Quantization of Relativistic Free Fields

Total Page:16

File Type:pdf, Size:1020Kb

Quantization of Relativistic Free Fields Life can only be understood backwards, but it must be lived forwards. S. Kierkegaard (1813-1855) 7 Quantization of Relativistic Free Fields In Chapter 2 we have shown that quantum mechanics of the N-body Schr¨odinger equation can be replaced by a Schr¨odinger field theory, where the fields are oper- ators satisfying canonical equal-time commutation rules. They were given in Sec- tions 2.8 and 2.10 for bosons and fermions, respectively. A great advantage of this reformulation of Schr¨odinger theory was that the field quantization leads automati- cally to symmetric or antisymmetric N-body wave functions, which in Schr¨odinger theory must be imposed from the outside in order to explain atomic spectra and Bose-Einstein condensation. Here we shall generalize the procedure to relativistic particles by quantizing the free relativistic fields of the previous section following the above general rules. For each field φ(x, t) in a classical Lagrangian L(t), we define a canonical field momentum as the functional derivative (2.156) δL(t) π(x, t)= px(t)= . (7.1) δφ˙(x, t) The fields are now turned into field operators by imposing the canonical equal-time commutation rules (2.143): [φ(x, t),φ(x′, t)] = 0, (7.2) [π(x, t), π(x′, t)] = 0, (7.3) [π(x, t),φ(x′, t)] = iδ(3)(x x′). (7.4) − − For fermions, one postulates corresponding anticommutation rules. In these equations we have omitted the hat on top of the field operators, and we shall do so from now on, for brevity, since most field expressions will contain quantized fields. In the few cases which do not deal with field operators, or where it is not obvious that the fields are classical objects, we shall explicitly state this. We shall also use natural units in which c =1 andh ¯ = 1, except in some cases where CGS-units are helpful. Before implementing the commutation rules explicitly, it is useful to note that all free Lagrangians constructed in the last chapter are local, in the sense that they are given by volume integrals over a Lagrangian density L(t)= d3x (x, t), (7.5) Z L 474 7.1 Scalar Fields 475 where (x, t) is an ordinary function of the fields and their first spacetime deriva- tives. TheL functional derivative (7.1) may therefore be calculated as a partial deriva- tive of the density (x)= (x, t): L L ∂ (x) π(x)= L . (7.6) ∂φ˙(x) Similarly, the Euler-Lagrange equations may be written down using only partial derivatives ∂ (x) ∂ (x) ∂µ L = L . (7.7) ∂[∂µφ(x)] ∂φ(x) Here and in the sequel we employ a four-vector notation for all spacetime objects such as x =(x0, x), where x0 = ct coincides with the time t in natural units. The locality is an important property of all present-day quantum field theories of elementary particles. The spacetime derivatives appear usually only in quadratic terms. Since a derivative measures the difference of the field between neighbor- ing spacetime points, the field described by a local Lagrangian propagates through spacetime via a “nearest-neighbor hopping”. In field-theoretic models of solid-state systems, such couplings are useful lowest approximations to more complicated short- range interactions. In field theories of elementary particles, the locality is an essential ingredient which seems to be present in all fundamental theories. All nonlocal effects arise from higher-order perturbation expansions of local theories. 7.1 Scalar Fields We begin by quantizing the field of a spinless particle. This is a scalar field φ(x) that can be real or complex. 7.1.1 Real Case The action of the real field was given in Eq. (4.167). As we shall see in Subsec. 7.1.6, and even better in Subsec. 8.11.1, the quanta of the real field are neutral spinless particles. For the canonical quantization we must use the real-field Lagrangian density (4.169) in which only first derivatives of the field occur: 1 (x)= [∂φ(x)]2 M 2φ2(x) . (7.8) L 2{ − } The associated Euler-Lagrange equation is the Klein-Gordon equation (4.170): ( ∂2 M 2)φ(x)=0. (7.9) − − 7.1.2 Field Quantization According to the rule (7.6), the canonical momentum of the field is ∂ (x) π(x)= L = ∂0φ(x)= φ˙(x). (7.10) ∂φ˙(x) 476 7 Quantization of Relativistic Free Fields As in the case of non-relativistic fields, the quantization rules (7.2)–(7.4) will even- tually render a multiparticle Hilbert space. To find it we expand the field operator φ(x, t) in normalized plane-wave solutions (4.180) of the field equation (7.9): ∗ † φ(x)= fp(x)ap + fp(x)ap . (7.11) p X h i Observe that in contrast to a corresponding expansion (2.209) of the nonrelativis- tic Schr¨odinger field, the right-hand side contains operators for the creation and annihilation of particles. This is an automatic consequence of the fact that the quantizations of φ(x) and π(x) lead to Hermitian field operators, and this is natural for quantum fields in the relativistic setting, which necessarily allow for the cre- ∗ ation and annihilation of particles. Inserting for fp(x) and fp(x) the explicit wave functions (4.180), the expansion (7.11) reads 1 φ(x)= (e−ipxa + eipxa† ). (7.12) 0 p p p √2p V X Since the zeroth component of the four-momentum pµ in the exponent is on the mass shell, we should write px more explicitly as px = ωpt px. However, the notation − px is shorter, and there is little danger of confusion. If there is such a danger, we 0 shall explicitly state the off- or on-shell property p = ωp. The expansions (7.11) and (7.12) are complete in the Hilbert space of free par- † ticles. They may be inverted for ap and ap with the help of the orthonormality relations (4.177), which lead to the scalar products † ∗ a =(fp,φ) , ap = (f ,φ). (7.13) p t − p More explicitly, these can be written as ap 0 1 = e±ip x0 d3x e∓ipx iπ(x)+ p0φ(x) , (7.14) ( a† ) √2Vp0 ± p Z h i where we have inserted π(x)= φ˙(x). Using the canonical field commutation rules (7.2)–(7.4) between φ(x) and π(x), we find for the coefficients of the plane-wave expansion (7.12) the commutation relations † † [ap, ap′ ] = ap, ap′ =0, † h i ap, ap′ = δp,p′ , (7.15) h i making them creation and annihilation operators of particles of momentum p on a vacuum state 0 defined by ap 0 = 0. Conversely, reinserting (7.15) into (7.12), we | i | i verify the original local field commutation rules (7.2)–(7.4). 7.1 Scalar Fields 477 In an infinite volume one often uses, in (7.11), the wave functions (4.181) with continuous momenta, and works with a plane-wave decomposition in the form of a Fourier integral d3p 1 φ(x)= e−ipxa + eipxa† , (7.16) (2π)3 2p0 p p Z with the identification [recall (2.217)] 0 † 0 † ap = 2p V ap, ap = 2p V ap. (7.17) q q The inverse of the expansion is now 0 ap ±ip x0 3 ∓ipx 0 † = e d x e iπ(x)+ p φ(x) . (7.18) ( ap ) ± Z h i This can of course be written in the same form as in (7.13), using the orthogonality relations (4.182) for continuous-momentum wave functions (4.181): † ∗ a = (fp,φ) , ap = (f ,φ) . (7.19) p t − p t In the expansion (7.11), the commutators (7.15) are valid after the replacement 0 -(3) ′ 0 3 (3) ′ δp p′ 2p δ (p p )=2p (2πh¯) δ (p p ), (7.20) , → − − which is a consequence of (1.190) and (1.196). In the following we shall always prefer to work with a finite volume and sums over p. If we want to find the large-volume limit of any formula, we can always go over to the continuum limit by replacing the sums, as in (2.257), by phase space integrals: 3 V d p 3 , (7.21) p → (2πh¯) X Z 3 (2πh¯) (3) ′ δp p′ δ (p p ). (7.22) , → V − After the replacement (7.17), the volume V disappears in all physical quantities. A single-particle state of a fixed momentum p is created by p = a† 0 . (7.23) | i p| i Its wave function is obtained from the matrix elements of the field 1 −ipx 0 φ(x) p = e = fp(x), h | | i √2Vp0 1 p φ(x) 0 = eipx = f ∗(x). (7.24) h | | i √2Vp0 p 478 7 Quantization of Relativistic Free Fields As in the nonrelativistic case, the second-quantized Hilbert space is obtained by applying the particle creation operators a† to the vacuum state 0 , defined by p | i a† 0 = 0. This produces basis states (2.219): p| i S,A † np † np np np ...np = (ˆa ) 1 (ˆa ) k 0 . (7.25) | 1 2 k i N p1 ··· pk | i Multiparticle wave functions are obtained by matrix elements of the type (2.221). The single-particle states are p =a† 0 . (7.26) | i p| i They satisfy the orthogonality relation (p′ p)=2p0 δ-(3)(p′ p). (7.27) | − Their wave functions are −ipx (0 φ(x) p) = e =fp(x), | | (p φ(x) 0) = eipx =f∗(x). (7.28) | | p Energy of Free Neutral Scalar Particles On account of the local structure (7.5) of the Lagrangian, also the Hamiltonian can be written as a volume integral H = d3x (x).
Recommended publications
  • Quantum Field Theory with No Zero-Point Energy
    Published for SISSA by Springer Received: March 16, 2018 Revised: May 20, 2018 Accepted: May 27, 2018 Published: May 30, 2018 JHEP05(2018)191 Quantum field theory with no zero-point energy John R. Klauder Department of Physics, University of Florida, Gainesville, FL 32611-8440, U.S.A. Department of Mathematics, University of Florida, Gainesville, FL 32611-8440, U.S.A. E-mail: [email protected] Abstract: Traditional quantum field theory can lead to enormous zero-point energy, which markedly disagrees with experiment. Unfortunately, this situation is built into con- ventional canonical quantization procedures. For identical classical theories, an alternative quantization procedure, called affine field quantization, leads to the desirable feature of having a vanishing zero-point energy. This procedure has been applied to renormalizable and nonrenormalizable covariant scalar fields, fermion fields, as well as general relativity. Simpler models are offered as an introduction to affine field quantization. Keywords: Nonperturbative Effects, Renormalization Regularization and Renormalons, Models of Quantum Gravity ArXiv ePrint: 1803.05823 Open Access, c The Authors. 3 https://doi.org/10.1007/JHEP05(2018)191 Article funded by SCOAP . Contents 1 Introduction 1 2 Nonrenormalizable models exposed 2 3 Ultralocal scalar model: a nonrenormalizable example 3 4 Additional studies using affine variables 5 JHEP05(2018)191 1 Introduction The source of zero-point energy for a free scalar field is readily canceled by normal order- ing of the Hamiltonian operator, which leaves every term with an annihilation operator. Unfortunately, for a non-free scalar field, say with a quartic potential term, normal order- ing cannot eliminate the zero-point energy since there is always a term composed only of creation operators.
    [Show full text]
  • An Introduction to Quantum Field Theory
    AN INTRODUCTION TO QUANTUM FIELD THEORY By Dr M Dasgupta University of Manchester Lecture presented at the School for Experimental High Energy Physics Students Somerville College, Oxford, September 2009 - 1 - - 2 - Contents 0 Prologue....................................................................................................... 5 1 Introduction ................................................................................................ 6 1.1 Lagrangian formalism in classical mechanics......................................... 6 1.2 Quantum mechanics................................................................................... 8 1.3 The Schrödinger picture........................................................................... 10 1.4 The Heisenberg picture............................................................................ 11 1.5 The quantum mechanical harmonic oscillator ..................................... 12 Problems .............................................................................................................. 13 2 Classical Field Theory............................................................................. 14 2.1 From N-point mechanics to field theory ............................................... 14 2.2 Relativistic field theory ............................................................................ 15 2.3 Action for a scalar field ............................................................................ 15 2.4 Plane wave solution to the Klein-Gordon equation ...........................
    [Show full text]
  • Arxiv:Cond-Mat/0203258V1 [Cond-Mat.Str-El] 12 Mar 2002 AS 71.10.-W,71.27.+A PACS: Pnpolmi Oi Tt Hsc.Iscoeconnection Close Its High- of Physics
    Large-N expansion based on the Hubbard-operator path integral representation and its application to the t J model − Adriana Foussats and Andr´es Greco Facultad de Ciencias Exactas Ingenier´ıa y Agrimensura and Instituto de F´ısica Rosario (UNR-CONICET). Av.Pellegrini 250-2000 Rosario-Argentina. (October 29, 2018) In the present work we have developed a large-N expansion for the t − J model based on the path integral formulation for Hubbard-operators. Our large-N expansion formulation contains diagram- matic rules, in which the propagators and vertex are written in term of Hubbard operators. Using our large-N formulation we have calculated, for J = 0, the renormalized O(1/N) boson propagator. We also have calculated the spin-spin and charge-charge correlation functions to leading order 1/N. We have compared our diagram technique and results with the existing ones in the literature. PACS: 71.10.-w,71.27.+a I. INTRODUCTION this constrained theory leads to the commutation rules of the Hubbard-operators. Next, by using path-integral The role of electronic correlations is an important and techniques, the correlation functional and effective La- open problem in solid state physics. Its close connection grangian were constructed. 1 with the phenomena of high-Tc superconductivity makes In Ref.[ 11], we found a particular family of constrained this problem relevant in present days. Lagrangians and showed that the corresponding path- One of the most popular models in the context of high- integral can be mapped to that of the slave-boson rep- 13,5 Tc superconductivity is the t J model.
    [Show full text]
  • Stochastic Quantization of Fermionic Theories: Renormalization of the Massive Thirring Model
    Instituto de Física Teórica IFT Universidade Estadual Paulista October/92 IFT-R043/92 Stochastic Quantization of Fermionic Theories: Renormalization of the Massive Thirring Model J.C.Brunelli Instituto de Física Teórica Universidade Estadual Paulista Rua Pamplona, 145 01405-900 - São Paulo, S.P. Brazil 'This work was supported by CNPq. Instituto de Física Teórica Universidade Estadual Paulista Rua Pamplona, 145 01405 - Sao Paulo, S.P. Brazil Telephone: 55 (11) 288-5643 Telefax: 55(11)36-3449 Telex: 55 (11) 31870 UJMFBR Electronic Address: [email protected] 47553::LIBRARY Stochastic Quantization of Fermionic Theories: 1. Introduction Renormalization of the Massive Thimng Model' The stochastic quantization method of Parisi-Wu1 (for a review see Ref. 2) when applied to fermionic theories usually requires the use of a Langevin system modified by the introduction of a kernel3 J. C. Brunelli (1.1a) InBtituto de Física Teórica (1.16) Universidade Estadual Paulista Rua Pamplona, 145 01405 - São Paulo - SP where BRAZIL l = 2Kah(x,x )8(t - ?). (1.2) Here tj)1 tp and the Gaussian noises rj, rj are independent Grassmann variables. K(xty) is the aforementioned kernel which ensures the proper equilibrium limit configuration for Accepted for publication in the International Journal of Modern Physics A. mas si ess theories. The specific form of the kernel is quite arbitrary but in what follows, we use K(x,y) = Sn(x-y)(-iX + ™)- Abstract In a number of cases, it has been verified that the stochastic quantization procedure does not bring new anomalies and that the equilibrium limit correctly reproduces the basic (jJsfsini g the Langevin approach for stochastic processes we study the renormalizability properties of the models considered4.
    [Show full text]
  • Quantum Field Theory*
    Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement.
    [Show full text]
  • Feynman Diagrams, Momentum Space Feynman Rules, Disconnected Diagrams, Higher Correlation Functions
    PHY646 - Quantum Field Theory and the Standard Model Even Term 2020 Dr. Anosh Joseph, IISER Mohali LECTURE 05 Tuesday, January 14, 2020 Topics: Feynman Diagrams, Momentum Space Feynman Rules, Disconnected Diagrams, Higher Correlation Functions. Feynman Diagrams We can use the Wick’s theorem to express the n-point function h0jT fφ(x1)φ(x2) ··· φ(xn)gj0i as a sum of products of Feynman propagators. We will be interested in developing a diagrammatic interpretation of such expressions. Let us look at the expression containing four fields. We have h0jT fφ1φ2φ3φ4g j0i = DF (x1 − x2)DF (x3 − x4) +DF (x1 − x3)DF (x2 − x4) +DF (x1 − x4)DF (x2 − x3): (1) We can interpret Eq. (1) as the sum of three diagrams, if we represent each of the points, x1 through x4 by a dot, and each factor DF (x − y) by a line joining x to y. These diagrams are called Feynman diagrams. In Fig. 1 we provide the diagrammatic interpretation of Eq. (1). The interpretation of the diagrams is the following: particles are created at two spacetime points, each propagates to one of the other points, and then they are annihilated. This process can happen in three different ways, and they correspond to the three ways to connect the points in pairs, as shown in the three diagrams in Fig. 1. Thus the total amplitude for the process is the sum of these three diagrams. PHY646 - Quantum Field Theory and the Standard Model Even Term 2020 ⟨0|T {ϕ1ϕ2ϕ3ϕ4}|0⟩ = DF(x1 − x2)DF(x3 − x4) + DF(x1 − x3)DF(x2 − x4) +DF(x1 − x4)DF(x2 − x3) 1 2 1 2 1 2 + + 3 4 3 4 3 4 Figure 1: Diagrammatic interpretation of Eq.
    [Show full text]
  • An Introduction to Supersymmetry
    An Introduction to Supersymmetry Ulrich Theis Institute for Theoretical Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, D–07743 Jena, Germany [email protected] This is a write-up of a series of five introductory lectures on global supersymmetry in four dimensions given at the 13th “Saalburg” Summer School 2007 in Wolfersdorf, Germany. Contents 1 Why supersymmetry? 1 2 Weyl spinors in D=4 4 3 The supersymmetry algebra 6 4 Supersymmetry multiplets 6 5 Superspace and superfields 9 6 Superspace integration 11 7 Chiral superfields 13 8 Supersymmetric gauge theories 17 9 Supersymmetry breaking 22 10 Perturbative non-renormalization theorems 26 A Sigma matrices 29 1 Why supersymmetry? When the Large Hadron Collider at CERN takes up operations soon, its main objective, besides confirming the existence of the Higgs boson, will be to discover new physics beyond the standard model of the strong and electroweak interactions. It is widely believed that what will be found is a (at energies accessible to the LHC softly broken) supersymmetric extension of the standard model. What makes supersymmetry such an attractive feature that the majority of the theoretical physics community is convinced of its existence? 1 First of all, under plausible assumptions on the properties of relativistic quantum field theories, supersymmetry is the unique extension of the algebra of Poincar´eand internal symmtries of the S-matrix. If new physics is based on such an extension, it must be supersymmetric. Furthermore, the quantum properties of supersymmetric theories are much better under control than in non-supersymmetric ones, thanks to powerful non- renormalization theorems.
    [Show full text]
  • Perturbation Theory and Exact Solutions
    PERTURBATION THEORY AND EXACT SOLUTIONS by J J. LODDER R|nhtdnn Report 76~96 DISSIPATIVE MOTION PERTURBATION THEORY AND EXACT SOLUTIONS J J. LODOER ASSOCIATIE EURATOM-FOM Jun»»76 FOM-INST1TUUT VOOR PLASMAFYSICA RUNHUIZEN - JUTPHAAS - NEDERLAND DISSIPATIVE MOTION PERTURBATION THEORY AND EXACT SOLUTIONS by JJ LODDER R^nhuizen Report 76-95 Thisworkwat performed at part of th«r«Mvchprogmmncof thcHMCiattofiafrccmentof EnratoniOTd th« Stichting voor FundtmenteelOiutereoek der Matctk" (FOM) wtihnnmcWMppoft from the Nederhmdie Organiutic voor Zuiver Wetemchap- pcigk Onderzoek (ZWO) and Evntom It it abo pabHtfMd w a the* of Ac Univenrty of Utrecht CONTENTS page SUMMARY iii I. INTRODUCTION 1 II. GENERALIZED FUNCTIONS DEFINED ON DISCONTINUOUS TEST FUNC­ TIONS AND THEIR FOURIER, LAPLACE, AND HILBERT TRANSFORMS 1. Introduction 4 2. Discontinuous test functions 5 3. Differentiation 7 4. Powers of x. The partie finie 10 5. Fourier transforms 16 6. Laplace transforms 20 7. Hubert transforms 20 8. Dispersion relations 21 III. PERTURBATION THEORY 1. Introduction 24 2. Arbitrary potential, momentum coupling 24 3. Dissipative equation of motion 31 4. Expectation values 32 5. Matrix elements, transition probabilities 33 6. Harmonic oscillator 36 7. Classical mechanics and quantum corrections 36 8. Discussion of the Pu strength function 38 IV. EXACTLY SOLVABLE MODELS FOR DISSIPATIVE MOTION 1. Introduction 40 2. General quadratic Kami1tonians 41 3. Differential equations 46 4. Classical mechanics and quantum corrections 49 5. Equation of motion for observables 51 V. SPECIAL QUADRATIC HAMILTONIANS 1. Introduction 53 2. Hamiltcnians with coordinate coupling 53 3. Double coordinate coupled Hamiltonians 62 4. Symmetric Hamiltonians 63 i page VI. DISCUSSION 1. Introduction 66 ?.
    [Show full text]
  • Second Quantization
    Chapter 1 Second Quantization 1.1 Creation and Annihilation Operators in Quan- tum Mechanics We will begin with a quick review of creation and annihilation operators in the non-relativistic linear harmonic oscillator. Let a and a† be two operators acting on an abstract Hilbert space of states, and satisfying the commutation relation a,a† = 1 (1.1) where by “1” we mean the identity operator of this Hilbert space. The operators a and a† are not self-adjoint but are the adjoint of each other. Let α be a state which we will take to be an eigenvector of the Hermitian operators| ia†a with eigenvalue α which is a real number, a†a α = α α (1.2) | i | i Hence, α = α a†a α = a α 2 0 (1.3) h | | i k | ik ≥ where we used the fundamental axiom of Quantum Mechanics that the norm of all states in the physical Hilbert space is positive. As a result, the eigenvalues α of the eigenstates of a†a must be non-negative real numbers. Furthermore, since for all operators A, B and C [AB, C]= A [B, C] + [A, C] B (1.4) we get a†a,a = a (1.5) − † † † a a,a = a (1.6) 1 2 CHAPTER 1. SECOND QUANTIZATION i.e., a and a† are “eigen-operators” of a†a. Hence, a†a a = a a†a 1 (1.7) − † † † † a a a = a a a +1 (1.8) Consequently we find a†a a α = a a†a 1 α = (α 1) a α (1.9) | i − | i − | i Hence the state aα is an eigenstate of a†a with eigenvalue α 1, provided a α = 0.
    [Show full text]
  • Canonical Quantization of the Self-Dual Model Coupled to Fermions∗
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Canonical Quantization of the Self-Dual Model coupled to Fermions∗ H. O. Girotti Instituto de F´ısica, Universidade Federal do Rio Grande do Sul Caixa Postal 15051, 91501-970 - Porto Alegre, RS, Brazil. (March 1998) Abstract This paper is dedicated to formulate the interaction picture dynamics of the self-dual field minimally coupled to fermions. To make this possible, we start by quantizing the free self-dual model by means of the Dirac bracket quantization procedure. We obtain, as result, that the free self-dual model is a relativistically invariant quantum field theory whose excitations are identical to the physical (gauge invariant) excitations of the free Maxwell-Chern-Simons theory. The model describing the interaction of the self-dual field minimally cou- pled to fermions is also quantized through the Dirac-bracket quantization procedure. One of the self-dual field components is found not to commute, at equal times, with the fermionic fields. Hence, the formulation of the in- teraction picture dynamics is only possible after the elimination of the just mentioned component. This procedure brings, in turns, two new interac- tions terms, which are local in space and time while non-renormalizable by power counting. Relativistic invariance is tested in connection with the elas- tic fermion-fermion scattering amplitude. We prove that all the non-covariant pieces in the interaction Hamiltonian are equivalent to the covariant minimal interaction of the self-dual field with the fermions. The high energy behavior of the self-dual field propagator corroborates that the coupled theory is non- renormalizable.
    [Show full text]
  • General Quantization
    General quantization David Ritz Finkelstein∗ October 29, 2018 Abstract Segal’s hypothesis that physical theories drift toward simple groups follows from a general quantum principle and suggests a general quantization process. I general- quantize the scalar meson field in Minkowski space-time to illustrate the process. The result is a finite quantum field theory over a quantum space-time with higher symmetry than the singular theory. Multiple quantification connects the levels of the theory. 1 Quantization as regularization Quantum theory began with ad hoc regularization prescriptions of Planck and Bohr to fit the weird behavior of the electromagnetic field and the nuclear atom and to handle infinities that blocked earlier theories. In 1924 Heisenberg discovered that one small change in algebra did both naturally. In the early 1930’s he suggested extending his algebraic method to space-time, to regularize field theory, inspiring the pioneering quantum space-time of Snyder [43]. Dirac’s historic quantization program for gravity also eliminated absolute space-time points from the quantum theory of gravity, leading Bergmann too to say that the world point itself possesses no physical reality [5, 6]. arXiv:quant-ph/0601002v2 22 Jan 2006 For many the infinities that still haunt physics cry for further and deeper quanti- zation, but there has been little agreement on exactly what and how far to quantize. According to Segal canonical quantization continued a drift of physical theory toward simple groups that special relativization began. He proposed on Darwinian grounds that further quantization should lead to simple groups [32]. Vilela Mendes initiated the work in that direction [37].
    [Show full text]
  • Arxiv:1809.04416V1 [Physics.Gen-Ph]
    Path integral and Sommerfeld quantization Mikoto Matsuda1, ∗ and Takehisa Fujita2, † 1Japan Health and Medical technological college, Tokyo, Japan 2College of Science and Technology, Nihon University, Tokyo, Japan (Dated: September 13, 2018) The path integral formulation can reproduce the right energy spectrum of the harmonic oscillator potential, but it cannot resolve the Coulomb potential problem. This is because the path integral cannot properly take into account the boundary condition, which is due to the presence of the scattering states in the Coulomb potential system. On the other hand, the Sommerfeld quantization can reproduce the right energy spectrum of both harmonic oscillator and Coulomb potential cases since the boundary condition is effectively taken into account in this semiclassical treatment. The basic difference between the two schemes should be that no constraint is imposed on the wave function in the path integral while the Sommerfeld quantization rule is derived by requiring that the state vector should be a single-valued function. The limitation of the semiclassical method is also clarified in terms of the square well and δ(x) function potential models. PACS numbers: 25.85.-w,25.85.Ec I. INTRODUCTION Quantum field theory is the basis of modern theoretical physics and it is well established by now [1–4]. If the kinematics is non-relativistic, then one obtains the equation of quantum mechanics which is the Schr¨odinger equation. In this respect, if one solves the Schr¨odinger equation, then one can properly obtain the energy eigenvalue of the corresponding potential model . Historically, however, the energy eigenvalue is obtained without solving the Schr¨odinger equation, and the most interesting method is known as the Sommerfeld quantization rule which is the semiclassical method [5–8].
    [Show full text]