders, and other human diseases [4]. HECT-E3s ubiquitinate their specific substrate in a two-step process. First, an HECT-E3 binds to an E2 in complex with activated ubiquitin, leading to the formation of a thioester linkage between the C-terminus of ubiquitin and the catalytic cysteine residue in the HECT domain. This transient complex subsequently transfers ubiquitin to an interacting substrate with the formation of an isopeptide bond [5]. Cancers 2020, 12, 2108; doi:10.3390/cancers12082108 www.mdpi.com/journal/cancers Cancers 2020, 12, 2108 2 of 19 Cancers 2020, 12, x 2 of 20 Structurally, E6AP possesses a Zn2+-binding N-terminal (Amino-terminal Zn-finger of Ube3a Ligase (AZUL))(AZUL)) domain domain and and a a catalytic catalytic HECT HECT domain domain of of ~350 ~350 amino amino acids acids at atthe the C Cterminus terminus (Figure (Figure 1a)1a) [6]. [ 6 A]. domainA domain necessary necessary for binding for binding with withthe human the human papillo papillomavirusmavirus (HPV) (HPV)E6 oncoprotein E6 oncoprotein is located is between located thebetween AZUL the and AZUL HECT and domains HECT domains [7]. The[ 7AZUL]. The AZULdomain domain is involved is involved in substrate in substrate recruitment recruitment and andalso self-inhibitoryalso self-inhibitory regulation regulation [8]. [Most8]. Most mutationsmutations associated associated with with the the neurodevelopmental neurodevelopmental disorderdisorder AngelmanAngelman syndrome syndrome (AS) are found in the HECT domain, indicating thatthat the loss of catalytic function ofof E6AP E6AP causes AS [[9].9]. ConsideringConsidering thethe humanhuman E6AP-UBCH7E6AP-UBCH7 complexcomplex crystalcrystal structurestructure (1C4Z.pdb)(1C4Z.pdb) [[6],6], wewe have have extracted extracted out out the the E6AP E6AP part part by by the the Biopolymer Biopolymer module module implemented implemented in Tripos in Tripos software software and highlightedand highlighted AS-associated AS-associated mutations mutations and the andcatalytic the catalytic Cys820 residue Cys820 (Figure residue 1b). (Figure The N1b). lobe The (labeled N lobe in magenta)(labeled inbinds magenta) to the specific binds E2 to partner, the specific UBE2L3/Ubc E2 partner,H7. Many UBE2L3 AS mutation/UbcH7. sites Many are AS located mutation in the areas sites onare both located the C inlobe the (labeled areas onin green) both theand CN lobe su (labeledrrounding in green)Cys820, and while N some lobe mutations surrounding are found Cys820, in thewhile E2-binding some mutations region ofare the foundN lobe, in e.g., the Thr656 E2-binding and Phe690 region [10]. of the AS-lin N lobe,ked e.g.,missense Thr656 mutations and Phe690 have [also10]. beenAS-linked reported missense in the mutations AZUL domain have also[9,11], been suggesting reported inthe the significance AZUL domain of the [9 ,domain11], suggesting in catalytic the regulation.significance Aside of the from domain its ubiquitin in catalytic ligase regulation. function, Aside E6AP from also itsacts ubiquitin as a transcriptional ligase function, co-activator E6AP also of steroidacts as ahormone transcriptional receptors co-activator such as estrogen, of steroid progesterone hormone receptors and androgen such as estrogen,receptors progesterone(ER, PR and andAR, respectively)androgen receptors [4,12,13]. (ER, E6AP PR andcontains AR, respectively) a nuclear localizat [4,12,13ion]. E6APsignal contains that allows a nuclear it to be localization localized signalto the nucleus,that allows and itthree to be LxxL localized motifs, to which the nucleus, are important and three for receptor LxxL motifs, interaction which [4,14,15]. are important The transactivating for receptor functioninteraction of E6AP [4,14, 15has]. Thebeen transactivating mapped to a region function outside of E6AP the HECT has been domain mapped (residues to a region 170–680) outside [4]. the HECTRecent domain evidence (residues suggests 170–680) that [ 4E6AP]. exists in two conformational states of high and low activity. WhileRecent the potent evidence activation suggests of E6AP that by E6AP E6 binding exists is in well two known, conformational the binding states with of HERC2, high and another low HECTactivity. E3, While also stimulates the potent the activation activity of of E6AP E6AP (Figure by E6 1a) binding [16,17]. is Mutations well known, in HERC2 the binding which cause with degradationHERC2, another of HERC2 HECT have E3, been also associated stimulates with the activity an AS-like of E6APsyndrome. (Figure Furt1a)hermore, [ 16,17]. protein Mutations kinase in A-mediatedHERC2 which phosphorylation cause degradation of Thr485, of HERC2 which is have located been outside associated the HECT with domain, an AS-like inhibits syndrome. E6AP activity.Furthermore, An autism-linked protein kinase missense A-mediated mutation phosphorylation that disrupts of this Thr485, phosphorylation which is located site outside causes theenhanced HECT E6APdomain, activity inhibits [18]. E6AP activity. An autism-linked missense mutation that disrupts this phosphorylation site causes enhanced E6AP activity [18]. Figure 1. Cont. Cancers 2020, 12, 2108 3 of 19 Cancers 2020, 12, x 3 of 20 FigureFigure 1. E6AP1. E6AP domains domains and and their their therapeutic therapeutic significance. significance. (a) Domains(a) Domains in the in the primary primary sequence sequence of of E6APE6AP protein. protein. The The numbers numbers in parenthesesin parentheses indicate indicate the the corresponding corresponding amino amino acid acid residues residues of E6AP of E6AP isoformisoform 1 protein.1 protein. The The C-terminus C-terminus of E6APof E6AP protein protein has has the the prototype prototype Homologous Homologous to theto the E6-AP E6-AP CarboxylCarboxyl Terminus Terminus (HECT) (HECT) domain. domain. This This domain domain has ha thes the E2-binding E2-binding site site and and the the catalytic catalytic center center Cys820.Cys820. E6-binding E6-binding domain domain binds binds the HPV the E6HPV oncoprotein. E6 oncoprotein. The Zn-binding The Zn-bindi Amino-terminalng Amino-terminal Zn-finger Zn- of Ube3afinger Ligaseof Ube3a (AZUL) Ligase domain (AZUL) is presentdomain atis thepresen N terminus.t at the N The terminus. HERC2-binding The HERC2-binding domain is required domain is forrequired the association for the with association the partner with HECT the partner E3 HERC2. HECT Small E3 moleculeHERC2. Small inhibitors molecule targeting inhibitors the E6AP-E6 targeting
Recommended publications
  • Pathway-Specific Dopaminergic Deficits in a Mouse Model of Angelman Syndrome
    Pathway-specific dopaminergic deficits in a mouse model of Angelman syndrome Thorfinn T. Riday, … , Benjamin D. Philpot, C.J. Malanga J Clin Invest. 2012;122(12):4544-4554. https://doi.org/10.1172/JCI61888. Research Article Neuroscience Angelman syndrome (AS) is a neurodevelopmental disorder caused by maternal deletions or mutations of the ubiquitin ligase E3A (UBE3A) allele and characterized by minimal verbal communication, seizures, and disorders of voluntary movement. Previous studies have suggested that abnormal dopamine neurotransmission may underlie some of these deficits, but no effective treatment currently exists for the core features of AS. A clinical trial of levodopa (l-DOPA) in AS is ongoing, although the underlying rationale for this treatment strategy has not yet been thoroughly examined in preclinical models. We found that AS model mice lacking maternal Ube3a (Ube3am–/p+ mice) exhibit behavioral deficits that correlated with abnormal dopamine signaling. These deficits were not due to loss of dopaminergic neurons or impaired dopamine synthesis. Unexpectedly, Ube3am–/p+ mice exhibited increased dopamine release in the mesolimbic pathway while also exhibiting a decrease in dopamine release in the nigrostriatal pathway, as measured with fast-scan cyclic voltammetry. These findings demonstrate the complex effects of UBE3A loss on dopamine signaling in subcortical motor pathways that may inform ongoing clinical trials of l-DOPA therapy in patients with AS. Find the latest version: https://jci.me/61888/pdf Research article Pathway-specific dopaminergic deficits in a mouse model of Angelman syndrome Thorfinn T. Riday,1,2 Elyse C. Dankoski,1 Michael C. Krouse,3 Eric W. Fish,3 Paul L.
    [Show full text]
  • XIAP's Profile in Human Cancer
    biomolecules Review XIAP’s Profile in Human Cancer Huailu Tu and Max Costa * Department of Environmental Medicine, Grossman School of Medicine, New York University, New York, NY 10010, USA; [email protected] * Correspondence: [email protected] Received: 16 September 2020; Accepted: 25 October 2020; Published: 29 October 2020 Abstract: XIAP, the X-linked inhibitor of apoptosis protein, regulates cell death signaling pathways through binding and inhibiting caspases. Mounting experimental research associated with XIAP has shown it to be a master regulator of cell death not only in apoptosis, but also in autophagy and necroptosis. As a vital decider on cell survival, XIAP is involved in the regulation of cancer initiation, promotion and progression. XIAP up-regulation occurs in many human diseases, resulting in a series of undesired effects such as raising the cellular tolerance to genetic lesions, inflammation and cytotoxicity. Hence, anti-tumor drugs targeting XIAP have become an important focus for cancer therapy research. RNA–XIAP interaction is a focus, which has enriched the general profile of XIAP regulation in human cancer. In this review, the basic functions of XIAP, its regulatory role in cancer, anti-XIAP drugs and recent findings about RNA–XIAP interactions are discussed. Keywords: XIAP; apoptosis; cancer; therapeutics; non-coding RNA 1. Introduction X-linked inhibitor of apoptosis protein (XIAP), also known as inhibitor of apoptosis protein 3 (IAP3), baculoviral IAP repeat-containing protein 4 (BIRC4), and human IAPs like protein (hILP), belongs to IAP family which was discovered in insect baculovirus [1]. Eight different IAPs have been isolated from human tissues: NAIP (BIRC1), BIRC2 (cIAP1), BIRC3 (cIAP2), XIAP (BIRC4), BIRC5 (survivin), BIRC6 (apollon), BIRC7 (livin) and BIRC8 [2].
    [Show full text]
  • Type of the Paper (Article
    Supplementary Material A Proteomics Study on the Mechanism of Nutmeg-induced Hepatotoxicity Wei Xia 1, †, Zhipeng Cao 1, †, Xiaoyu Zhang 1 and Lina Gao 1,* 1 School of Forensic Medicine, China Medical University, Shenyang 110122, P. R. China; lessen- [email protected] (W.X.); [email protected] (Z.C.); [email protected] (X.Z.) † The authors contributed equally to this work. * Correspondence: [email protected] Figure S1. Table S1. Peptide fraction separation liquid chromatography elution gradient table. Time (min) Flow rate (mL/min) Mobile phase A (%) Mobile phase B (%) 0 1 97 3 10 1 95 5 30 1 80 20 48 1 60 40 50 1 50 50 53 1 30 70 54 1 0 100 1 Table 2. Liquid chromatography elution gradient table. Time (min) Flow rate (nL/min) Mobile phase A (%) Mobile phase B (%) 0 600 94 6 2 600 83 17 82 600 60 40 84 600 50 50 85 600 45 55 90 600 0 100 Table S3. The analysis parameter of Proteome Discoverer 2.2. Item Value Type of Quantification Reporter Quantification (TMT) Enzyme Trypsin Max.Missed Cleavage Sites 2 Precursor Mass Tolerance 10 ppm Fragment Mass Tolerance 0.02 Da Dynamic Modification Oxidation/+15.995 Da (M) and TMT /+229.163 Da (K,Y) N-Terminal Modification Acetyl/+42.011 Da (N-Terminal) and TMT /+229.163 Da (N-Terminal) Static Modification Carbamidomethyl/+57.021 Da (C) 2 Table S4. The DEPs between the low-dose group and the control group. Protein Gene Fold Change P value Trend mRNA H2-K1 0.380 0.010 down Glutamine synthetase 0.426 0.022 down Annexin Anxa6 0.447 0.032 down mRNA H2-D1 0.467 0.002 down Ribokinase Rbks 0.487 0.000
    [Show full text]
  • Supplementary Information Method CLEAR-CLIP. Mouse Keratinocytes
    Supplementary Information Method CLEAR-CLIP. Mouse keratinocytes of the designated genotype were maintained in E-low calcium medium. Inducible cells were treated with 3 ug/ml final concentration doxycycline for 24 hours before performing CLEAR-CLIP. One 15cm dish of confluent cells was used per sample. Cells were washed once with cold PBS. 10mls of cold PBS was then added and cells were irradiated with 300mJ/cm2 UVC (254nM wavelength). Cells were then scraped from the plates in cold PBS and pelleted by centrifugation at 1,000g for 2 minutes. Pellets were frozen at -80oC until needed. Cells were then lysed on ice with occasional vortexing in 1ml of lysis buffer (50mM Tris-HCl pH 7.4, 100mM NaCl, 1mM MgCl2, 0.1 mM CaCl2, 1% NP-40, 0.5% Sodium Deoxycholate, 0.1% SDS) containing 1X protease inhibitors (Roche #88665) and RNaseOUT (Invitrogen #10777019) at 4ul/ml final concentration. Next, TurboDNase (Invitrogen #AM2238, 10U), RNase A (0.13ug) and RNase T1 (0.13U) were added and samples were incubated at 37oC for 5 minutes with occasional mixing. Samples were immediately placed on ice and then centrifuged at 16,160g at 4oC for 20 minutes to clear lysate. 25ul of Protein-G Dynabeads (Invitrogen #10004D) were used per IP. Dynabeads were pre-washed with lysis buffer and pre- incubated with 3ul of Wako Anti-Mouse-Ago2 (2D4) antibody. The dynabead/antibody mixture was added to the lysate and rocked for 2 hours at 4oC. All steps after the IP were done on bead until samples were loaded into the polyacrylamide gel.
    [Show full text]
  • Transcriptomic Profile Induced in Bone Marrow Mesenchymal Stromal Cells After Interaction with Multiple Myeloma Cells
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 5, No. 18 Transcriptomic profile induced in bone marrow mesenchymal stromal cells after interaction with multiple myeloma cells: implications in myeloma progression and myeloma bone disease Antonio Garcia-Gomez1,2,3, Javier De Las Rivas1, Enrique M. Ocio1,2, Elena Díaz- Rodríguez1, Juan C. Montero1, Montserrat Martín1,3, Juan F. Blanco2, Fermín M. Sanchez-Guijo2,3, Atanasio Pandiella1,2, Jesús F. San Miguel1,2,3 and Mercedes Garayoa1,2,3 1 Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain 2 Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain 3 Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain Correspondence to: Mercedes Garayoa, email: [email protected] Keywords: multiple myeloma, bone marrow mesenchymal stromal cells, tumor-stroma interactions, gene expression profiling, co- culture techniques, myeloma bone disease Received: January 6, 2014 Accepted: June 2, 2014 Published: June 4, 2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Despite evidence about the implication of the bone marrow (BM) stromal microenvironment in multiple myeloma (MM) cell growth and survival, little is known about the effects of myelomatous cells on BM stromal cells. Mesenchymal stromal cells (MSCs) from healthy donors (dMSCs) or myeloma patients (pMSCs) were co- cultured with the myeloma cell line MM.1S, and the transcriptomic profile of MSCs induced by this interaction was analyzed. Deregulated genes after co-culture common to both d/pMSCs revealed functional involvement in tumor microenvironment cross- talk, myeloma growth induction and drug resistance, angiogenesis and signals for osteoclast activation and osteoblast inhibition.
    [Show full text]
  • The Autism Protein Ube3a/E6AP Remodels Neuronal Dendritic Arborization Via Caspase-Dependent Microtubule Destabilization
    The Journal of Neuroscience, January 10, 2018 • 38(2):363–378 • 363 Neurobiology of Disease The Autism Protein Ube3A/E6AP Remodels Neuronal Dendritic Arborization via Caspase-Dependent Microtubule Destabilization Natasha Khatri,1,2 James P. Gilbert,1 Yuda Huo,1 Roozhin Sharaflari,1 Michael Nee,1 Hui Qiao,1 and XHeng-Ye Man1,2 1Department of Biology, Boston University, Boston, Massachusetts 02215, and 2Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118 UBE3A gene copy number variation and the resulting overexpression of the protein E6AP is directly linked to autism spectrum disorders (ASDs).However,theunderlyingcellularandmolecularneurobiologyremainslessclear.HerewereporttheroleofASD-relatedincreased dosage of Ube3A/E6AP in dendritic arborization during brain development. We show that increased E6AP expression in primary cul- tured neurons leads to a reduction in dendritic branch number and length. The E6AP-dependent remodeling of dendritic arborization results from retraction of dendrites by thinning and fragmentation at the tips of dendrite branches, leading to shortening or removal of dendrites. This remodeling effect is mediated by the ubiquitination and degradation of XIAP (X-linked inhibitors of aptosis protein) by E6AP, which leads to activation of caspase-3 and cleavage of microtubules. In vivo, male and female Ube3A 2X ASD mice show decreased XIAP levels, increased caspase-3 activation, and elevated levels of tubulin cleavage. Consistently, dendritic branching and spine density are reduced in cortical neurons of Ube3A 2X ASD mice. In revealing an important role for Ube3A/E6AP in ASD-related developmental alteration in dendritic arborization and synapse formation, our findings provide new insights into the pathogenesis of Ube3A/E6AP- dependent ASD.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Supplementary Table 9. Functional Annotation Clustering Results for the Union (GS3) of the Top Genes from the SNP-Level and Gene-Based Analyses (See ST4)
    Supplementary Table 9. Functional Annotation Clustering Results for the union (GS3) of the top genes from the SNP-level and Gene-based analyses (see ST4) Column Header Key Annotation Cluster Name of cluster, sorted by descending Enrichment score Enrichment Score EASE enrichment score for functional annotation cluster Category Pathway Database Term Pathway name/Identifier Count Number of genes in the submitted list in the specified term % Percentage of identified genes in the submitted list associated with the specified term PValue Significance level associated with the EASE enrichment score for the term Genes List of genes present in the term List Total Number of genes from the submitted list present in the category Pop Hits Number of genes involved in the specified term (category-specific) Pop Total Number of genes in the human genome background (category-specific) Fold Enrichment Ratio of the proportion of count to list total and population hits to population total Bonferroni Bonferroni adjustment of p-value Benjamini Benjamini adjustment of p-value FDR False Discovery Rate of p-value (percent form) Annotation Cluster 1 Enrichment Score: 3.8978262119731335 Category Term Count % PValue Genes List Total Pop Hits Pop Total Fold Enrichment Bonferroni Benjamini FDR GOTERM_CC_DIRECT GO:0005886~plasma membrane 383 24.33290978 5.74E-05 SLC9A9, XRCC5, HRAS, CHMP3, ATP1B2, EFNA1, OSMR, SLC9A3, EFNA3, UTRN, SYT6, ZNRF2, APP, AT1425 4121 18224 1.18857065 0.038655922 0.038655922 0.086284383 UP_KEYWORDS Membrane 626 39.77128335 1.53E-04 SLC9A9, HRAS,
    [Show full text]
  • WWP2 Promotes Degradation of Transcription Factor OCT4 in Human Embryonic Stem Cells
    Cell Research (2009) 19:561-573. © 2009 IBCB, SIBS, CAS All rights reserved 1001-0602/09 $ 30.00 npg ORIGINAL ARTICLE www.nature.com/cr WWP2 promotes degradation of transcription factor OCT4 in human embryonic stem cells Huiming Xu1, 2, Weicheng Wang1, 2, Chunliang Li2, Hongyao Yu2, Acong Yang1, 2, Beibei Wang2, Ying Jin1, 2, 3 1Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China; 2Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China; 3Key Laboratory of Cell Differ- entiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China POU transcription factor OCT4 not only plays an essential role in maintaining the pluripotent and self-renewing state of embryonic stem (ES) cells but also acts as a cell fate determinant through a gene dosage effect. However, the molecular mechanisms that control the intracellular OCT4 protein level remain elusive. Here, we report that human WWP2, an E3 ubiquitin (Ub)-protein ligase, interacts with OCT4 specifically through its WW domain and enhances Ub modification of OCT4 both in vitro and in vivo. We first demonstrated that endogenous OCT4 in hu- man ES cells can be post-translationally modified by Ub. Furthermore, we found that WWP2 promoted degradation of OCT4 through the 26S proteasome in a dosage-dependent manner, and the active site cysteine residue of WWP2 was required for both its enzymatic activity and proteolytic effect on OCT4.
    [Show full text]
  • Targeting the Ubiquitin System in Glioblastoma', Frontiers in Oncology
    Citation for published version: Licchesi, J 2020, 'Targeting the Ubiquitin System in Glioblastoma', Frontiers in Oncology. https://doi.org/10.3389/fonc.2020.574011 DOI: 10.3389/fonc.2020.574011 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link to publication University of Bath Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 24. Sep. 2021 REVIEW published: 25 November 2020 doi: 10.3389/fonc.2020.574011 Targeting the Ubiquitin System in Glioblastoma Nico Scholz 1, Kathreena M. Kurian 2, Florian A. Siebzehnrubl 3 and Julien D. F. Licchesi 1* 1 Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom, 2 Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom, 3 Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, United Kingdom Glioblastoma is the most common primary brain tumor in adults with poor overall outcome and 5-year survival of less than 5%. Treatment has not changed much in the last decade or so, with surgical resection and radio/chemotherapy being the main options.
    [Show full text]
  • Regulation of Apoptosis by XIAP Ubiquitin- Ligase Activity Andrew James Schile
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2009 Regulation of Apoptosis by XIAP Ubiquitin- Ligase Activity Andrew James Schile Follow this and additional works at: http://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons Recommended Citation Schile, Andrew James, "Regulation of Apoptosis by XIAP Ubiquitin- Ligase Activity" (2009). Student Theses and Dissertations. Paper 125. This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. REGULATION OF APOPTOSIS BY XIAP UBIQUITIN-LIGASE ACTIVITY A Thesis Presented to the Faculty of The Rockefeller University In Partial Fulfillment of the Requirements for The degree of Doctor of Philosophy by Andrew James Schile June 2009 © Copyright by Andrew James Schile 2009 REGULATION OF APOPTOSIS BY XIAP UBIQUITIN-LIGASE ACTIVITY Andrew James Schile, Ph.D. The Rockefeller University 2009 Virtually all animal cells have the known ability to self-destruct by undergoing apoptosis, a morphologically distinct form of programmed cell death. The proper regulation of apoptosis is critical for both development and tissue homeostasis, and inhibition of apoptosis contributes to the development and progression of cancer. Inhibitor of Apoptosis Proteins (IAPs) can bind to and inhibit caspases, the key executioners of apoptosis. Because IAPs are frequently over-expressed in human tumors, they have become major pharmacological targets for developing new cancer therapeutics. Many IAPs contain RING domains that function as E3 ubiquitin-ligases to regulate the abundance of IAPs themselves and their binding partners by engaging the ubiquitin system.
    [Show full text]
  • New Insights Into the Cellular Temporal Response to Proteostatic Stress
    TOOLS AND RESOURCES New insights into the cellular temporal response to proteostatic stress Justin Rendleman1†, Zhe Cheng1†, Shuvadeep Maity1†, Nicolai Kastelic2, Mathias Munschauer2, Kristina Allgoewer1, Guoshou Teo1, Yun Bin Matteo Zhang1, Amy Lei1, Brian Parker1, Markus Landthaler2,3, Lindsay Freeberg4, Scott Kuersten4, Hyungwon Choi5,6, Christine Vogel1* 1Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States; 2Berlin Institute for Medical Systems Biology, Max Delbru¨ ck Center for Molecular Medicine, Berlin, Germany; 3Integrative Research Institute for the Life Sciences, Institute of Biology, Humboldt University, Berlin, Germany; 4Illumina Inc, Madison, United States; 5National University of Singapore, Singapore; 6Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore Abstract Maintaining a healthy proteome involves all layers of gene expression regulation. By quantifying temporal changes of the transcriptome, translatome, proteome, and RNA-protein interactome in cervical cancer cells, we systematically characterize the molecular landscape in response to proteostatic challenges. We identify shared and specific responses to misfolded proteins and to oxidative stress, two conditions that are tightly linked. We reveal new aspects of the unfolded protein response, including many genes that escape global translation shutdown. A subset of these genes supports rerouting of energy production in the mitochondria. We also find that many genes change at multiple levels, in either the same or opposing directions, and at different time points. We highlight a variety of putative regulatory pathways, including the stress- dependent alternative splicing of aminoacyl-tRNA synthetases, and protein-RNA binding within the 3’ untranslated region of molecular chaperones. These results illustrate the potential of this information-rich resource.
    [Show full text]