Stochastic Quantization of Boson and Fermion Fields

Total Page:16

File Type:pdf, Size:1020Kb

Stochastic Quantization of Boson and Fermion Fields STOCHASTIC QUANTIZATION OF BOSON AND FERMION FIELDS by GEOFFREY HAYWARD M. A., University of Toronto, Toronto, 1984 B. A., Yale University, New Haven, 1983 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in The Faculty of Graduate Studies Department of Physics We accept this thesis as conforming to the required standard The University of British Columbia May 1986 © GEOFFREY HAYWARD, 1986 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of f^k^lCS The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date 1} J<?f{ /an ii ABSTRACT We consider two strategies for stochastic quantization. With the first, one posits an additional time dimension (fictitious time) and describes the evolution of classical fields by means of the Langevin equation. One then evaluates stochastic averages of the field functions. In the limit that the fictitious time goes to infinity, these approach the time ordered correlation functions of canonically quantized field theory. We conclude that, while this strategy successfully describes QED and other quantum field theories, it is contrived and probably lacks deep physical significance. With the second strategy for field quantization, one begins with a classical action in either one or two extra dimensions coupled to an external random source. We review a method of quantizing bosonic fields which uses this strategy. Further• more, we present an analogous method for quantizing fermion fields and a possible new way of quantizing interacting fermion and boson fields. Finally, we discuss ap• plications to quantum mechanics and stochastically quantize the simple harmonic oscillator. iii TABLE OF CONTENTS Abstract ii Table of Contents iii List of Figures . iv Acknowledgments v Introduction 1 Part I: The Langevin Method of Stochastic Quantization 3 11 Review of Canonical Quantization 3 1-2 The Langevin Equation for Bosons: The Method of Parisi and Wu 4 a) The free field two point correlation 7 b) The interacting field two point correlation 8 1-3 Stochastic Quantization of Fermions: The method of Fukai et al 9 1-4 The Method of Breit et al. for Boson and Fermion Fields . 12 1- 5 Summary 14 Part II: Toward a New Stochastic Formalism 15 21 A Field Equation for Bosons: The Method of Aharony et al 16 2 2 A Fermion Field Equation 18 2- 3 A Theory of Interacting Fermions and Bosons? 21 Part III: Applications to Quantum Mechanics 23 Conclusions 27 Footnotes 29 References 30 Appendix: S.R. and the Topolgical Mass in QED-3 ...31 Iv LIST OF FIGURES 1-1.1 Tree diagram expansion to order A3 9 1-1.2 Stochastic Diagrammatic series to order A2 10 ACKNOWLEDGMENTS I am grateful to Dr. Gordon Semenoff for his help and guidance. It was he who introduced me to stochastic quantization and proposed it as a potential area of research. He suggested to me the problem of evaluating the topological mass term in QED-3 and guided me through it. Somehow he patiently endured a series of desperate phone calls to Princeton, and never failed to set me straight when my calculations went awry. I am also indebted to Andre Roberge for his encouragement and ready sug• gestions. He has rare powers of explanation, and I often found myself in need of them. On a more practical note, I am grateful to the mysterious force which, every so often, spontaneously generates a paycheck in my mail box. May it never forsake me. Introduction In recent years, a new method for quantizing field theories has evolved. By coupling a d dimensional classical field to a random external source, we may derive a quantum field in d— 1 dimensions. Why this should be the case is not self evident. To envisage how an external random source might work to quantize a field theory, let us consider an analogy. Imagine shaking out a cloud of dust particles into the air of a room unaffected by gravity. We can approximate the physics of a classical field by considering the behaviour of this cloud of dust. To describe the classical field, we would be interested in the field amplitude as a function of position; to describe a cloud of dust, we concentrate on the velocities of particles as a function of their position. The average velocities of the particles change with time according to what is known as the Langevin equation. This equation has a damping term due to interac• tions between the dust particles and the surrounding air. So we find that, no matter what the initial velocities of the dust particles, they slowly settle down. Eventually, after each dust particle has had a number of random interactions with the atmo• sphere around it, the average velocity of every dust particle is zero. Furthermore, if we then check the average correlations between velocities of different dust particles, we find that they too have settled down-though they will not necessarily be zero. Since the correlations no longer change with time, we can describe them entirely in terms of the distances between the dust particles. In other words, by coupling a four dimensional "field" to an external random source, we can obtain a three dimensional "field" as a long term limit. The above analogy is useful because it highlights how stochastic quantization borrows its methods from non-equilibrium statistical mechanics. The analogy fails to clarify, however, why the classical system should approach a lower dimensional quantum system as a stable limit. The reasons for this mysterious 'quantization' are not simple; they depend on which stochastic method one employs. Here, we will examine some different approaches with an ambition both to establish as general a quantum theory as possible and to uncover some physical significance to the process by which we achieve quantization. In Part I, we discuss a method of quantizing field theories which originated with G. Parisi and Y. WuJ1' In 1981 they developed a way of using a "stochastic", or random distribution to quantize scalar fields. Their work was followed by that of Fukai et al. l2l, who used the technique to quantize fermion fields. It was not until 1983 that Breit, Gupta and Zaks'3] found a way to generalize the method and produce a theory of interacting fermion and boson fields. In Part II, we discuss an alternate method of stochastic quantization. It turns out that this method enjoys some important advantages over the method of Parisi and Wu. We then propose a theory of interacting fermions and bosons which is quite different from that proposed by Breit, Gupta and Zaks. In Part III, we discuss whether stochastic techniques may be used to generate quantum mechanics out of classical mechanics. Specifically, we consider the case of the simple harmonic oscillator. Our calculations suggest a way to generalize the notion of a random averaging. Finally, in an Appendix, we explicitly calculate the topological mass term in QED-3 using stochastic methods. This problem has been something of an enigma because traditional techniques fail to provide an unambiguous result. PART I: The Langevin Method of Stochastic Quantization 3 PART I The Langevin Method of Stochastic Quantization In 1981, G. Parisi and Wu Yongshi developed an alternate way to formulate gauge field theory. Motivated by a desire to avoid the sometimes unwieldy math• ematical baggage of gauge fixing, they adopted techniques from non-equilibrium statistical mechanics. The result is a method of "stochastic quantization" which casts gauge theories in a suggestive physical setting. (1.1) Review of Canonical Quantization As a prelude to our discussion of stochastic quantization (SQ), let us highlight some results of traditional quantum field theory. Consider, for instance, the case of scalar field theory in d Euclidean dimensions. We begin with the action (1.1) and the commutation relation (1.2) From these, we will wish to evaluate correlation functions of the form (1.3) PART I: The Langevin Method of Stochastic Quantization 4 where T(...) signifies ordering with respect to Euclidean time. Calculations of correlation functions of the form (1.3) are usually performed in the limit p —• oo. In this case, only the ground state contributes; (T (tfx), m))3^ -> (o|r |o) oo MzMy)) I (1.4) jd\<t>]e-sM We may now expand the right hand side around the free action. In this way, we generate a perturbative expansion for (T (c£(x)c/>(t/))^. We owe the success of this approach to Wick's Theorem, which allows us to express all terms in the expansion as products of the simple two point correlation. (1.2) The Langevin Equation for Bosons: The Method of Parisi and Wu The insight of Parisi and Wu is to view the correlation (T (4>{X),4>(y))^ as the steady state of a "time" dependent stochastic average {<f>[x,t)<p(y,t')) S2) To make this interpretation, we must introduce a fictitious time t : 0 < t < co. If we also couple the field to a heat reservoir, we can decribe the "time" evolution of <f> by the Langevin equation; where r}(x, t) is a stochastic distribution and |^ acts as a damping termJ3) So we interpret the problem of quantizing the classical field in (d)-dimensions as a problem of non-equilibrium statistical mechanics in (d+l)-dimensions.
Recommended publications
  • Arxiv:Cond-Mat/0203258V1 [Cond-Mat.Str-El] 12 Mar 2002 AS 71.10.-W,71.27.+A PACS: Pnpolmi Oi Tt Hsc.Iscoeconnection Close Its High- of Physics
    Large-N expansion based on the Hubbard-operator path integral representation and its application to the t J model − Adriana Foussats and Andr´es Greco Facultad de Ciencias Exactas Ingenier´ıa y Agrimensura and Instituto de F´ısica Rosario (UNR-CONICET). Av.Pellegrini 250-2000 Rosario-Argentina. (October 29, 2018) In the present work we have developed a large-N expansion for the t − J model based on the path integral formulation for Hubbard-operators. Our large-N expansion formulation contains diagram- matic rules, in which the propagators and vertex are written in term of Hubbard operators. Using our large-N formulation we have calculated, for J = 0, the renormalized O(1/N) boson propagator. We also have calculated the spin-spin and charge-charge correlation functions to leading order 1/N. We have compared our diagram technique and results with the existing ones in the literature. PACS: 71.10.-w,71.27.+a I. INTRODUCTION this constrained theory leads to the commutation rules of the Hubbard-operators. Next, by using path-integral The role of electronic correlations is an important and techniques, the correlation functional and effective La- open problem in solid state physics. Its close connection grangian were constructed. 1 with the phenomena of high-Tc superconductivity makes In Ref.[ 11], we found a particular family of constrained this problem relevant in present days. Lagrangians and showed that the corresponding path- One of the most popular models in the context of high- integral can be mapped to that of the slave-boson rep- 13,5 Tc superconductivity is the t J model.
    [Show full text]
  • Stochastic Quantization of Fermionic Theories: Renormalization of the Massive Thirring Model
    Instituto de Física Teórica IFT Universidade Estadual Paulista October/92 IFT-R043/92 Stochastic Quantization of Fermionic Theories: Renormalization of the Massive Thirring Model J.C.Brunelli Instituto de Física Teórica Universidade Estadual Paulista Rua Pamplona, 145 01405-900 - São Paulo, S.P. Brazil 'This work was supported by CNPq. Instituto de Física Teórica Universidade Estadual Paulista Rua Pamplona, 145 01405 - Sao Paulo, S.P. Brazil Telephone: 55 (11) 288-5643 Telefax: 55(11)36-3449 Telex: 55 (11) 31870 UJMFBR Electronic Address: [email protected] 47553::LIBRARY Stochastic Quantization of Fermionic Theories: 1. Introduction Renormalization of the Massive Thimng Model' The stochastic quantization method of Parisi-Wu1 (for a review see Ref. 2) when applied to fermionic theories usually requires the use of a Langevin system modified by the introduction of a kernel3 J. C. Brunelli (1.1a) InBtituto de Física Teórica (1.16) Universidade Estadual Paulista Rua Pamplona, 145 01405 - São Paulo - SP where BRAZIL l = 2Kah(x,x )8(t - ?). (1.2) Here tj)1 tp and the Gaussian noises rj, rj are independent Grassmann variables. K(xty) is the aforementioned kernel which ensures the proper equilibrium limit configuration for Accepted for publication in the International Journal of Modern Physics A. mas si ess theories. The specific form of the kernel is quite arbitrary but in what follows, we use K(x,y) = Sn(x-y)(-iX + ™)- Abstract In a number of cases, it has been verified that the stochastic quantization procedure does not bring new anomalies and that the equilibrium limit correctly reproduces the basic (jJsfsini g the Langevin approach for stochastic processes we study the renormalizability properties of the models considered4.
    [Show full text]
  • Second Quantization
    Chapter 1 Second Quantization 1.1 Creation and Annihilation Operators in Quan- tum Mechanics We will begin with a quick review of creation and annihilation operators in the non-relativistic linear harmonic oscillator. Let a and a† be two operators acting on an abstract Hilbert space of states, and satisfying the commutation relation a,a† = 1 (1.1) where by “1” we mean the identity operator of this Hilbert space. The operators a and a† are not self-adjoint but are the adjoint of each other. Let α be a state which we will take to be an eigenvector of the Hermitian operators| ia†a with eigenvalue α which is a real number, a†a α = α α (1.2) | i | i Hence, α = α a†a α = a α 2 0 (1.3) h | | i k | ik ≥ where we used the fundamental axiom of Quantum Mechanics that the norm of all states in the physical Hilbert space is positive. As a result, the eigenvalues α of the eigenstates of a†a must be non-negative real numbers. Furthermore, since for all operators A, B and C [AB, C]= A [B, C] + [A, C] B (1.4) we get a†a,a = a (1.5) − † † † a a,a = a (1.6) 1 2 CHAPTER 1. SECOND QUANTIZATION i.e., a and a† are “eigen-operators” of a†a. Hence, a†a a = a a†a 1 (1.7) − † † † † a a a = a a a +1 (1.8) Consequently we find a†a a α = a a†a 1 α = (α 1) a α (1.9) | i − | i − | i Hence the state aα is an eigenstate of a†a with eigenvalue α 1, provided a α = 0.
    [Show full text]
  • Canonical Quantization of the Self-Dual Model Coupled to Fermions∗
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Canonical Quantization of the Self-Dual Model coupled to Fermions∗ H. O. Girotti Instituto de F´ısica, Universidade Federal do Rio Grande do Sul Caixa Postal 15051, 91501-970 - Porto Alegre, RS, Brazil. (March 1998) Abstract This paper is dedicated to formulate the interaction picture dynamics of the self-dual field minimally coupled to fermions. To make this possible, we start by quantizing the free self-dual model by means of the Dirac bracket quantization procedure. We obtain, as result, that the free self-dual model is a relativistically invariant quantum field theory whose excitations are identical to the physical (gauge invariant) excitations of the free Maxwell-Chern-Simons theory. The model describing the interaction of the self-dual field minimally cou- pled to fermions is also quantized through the Dirac-bracket quantization procedure. One of the self-dual field components is found not to commute, at equal times, with the fermionic fields. Hence, the formulation of the in- teraction picture dynamics is only possible after the elimination of the just mentioned component. This procedure brings, in turns, two new interac- tions terms, which are local in space and time while non-renormalizable by power counting. Relativistic invariance is tested in connection with the elas- tic fermion-fermion scattering amplitude. We prove that all the non-covariant pieces in the interaction Hamiltonian are equivalent to the covariant minimal interaction of the self-dual field with the fermions. The high energy behavior of the self-dual field propagator corroborates that the coupled theory is non- renormalizable.
    [Show full text]
  • General Quantization
    General quantization David Ritz Finkelstein∗ October 29, 2018 Abstract Segal’s hypothesis that physical theories drift toward simple groups follows from a general quantum principle and suggests a general quantization process. I general- quantize the scalar meson field in Minkowski space-time to illustrate the process. The result is a finite quantum field theory over a quantum space-time with higher symmetry than the singular theory. Multiple quantification connects the levels of the theory. 1 Quantization as regularization Quantum theory began with ad hoc regularization prescriptions of Planck and Bohr to fit the weird behavior of the electromagnetic field and the nuclear atom and to handle infinities that blocked earlier theories. In 1924 Heisenberg discovered that one small change in algebra did both naturally. In the early 1930’s he suggested extending his algebraic method to space-time, to regularize field theory, inspiring the pioneering quantum space-time of Snyder [43]. Dirac’s historic quantization program for gravity also eliminated absolute space-time points from the quantum theory of gravity, leading Bergmann too to say that the world point itself possesses no physical reality [5, 6]. arXiv:quant-ph/0601002v2 22 Jan 2006 For many the infinities that still haunt physics cry for further and deeper quanti- zation, but there has been little agreement on exactly what and how far to quantize. According to Segal canonical quantization continued a drift of physical theory toward simple groups that special relativization began. He proposed on Darwinian grounds that further quantization should lead to simple groups [32]. Vilela Mendes initiated the work in that direction [37].
    [Show full text]
  • Arxiv:1809.04416V1 [Physics.Gen-Ph]
    Path integral and Sommerfeld quantization Mikoto Matsuda1, ∗ and Takehisa Fujita2, † 1Japan Health and Medical technological college, Tokyo, Japan 2College of Science and Technology, Nihon University, Tokyo, Japan (Dated: September 13, 2018) The path integral formulation can reproduce the right energy spectrum of the harmonic oscillator potential, but it cannot resolve the Coulomb potential problem. This is because the path integral cannot properly take into account the boundary condition, which is due to the presence of the scattering states in the Coulomb potential system. On the other hand, the Sommerfeld quantization can reproduce the right energy spectrum of both harmonic oscillator and Coulomb potential cases since the boundary condition is effectively taken into account in this semiclassical treatment. The basic difference between the two schemes should be that no constraint is imposed on the wave function in the path integral while the Sommerfeld quantization rule is derived by requiring that the state vector should be a single-valued function. The limitation of the semiclassical method is also clarified in terms of the square well and δ(x) function potential models. PACS numbers: 25.85.-w,25.85.Ec I. INTRODUCTION Quantum field theory is the basis of modern theoretical physics and it is well established by now [1–4]. If the kinematics is non-relativistic, then one obtains the equation of quantum mechanics which is the Schr¨odinger equation. In this respect, if one solves the Schr¨odinger equation, then one can properly obtain the energy eigenvalue of the corresponding potential model . Historically, however, the energy eigenvalue is obtained without solving the Schr¨odinger equation, and the most interesting method is known as the Sommerfeld quantization rule which is the semiclassical method [5–8].
    [Show full text]
  • SECOND QUANTIZATION Lecture Notes with Course Quantum Theory
    SECOND QUANTIZATION Lecture notes with course Quantum Theory Dr. P.J.H. Denteneer Fall 2008 2 SECOND QUANTIZATION x1. Introduction and history 3 x2. The N-boson system 4 x3. The many-boson system 5 x4. Identical spin-0 particles 8 x5. The N-fermion system 13 x6. The many-fermion system 14 1 x7. Identical spin- 2 particles 17 x8. Bose-Einstein and Fermi-Dirac distributions 19 Second Quantization 1. Introduction and history Second quantization is the standard formulation of quantum many-particle theory. It is important for use both in Quantum Field Theory (because a quantized field is a qm op- erator with many degrees of freedom) and in (Quantum) Condensed Matter Theory (since matter involves many particles). Identical (= indistinguishable) particles −! state of two particles must either be symmetric or anti-symmetric under exchange of the particles. 1 ja ⊗ biB = p (ja1 ⊗ b2i + ja2 ⊗ b1i) bosons; symmetric (1a) 2 1 ja ⊗ biF = p (ja1 ⊗ b2i − ja2 ⊗ b1i) fermions; anti − symmetric (1b) 2 Motivation: why do we need the \second quantization formalism"? (a) for practical reasons: computing matrix elements between N-particle symmetrized wave functions involves (N!)2 terms (integrals); see the symmetrized states below. (b) it will be extremely useful to have a formalism that can handle a non-fixed particle number N, as in the grand-canonical ensemble in Statistical Physics; especially if you want to describe processes in which particles are created and annihilated (as in typical high-energy physics accelerator experiments). So: both for Condensed Matter and High-Energy Physics this formalism is crucial! (c) To describe interactions the formalism to be introduced will be vastly superior to the wave-function- and Hilbert-space-descriptions.
    [Show full text]
  • Feynman Quantization
    3 FEYNMAN QUANTIZATION An introduction to path-integral techniques Introduction. By Richard Feynman (–), who—after a distinguished undergraduate career at MIT—had come in as a graduate student to Princeton, was deeply involved in a collaborative effort with John Wheeler (his thesis advisor) to shake the foundations of field theory. Though motivated by problems fundamental to quantum field theory, as it was then conceived, their work was entirely classical,1 and it advanced ideas so radicalas to resist all then-existing quantization techniques:2 new insight into the quantization process itself appeared to be called for. So it was that (at a beer party) Feynman asked Herbert Jehle (formerly a student of Schr¨odinger in Berlin, now a visitor at Princeton) whether he had ever encountered a quantum mechanical application of the “Principle of Least Action.” Jehle directed Feynman’s attention to an obscure paper by P. A. M. Dirac3 and to a brief passage in §32 of Dirac’s Principles of Quantum Mechanics 1 John Archibald Wheeler & Richard Phillips Feynman, “Interaction with the absorber as the mechanism of radiation,” Reviews of Modern Physics 17, 157 (1945); “Classical electrodynamics in terms of direct interparticle action,” Reviews of Modern Physics 21, 425 (1949). Those were (respectively) Part III and Part II of a projected series of papers, the other parts of which were never published. 2 See page 128 in J. Gleick, Genius: The Life & Science of Richard Feynman () for a popular account of the historical circumstances. 3 “The Lagrangian in quantum mechanics,” Physicalische Zeitschrift der Sowjetunion 3, 64 (1933). The paper is reprinted in J.
    [Show full text]
  • Second Quantization∗
    Second Quantization∗ Jörg Schmalian May 19, 2016 1 The harmonic oscillator: raising and lowering operators Lets first reanalyze the harmonic oscillator with potential m!2 V (x) = x2 (1) 2 where ! is the frequency of the oscillator. One of the numerous approaches we use to solve this problem is based on the following representation of the momentum and position operators: r x = ~ ay + a b 2m! b b r m ! p = i ~ ay − a : (2) b 2 b b From the canonical commutation relation [x;b pb] = i~ (3) follows y ba; ba = 1 y y [ba; ba] = ba ; ba = 0: (4) Inverting the above expression yields rm! i ba = xb + pb 2~ m! r y m! i ba = xb − pb (5) 2~ m! ∗Copyright Jörg Schmalian, 2016 1 y demonstrating that ba is indeed the operator adjoined to ba. We also defined the operator y Nb = ba ba (6) which is Hermitian and thus represents a physical observable. It holds m! i i Nb = xb − pb xb + pb 2~ m! m! m! 2 1 2 i = xb + pb − [p;b xb] 2~ 2m~! 2~ 2 2 1 pb m! 2 1 = + xb − : (7) ~! 2m 2 2 We therefore obtain 1 Hb = ! Nb + : (8) ~ 2 1 Since the eigenvalues of Hb are given as En = ~! n + 2 we conclude that the eigenvalues of the operator Nb are the integers n that determine the eigenstates of the harmonic oscillator. Nb jni = n jni : (9) y Using the above commutation relation ba; ba = 1 we were able to show that p a jni = n jn − 1i b p y ba jni = n + 1 jn + 1i (10) y The operator ba and ba raise and lower the quantum number (i.e.
    [Show full text]
  • Quantization of the Free Electromagnetic Field: Photons and Operators G
    Quantization of the Free Electromagnetic Field: Photons and Operators G. M. Wysin [email protected], http://www.phys.ksu.edu/personal/wysin Department of Physics, Kansas State University, Manhattan, KS 66506-2601 August, 2011, Vi¸cosa, Brazil Summary The main ideas and equations for quantized free electromagnetic fields are developed and summarized here, based on the quantization procedure for coordinates (components of the vector potential A) and their canonically conjugate momenta (components of the electric field E). Expressions for A, E and magnetic field B are given in terms of the creation and annihilation operators for the fields. Some ideas are proposed for the inter- pretation of photons at different polarizations: linear and circular. Absorption, emission and stimulated emission are also discussed. 1 Electromagnetic Fields and Quantum Mechanics Here electromagnetic fields are considered to be quantum objects. It’s an interesting subject, and the basis for consideration of interactions of particles with EM fields (light). Quantum theory for light is especially important at low light levels, where the number of light quanta (or photons) is small, and the fields cannot be considered to be continuous (opposite of the classical limit, of course!). Here I follow the traditinal approach of quantization, which is to identify the coordinates and their conjugate momenta. Once that is done, the task is straightforward. Starting from the classical mechanics for Maxwell’s equations, the fundamental coordinates and their momenta in the QM sys- tem must have a commutator defined analogous to [x, px] = i¯h as in any simple QM system. This gives the correct scale to the quantum fluctuations in the fields and any other dervied quantities.
    [Show full text]
  • Two Dimensional Supersymmetric Models and Some of Their Thermodynamic Properties from the Context of Sdlcq
    TWO DIMENSIONAL SUPERSYMMETRIC MODELS AND SOME OF THEIR THERMODYNAMIC PROPERTIES FROM THE CONTEXT OF SDLCQ DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yiannis Proestos, B.Sc., M.Sc. ***** The Ohio State University 2007 Dissertation Committee: Approved by Stephen S. Pinsky, Adviser Stanley L. Durkin Adviser Gregory Kilcup Graduate Program in Robert J. Perry Physics © Copyright by Yiannis Proestos 2007 ABSTRACT Supersymmetric Discrete Light Cone Quantization is utilized to derive the full mass spectrum of two dimensional supersymmetric theories. The thermal properties of such models are studied by constructing the density of states. We consider pure super Yang–Mills theory without and with fundamentals in large-Nc approximation. For the latter we include a Chern-Simons term to give mass to the adjoint partons. In both of the theories we find that the density of states grows exponentially and the theories have a Hagedorn temperature TH . For the pure SYM we find that TH at infi- 2 g Nc nite resolution is slightly less than one in units of π . In this temperature range, q we find that the thermodynamics is dominated by the massless states. For the system with fundamental matter we consider the thermal properties of the mesonic part of the spectrum. We find that the meson-like sector dominates the thermodynamics. We show that in this case TH grows with the gauge coupling. The temperature and coupling dependence of the free energy for temperatures below TH are calculated. As expected, the free energy for weak coupling and low temperature grows quadratically with the temperature.
    [Show full text]
  • 1 Lecture 3. Second Quantization, Bosons
    Manyb o dy phenomena in condensed matter and atomic physics Last modied September Lecture Second Quantization Bosons In this lecture we discuss second quantization a formalism that is commonly used to analyze manyb o dy problems The key ideas of this metho d were develop ed starting from the initial work of Dirac most notably by Fo ck and Jordan In this approach one thinks of multiparticle states of b osons or fermions as single particle states each lled with a certain numb er of identical particles The language of second quantization often allows to reduce the manybo dy problem to a single particle problem dened in terms of quasiparticles ie particles dressed by interactions The Fo ck space The manyb o dy problem is dened for N particles here b osons describ ed by the sum of singleparticle Hamiltonians and the twob o dy interaction Hamiltonian N X X (1) (2) H H x H x x b a a a�1 a6�b 2 h (1) (2) 0 (2) 0 2 H x H x x U x x U x r x m where x are particle co ordinates In some rare cases eg for nuclear particles one a also has to include the threeparticle and higher order multiparticle interactions such as P (3) H x x x etc a b c abc The system is describ ed by the manyb o dy wavefunction x x x symmetric 2 1 N with resp ect to the p ermutations of co ordinates x The symmetry requirement fol a lows from pareticles indestinguishability and Bose statistics ie the wav efunction invari ance under p ermutations of the particles The wavefunction x x x ob eys the 2 1 N h H Since the numb er of particles in typical
    [Show full text]