Two Dimensional Supersymmetric Models and Some of Their Thermodynamic Properties from the Context of Sdlcq

Total Page:16

File Type:pdf, Size:1020Kb

Two Dimensional Supersymmetric Models and Some of Their Thermodynamic Properties from the Context of Sdlcq TWO DIMENSIONAL SUPERSYMMETRIC MODELS AND SOME OF THEIR THERMODYNAMIC PROPERTIES FROM THE CONTEXT OF SDLCQ DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yiannis Proestos, B.Sc., M.Sc. ***** The Ohio State University 2007 Dissertation Committee: Approved by Stephen S. Pinsky, Adviser Stanley L. Durkin Adviser Gregory Kilcup Graduate Program in Robert J. Perry Physics © Copyright by Yiannis Proestos 2007 ABSTRACT Supersymmetric Discrete Light Cone Quantization is utilized to derive the full mass spectrum of two dimensional supersymmetric theories. The thermal properties of such models are studied by constructing the density of states. We consider pure super Yang–Mills theory without and with fundamentals in large-Nc approximation. For the latter we include a Chern-Simons term to give mass to the adjoint partons. In both of the theories we find that the density of states grows exponentially and the theories have a Hagedorn temperature TH . For the pure SYM we find that TH at infi- 2 g Nc nite resolution is slightly less than one in units of π . In this temperature range, q we find that the thermodynamics is dominated by the massless states. For the system with fundamental matter we consider the thermal properties of the mesonic part of the spectrum. We find that the meson-like sector dominates the thermodynamics. We show that in this case TH grows with the gauge coupling. The temperature and coupling dependence of the free energy for temperatures below TH are calculated. As expected, the free energy for weak coupling and low temperature grows quadratically with the temperature. The ratio of free energies at strong coupling compared to weak coupling, rs w, for low temperatures grows quadratically with T. Our data indicate − that rs w tends to zero in the continuum at low temperatures. Finally a super-QCD − model realized from weakly coupled D3-D7 branes is proposed as a future project in SDLCQ. ii To my sweet wife and life superpartner Lefkoula from my heart! iii ACKNOWLEDGMENTS The first person that I am indebted to and wish to express my deepest gratitude is my advisor, Stephen Pinsky, who cordially welcomed me to his research group and introduced me to the beautiful fields of supersymmetry and SDLCQ. His constant guidance, enthusiasm and experience in explaining complex things in a simple manner undoubtedly helped me to accomplish this work. Moreover, something which I will never forget is that with his always positive attitude was helping me overcome stressful situations related to my research. In addition, I would like to give many thanks to my collaborators, John Hiller, Nathan Salwen and Uwe Trittmann, without whom the results of my research would have not been made possible. A special thank you goes to Uwe for his insightful comments and support during our multi-hour discussions. In particular, I frankly thank my cohort Moto Harada for the fruitful and always friendly conversations. Finally, I would like to convey my wholehearted and sincere thankfulness to my family. Especially to my wife Lefki who always supported and boosted me with her immense love, patience and understanding during my journey at The Ohio State University. And foremost to my parents, Haralambos and Aglaia, who despite their sufferings, always taught me that dignity and humility is above any degree and made everything they could possibly do in order for me to have a good education. The support from both my sweet wife and my beloved parents was the single critical factor for me being in the position I am today. iv VITA July 19, 1975 ..............................Born - Lemesos, CYPRUS 1999 .......................................B.Sc. Physics, University of Cyprus 2001 .......................................M.Sc. Physics, University of Cyprus 2001-present ...............................Graduate Teaching Associate, The Ohio State University. PUBLICATIONS Research Publications J. R. Hiller, S. Pinsky, Y. Proestos, N. Salwen, U. Trittmann, Spectrum and ther- modynamic properties of the = (1, 1) SYM coupled to fundamental matter and N 1+1 Chern-Simons form, Phys. Rev. D70(4) (2007), [arXiv:hep-th/0702071]. J. R. Hiller, S. Pinsky, Y. Proestos, N. Salwen, = (1, 1) super Yang-Mills the- N ory in 1+1 dimensions at finite temperature, Phys. Rev. D70 (2004) 065012, [arXiv:hep-th/0407076]. A. Bode, H. Panagopoulos, Y. Proestos, (a) improved QCD: The Three loop beta O function, and the critical hopping parameter, Nucl. Phys. Proc. Suppl. 106 (2002) 832, [arXiv:hep-lat/0110225]. H. Panagopoulos, Y. Proestos, The Critical hopping parameter in (a) improved O lattice QCD, Phys. Rev. D65 (2002) 014511, [arXiv:hep-lat/0108021]. v FIELDS OF STUDY Major Field: Physics Specialization: Elementary Particles and High Energy Theory vi TABLE OF CONTENTS Page Abstract....................................... ii Dedication...................................... iii Acknowledgments.................................. iv Vita ......................................... v ListofTables .................................... x ListofFigures ................................... xii Chapters: 1. Introduction.................................. 1 2. Introductory remarks on Super Quantum Mechanics . ..... 8 2.1 FormulationofSUSYQM . 10 2.1.1 A first glimpse of superspace in quantum mechanics . 10 2.1.2 =2 SUSYQM: Action, Supercharges and hamiltonian . 16 N 2.1.3 PropertiesofSUSYQM . 18 2.1.4 SUSYQM in action: An example . 23 2.2 Supersymmetry breaking and non-zero temperature effects..... 26 2.2.1 Witten’s index and SUSYQM . 26 2.2.2 β regularization of the Witten Index . 30 − 2.2.3 SUSYQM and finite temperature effects . 33 2.3 Discussion................................ 39 vii 3. Abriefpreviewof(S)DLCQ . 40 3.1 LightConeparametrization . 40 3.2 Supersymmetric Discrete Light Cone Quantization: A few details . 43 3.2.1 QuantizationrulesontheLightCone. 44 3.3 Formulation of the supersymmetric bound state problem . ..... 46 3.3.1 Matrixstructureofsupercharges . 48 3.3.2 An example: pure super Yang-Mills theory meets SDLCQ . 51 3.4 Statistical Mechanics on the Light Cone . 54 3.5 Discussion................................ 56 4. SYM-ThermodynamicpropertiesI . 59 4.1 The pure super Yang–Mills model . 62 4.2 Densityofstates ............................ 65 4.3 Numerical results for the density of states . 66 4.4 Finite temperature in 1+1 dimensions . 70 4.5 Discussion................................ 73 5. SYM-ThermodynamicpropertiesII . 77 5.1 SYM with fundamental matter and Chern-Simons 3-form. 80 5.1.1 Formulation of the theory and its supercharges . 80 5.1.2 SDLCQ eigenvalue problem . 84 5.2 Mesonandglueballspectra . 87 5.2.1 Limitingcases ......................... 87 5.2.2 Comparison of meson and glueball spectra . 91 5.3 Density of states and Hagedorn temperatures revisited . ...... 94 5.3.1 A method of estimating the density of states . 95 5.3.2 Fitstothespectrum . 98 5.3.3 Hagedorntemperature . 104 5.4 Finite temperature results in 1+1 dimensions . 106 5.4.1 Thefreeenergy......................... 106 5.4.2 An analytic result: The free energy for the free theory . 110 5.4.3 Numerical results for nonzero coupling . 112 5.4.4 Temperature dependence of the free energy . 112 5.4.5 Coupling dependence of the free energy . 115 5.5 Discussion................................ 123 viii 6. A possible future direction for SDLCQ calculations . ....... 127 6.1 =2 Super QCD in d =3+1 from D3-D7 branes . .. 130 N 6.2 Supercurrentandsupercharges . 136 6.3 Quantization rules and momentum space expansions . 139 6.4 A comment regarding the expansion of Q± .............. 142 6.5 Discussion................................ 145 Appendices: A. UsefulresultsrelatedtoSUSYQM . 147 A.1 Component field variations under supersymmetry transformations . 147 A.2 Thesuperchagres............................ 148 A.3 Deriving the hamiltonian . 151 A.4 Witten index: Discrete spectrum cases . 151 A.5 Witten index: Continuous distribution of states . ..... 152 A.6 Various derivations regarding the finite temperature model . 154 B. Gamma matrices and Spinors in arbitrary spacetimes . ...... 158 B.1 Generalremarks ............................ 158 B.2 Equivalencerelations. 162 B.3 Minimal or irreducible spinors . 168 B.4 Extended superalgebra from dimensional compactification ..... 172 B.5 Four dimensional Majorana and Weyl representations in light cone coordinates ............................... 176 C. Conventions and derivations for Chapters 4 and 5 . ..... 179 C.1 Constraintequationforthegaugeboson . 179 C.2 The pure super Yang-Mills conserved current . 183 C.3 Free gas thermodynamics in D spacetime dimensions . 187 Bibliography .................................... 190 ix LIST OF TABLES Table Page 5.1 The free energy as a function of the temperature in the meson and the glueballsectorsinthefreetheory. 112 5.2 Free energy as a function of temperature T at K = 14 in the -even T sector for weak coupling, g = 0.1: ˜ is obtained by summing Fspect. over the eigenvalues in the interval M 2 [0.00001, 9.10283]κ2; ˜ ∈ Ffit is obtained by the DoS method described in Section 5.3.1. ˜< and Ffit ˜ are the contributions to the latter states below the mass gap (i.e., F0 M 2 < 0.00113κ2) and of a single supersymmetric massless state, re- spectively. ................................. 115 5.3 Results for free energy as a function of temperature T at K = 16 and strong coupling, g =4.0. ˜ corresponds to the overall free energy F including both symmetry sectors. The
Recommended publications
  • The Particle Zoo
    219 8 The Particle Zoo 8.1 Introduction Around 1960 the situation in particle physics was very confusing. Elementary particlesa such as the photon, electron, muon and neutrino were known, but in addition many more particles were being discovered and almost any experiment added more to the list. The main property that these new particles had in common was that they were strongly interacting, meaning that they would interact strongly with protons and neutrons. In this they were different from photons, electrons, muons and neutrinos. A muon may actually traverse a nucleus without disturbing it, and a neutrino, being electrically neutral, may go through huge amounts of matter without any interaction. In other words, in some vague way these new particles seemed to belong to the same group of by Dr. Horst Wahl on 08/28/12. For personal use only. particles as the proton and neutron. In those days proton and neutron were mysterious as well, they seemed to be complicated compound states. At some point a classification scheme for all these particles including proton and neutron was introduced, and once that was done the situation clarified considerably. In that Facts And Mysteries In Elementary Particle Physics Downloaded from www.worldscientific.com era theoretical particle physics was dominated by Gell-Mann, who contributed enormously to that process of systematization and clarification. The result of this massive amount of experimental and theoretical work was the introduction of quarks, and the understanding that all those ‘new’ particles as well as the proton aWe call a particle elementary if we do not know of a further substructure.
    [Show full text]
  • Arxiv:Cond-Mat/0203258V1 [Cond-Mat.Str-El] 12 Mar 2002 AS 71.10.-W,71.27.+A PACS: Pnpolmi Oi Tt Hsc.Iscoeconnection Close Its High- of Physics
    Large-N expansion based on the Hubbard-operator path integral representation and its application to the t J model − Adriana Foussats and Andr´es Greco Facultad de Ciencias Exactas Ingenier´ıa y Agrimensura and Instituto de F´ısica Rosario (UNR-CONICET). Av.Pellegrini 250-2000 Rosario-Argentina. (October 29, 2018) In the present work we have developed a large-N expansion for the t − J model based on the path integral formulation for Hubbard-operators. Our large-N expansion formulation contains diagram- matic rules, in which the propagators and vertex are written in term of Hubbard operators. Using our large-N formulation we have calculated, for J = 0, the renormalized O(1/N) boson propagator. We also have calculated the spin-spin and charge-charge correlation functions to leading order 1/N. We have compared our diagram technique and results with the existing ones in the literature. PACS: 71.10.-w,71.27.+a I. INTRODUCTION this constrained theory leads to the commutation rules of the Hubbard-operators. Next, by using path-integral The role of electronic correlations is an important and techniques, the correlation functional and effective La- open problem in solid state physics. Its close connection grangian were constructed. 1 with the phenomena of high-Tc superconductivity makes In Ref.[ 11], we found a particular family of constrained this problem relevant in present days. Lagrangians and showed that the corresponding path- One of the most popular models in the context of high- integral can be mapped to that of the slave-boson rep- 13,5 Tc superconductivity is the t J model.
    [Show full text]
  • Localization at Large N †
    NORDITA-2013-97 UUITP-21/13 Localization at Large N † J.G. Russo1;2 and K. Zarembo3;4;5 1 Instituci´oCatalana de Recerca i Estudis Avan¸cats(ICREA), Pg. Lluis Companys, 23, 08010 Barcelona, Spain 2 Department ECM, Institut de Ci`enciesdel Cosmos, Universitat de Barcelona, Mart´ıFranqu`es,1, 08028 Barcelona, Spain 3Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden 4Department of Physics and Astronomy, Uppsala University SE-751 08 Uppsala, Sweden 5Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow, Russia [email protected], [email protected] Abstract We review how localization is used to probe holographic duality and, more generally, non-perturbative dynamics of four-dimensional N = 2 supersymmetric gauge theories in the planar large-N limit. 1 Introduction 5 String theory on AdS5 × S gives a holographic description of the superconformal N = 4 Yang- arXiv:1312.1214v1 [hep-th] 4 Dec 2013 Mills (SYM) through the AdS/CFT correspondence [1]. This description is exact, it maps 5 correlation functions in SYM, at any coupling, to string amplitudes in AdS5 × S . Gauge- string duality for less supersymmetric and non-conformal theories is at present less systematic, and is mostly restricted to the classical gravity approximation, which in the dual field theory corresponds to the extreme strong-coupling regime. For this reason, any direct comparison of holography with the underlying field theory requires non-perturbative input on the field-theory side. There are no general methods, of course, but in the basic AdS/CFT context a variety of tools have been devised to gain insight into the strong-coupling behavior of N = 4 SYM, †Talk by K.Z.
    [Show full text]
  • Identical Particles
    8.06 Spring 2016 Lecture Notes 4. Identical particles Aram Harrow Last updated: May 19, 2016 Contents 1 Fermions and Bosons 1 1.1 Introduction and two-particle systems .......................... 1 1.2 N particles ......................................... 3 1.3 Non-interacting particles .................................. 5 1.4 Non-zero temperature ................................... 7 1.5 Composite particles .................................... 7 1.6 Emergence of distinguishability .............................. 9 2 Degenerate Fermi gas 10 2.1 Electrons in a box ..................................... 10 2.2 White dwarves ....................................... 12 2.3 Electrons in a periodic potential ............................. 16 3 Charged particles in a magnetic field 21 3.1 The Pauli Hamiltonian ................................... 21 3.2 Landau levels ........................................ 23 3.3 The de Haas-van Alphen effect .............................. 24 3.4 Integer Quantum Hall Effect ............................... 27 3.5 Aharonov-Bohm Effect ................................... 33 1 Fermions and Bosons 1.1 Introduction and two-particle systems Previously we have discussed multiple-particle systems using the tensor-product formalism (cf. Section 1.2 of Chapter 3 of these notes). But this applies only to distinguishable particles. In reality, all known particles are indistinguishable. In the coming lectures, we will explore the mathematical and physical consequences of this. First, consider classical many-particle systems. If a single particle has state described by position and momentum (~r; p~), then the state of N distinguishable particles can be written as (~r1; p~1; ~r2; p~2;:::; ~rN ; p~N ). The notation (·; ·;:::; ·) denotes an ordered list, in which different posi­ tions have different meanings; e.g. in general (~r1; p~1; ~r2; p~2)6 = (~r2; p~2; ~r1; p~1). 1 To describe indistinguishable particles, we can use set notation.
    [Show full text]
  • Canonical Quantization of the Self-Dual Model Coupled to Fermions∗
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Canonical Quantization of the Self-Dual Model coupled to Fermions∗ H. O. Girotti Instituto de F´ısica, Universidade Federal do Rio Grande do Sul Caixa Postal 15051, 91501-970 - Porto Alegre, RS, Brazil. (March 1998) Abstract This paper is dedicated to formulate the interaction picture dynamics of the self-dual field minimally coupled to fermions. To make this possible, we start by quantizing the free self-dual model by means of the Dirac bracket quantization procedure. We obtain, as result, that the free self-dual model is a relativistically invariant quantum field theory whose excitations are identical to the physical (gauge invariant) excitations of the free Maxwell-Chern-Simons theory. The model describing the interaction of the self-dual field minimally cou- pled to fermions is also quantized through the Dirac-bracket quantization procedure. One of the self-dual field components is found not to commute, at equal times, with the fermionic fields. Hence, the formulation of the in- teraction picture dynamics is only possible after the elimination of the just mentioned component. This procedure brings, in turns, two new interac- tions terms, which are local in space and time while non-renormalizable by power counting. Relativistic invariance is tested in connection with the elas- tic fermion-fermion scattering amplitude. We prove that all the non-covariant pieces in the interaction Hamiltonian are equivalent to the covariant minimal interaction of the self-dual field with the fermions. The high energy behavior of the self-dual field propagator corroborates that the coupled theory is non- renormalizable.
    [Show full text]
  • Quantum Mechanics
    Quantum Mechanics Richard Fitzpatrick Professor of Physics The University of Texas at Austin Contents 1 Introduction 5 1.1 Intendedaudience................................ 5 1.2 MajorSources .................................. 5 1.3 AimofCourse .................................. 6 1.4 OutlineofCourse ................................ 6 2 Probability Theory 7 2.1 Introduction ................................... 7 2.2 WhatisProbability?.............................. 7 2.3 CombiningProbabilities. ... 7 2.4 Mean,Variance,andStandardDeviation . ..... 9 2.5 ContinuousProbabilityDistributions. ........ 11 3 Wave-Particle Duality 13 3.1 Introduction ................................... 13 3.2 Wavefunctions.................................. 13 3.3 PlaneWaves ................................... 14 3.4 RepresentationofWavesviaComplexFunctions . ....... 15 3.5 ClassicalLightWaves ............................. 18 3.6 PhotoelectricEffect ............................. 19 3.7 QuantumTheoryofLight. .. .. .. .. .. .. .. .. .. .. .. .. .. 21 3.8 ClassicalInterferenceofLightWaves . ...... 21 3.9 QuantumInterferenceofLight . 22 3.10 ClassicalParticles . .. .. .. .. .. .. .. .. .. .. .. .. .. .. 25 3.11 QuantumParticles............................... 25 3.12 WavePackets .................................. 26 2 QUANTUM MECHANICS 3.13 EvolutionofWavePackets . 29 3.14 Heisenberg’sUncertaintyPrinciple . ........ 32 3.15 Schr¨odinger’sEquation . 35 3.16 CollapseoftheWaveFunction . 36 4 Fundamentals of Quantum Mechanics 39 4.1 Introduction ..................................
    [Show full text]
  • On the Possibility of Generating a 4-Neutron Resonance with a {\Boldmath $ T= 3/2$} Isospin 3-Neutron Force
    On the possibility of generating a 4-neutron resonance with a T = 3/2 isospin 3-neutron force E. Hiyama Nishina Center for Accelerator-Based Science, RIKEN, Wako, 351-0198, Japan R. Lazauskas IPHC, IN2P3-CNRS/Universite Louis Pasteur BP 28, F-67037 Strasbourg Cedex 2, France J. Carbonell Institut de Physique Nucl´eaire, Universit´eParis-Sud, IN2P3-CNRS, 91406 Orsay Cedex, France M. Kamimura Department of Physics, Kyushu University, Fukuoka 812-8581, Japan and Nishina Center for Accelerator-Based Science, RIKEN, Wako 351-0198, Japan (Dated: September 26, 2018) We consider the theoretical possibility to generate a narrow resonance in the four neutron system as suggested by a recent experimental result. To that end, a phenomenological T = 3/2 three neutron force is introduced, in addition to a realistic NN interaction. We inquire what should be the strength of the 3n force in order to generate such a resonance. The reliability of the three-neutron force in the T = 3/2 channel is exmined, by analyzing its consistency with the low-lying T = 1 states of 4H, 4He and 4Li and the 3H+ n scattering. The ab initio solution of the 4n Schr¨odinger equation is obtained using the complex scaling method with boundary conditions appropiate to the four-body resonances. We find that in order to generate narrow 4n resonant states a remarkably attractive 3N force in the T = 3/2 channel is required. I. INTRODUCTION ergy axis (physical domain) it will have no significant impact on a physical process. The possibility of detecting a four-neutron (4n) structure of Following this line of reasoning, some calculations based any kind – bound or resonant state – has intrigued the nuclear on semi-realistic NN forces indicated null [13] or unlikely physics community for the last fifty years (see Refs.
    [Show full text]
  • TO the POSSIBILITY of BOUND STATES BETWEEN TWO ELECTRONS Alexander A
    WEPPP031 Proceedings of IPAC2012, New Orleans, Louisiana, USA TO THE POSSIBILITY OF BOUND STATES BETWEEN TWO ELECTRONS Alexander A. Mikhailichenko, Cornell University, LEPP, Ithaca, NY 14853, USA Abstract spins for reduction of minimal emittance restriction arisen from Eq. 1. In some sense it is an attempt to prepare the We analyze the possibility to compress dynamically the pure quantum mechanical state between just two polarized electron bunch so that the distance between electrons. What is important here is that the distance some electrons in the bunch comes close to the Compton between two electrons should be of the order of the wavelength, arranging a bound state, as the attraction by Compton wavelength. We attracted attention in [2,3] that the magnetic momentum-induced force at this distance attraction between two electrons determined by the dominates repulsion by the electrostatic force for the magnetic force of oppositely oriented magnetic moments. appropriately prepared orientation of the magnetic In this case the resulting spin is zero. Another possibility moments of the electron-electron pair. This electron pair considered below. behaves like a boson now, so the restriction for the In [4], it was suggested a radical explanation of minimal emittance of the beam becomes eliminated. structure of all elementary particles caused by magnetic Some properties of such degenerated electron gas attraction at the distances of the order of Compton represented also. wavelength. In [5], motion of charged particle in a field OVERVIEW of magnetic dipole was considered. In [4] and [5] the term in Hamiltonian responsible for the interaction Generation of beams of particles (electrons, positrons, between magnetic moments is omitted, however as it protons, muons) with minimal emittance is a challenging looks like problem in contemporary beam physics.
    [Show full text]
  • Bound and Quasi Bound States in the Continuum
    Bound and Quasi-Bound States in the Continuum One-dimensional models of square-integrable states embedded in continua, first offered by von Neumann and Wigner, can stabilize ordinary resonance levels and have gained importance in connection with solid state heterostructure semi­ conductor devices. General continuum bound state theories for many-particle systems do not exist, but models for continuum crossings of bound states suggest possible long-lived states, including some double charged anions. Nonlinear varia­ tional calculations can provide estimates of resonance energies and of the rapid onset of instability in various atomic and molecular ionization phenomena, typifying results found in mathematical "catastrophe theory". One-Dimensional Models :Many years ago von Neumann and Wignerl pointed out that local potentials could have bound (i.e. square-integrable) eigenstates with positive energies. These states are embedded in the continuum of scattering states with the same symmetry, but nevertheless would fail to "ionize". Thus it would be proper to regard these continuum bound states as infinitely sharp resonances. The example offered by von Neumann and Wigner (subsequently corrected by Simon2) was one-dimensional, and involved an oscillatory potential V(x) which behaved essentially as (sin x)/x for large lxl. Likewise the square-integ­ rable wavefunction l/;(x) for the positive energy bound state was oscillatory but, owing to diffractive interference induced by V(x), the amplitude of l/1 was driven toward zero as lxl increased, so that particle binding resulted. The exist­ ence of this elementary example naturally raises questions about whether similar continuum bound states could exist in physically more realistic cases.
    [Show full text]
  • An Introduction to Supersymmetric Quantum Mechanics
    MIT Physics 8.05 Nov. 12, 2007 SUPPLEMENTARY NOTES ON SOLVING THE RADIAL WAVE EQUATION USING OPERATOR METHODS Alternative title: An Introduction to Supersymmetric Quantum Mechanics 1 Introduction In lecture this week we reduced the problem of finding the energy eigenstates and eigenvalues of hydrogenic atoms to finding the eigenstates and eigenvalues of the Coulomb Hamiltonians d2 HCoul = + V (x) (1) ℓ −dx2 ℓ where ℓ(ℓ + 1) 1 V (x)= . (2) ℓ x2 − x (You will review this procedure on a Problem Set.) That is, we are looking for the eigenstates u (x) and eigenvalues κ2 satisfying νℓ − νℓ HCoul u (x)= κ2 u (x) . (3) ℓ νℓ − νℓ νℓ Here the dimensionless variable x and dimensionless eigenvalue constants κνℓ are related to r and the energy by a 2µe4Z2 r = x , E = κ2 , (4) 2Z νℓ − h¯2 νℓ 2 2 −1 where a =¯h /(me ) is the Bohr radius, the nuclear charge is Ze, and µ = (1/m +1/mN ) is the reduced mass in terms of the electron mass m and nuclear mass mN . Even though Coul the Hamiltonians Hℓ secretly all come from a single three-dimensional problem, for our present purposes it is best to think of them as an infinite number of different one-dimensional Hamiltonians, one for each value of ℓ, each with different potentials Vℓ(x). The Hilbert space for these one-dimensional Hamiltonians consists of complex functions of x 0 that vanish ≥ for x 0. The label ν distinguishes the different energy eigenstates and eigenvalues for a →Coul given Hℓ .
    [Show full text]
  • Les Houches Lectures on Supersymmetric Gauge Theories
    Les Houches lectures on supersymmetric gauge theories ∗ D. S. Berman, E. Rabinovici Racah Institute, Hebrew University, Jerusalem, ISRAEL October 22, 2018 Abstract We introduce simple and more advanced concepts that have played a key role in the development of supersymmetric systems. This is done by first describing various supersymmetric quantum mechanics mod- els. Topics covered include the basic construction of supersymmetric field theories, the phase structure of supersymmetric systems with and without gauge particles, superconformal theories and infrared duality in both field theory and string theory. A discussion of the relation of conformal symmetry to a vanishing vacuum energy (cosmological constant) is included. arXiv:hep-th/0210044v2 11 Oct 2002 ∗ These notes are based on lectures delivered by E. Rabinovici at the Les Houches Summer School: Session 76: Euro Summer School on Unity of Fundamental Physics: Gravity, Gauge Theory and Strings, Les Houches, France, 30 Jul - 31 Aug 2001. 1 Contents 1 Introduction 4 2 Supersymmetric Quantum Mechanics 5 2.1 Symmetryandsymmetrybreaking . 13 2.2 A nonrenormalisation theorem . 15 2.3 A two variable realization and flat potentials . 16 2.4 Geometric meaning of the Witten Index . 20 2.5 LandaulevelsandSUSYQM . 21 2.6 Conformal Quantum Mechanics . 23 2.7 Superconformal quantum mechanics . 26 3 Review of Supersymmetric Models 27 3.1 Kinematics ............................ 27 3.2 SuperspaceandChiralfields. 29 3.3 K¨ahler Potentials . 31 3.4 F-terms .............................. 32 3.5 GlobalSymmetries . .. .. .. .. .. .. 32 3.6 The effective potential . 34 3.7 Supersymmetrybreaking. 34 3.8 Supersymmetricgaugetheories . 35 4 Phases of gauge theories 41 5 Supersymmetric gauge theories/ super QCD 43 5.1 Theclassicalmodulispace.
    [Show full text]
  • Quantization of Scalar Field
    Quantization of Scalar Field Wei Wang 2017.10.12 Wei Wang(SJTU) Lectures on QFT 2017.10.12 1 / 41 Contents 1 From classical theory to quantum theory 2 Quantization of real scalar field 3 Quantization of complex scalar field 4 Propagator of Klein-Gordon field 5 Homework Wei Wang(SJTU) Lectures on QFT 2017.10.12 2 / 41 Free classical field Klein-Gordon Spin-0, scalar Klein-Gordon equation µ 2 @µ@ φ + m φ = 0 Dirac 1 Spin- 2 , spinor Dirac equation i@= − m = 0 Maxwell Spin-1, vector Maxwell equation µν µν @µF = 0;@µF~ = 0: Gravitational field Wei Wang(SJTU) Lectures on QFT 2017.10.12 3 / 41 Klein-Gordon field scalar field, satisfies Klein-Gordon equation µ 2 (@ @µ + m )φ(x) = 0: Lagrangian 1 L = @ φ∂µφ − m2φ2 2 µ Euler-Lagrange equation @L @L @µ − = 0: @(@µφ) @φ gives Klein-Gordon equation. Wei Wang(SJTU) Lectures on QFT 2017.10.12 4 / 41 From classical mechanics to quantum mechanics Mechanics: Newtonian, Lagrangian and Hamiltonian Newtonian: differential equations in Cartesian coordinate system. Lagrangian: Principle of stationary action δS = δ R dtL = 0. Lagrangian L = T − V . Euler-Lagrangian equation d @L @L − = 0: dt @q_ @q Wei Wang(SJTU) Lectures on QFT 2017.10.12 5 / 41 Hamiltonian mechanics Generalized coordinates: q ; conjugate momentum: p = @L i j @qj Hamiltonian: X H = q_i pi − L i Hamilton equations @H p_ = − ; @q @H q_ = : @p Time evolution df @f = + ff; Hg: dt @t where f:::g is the Poisson bracket. Wei Wang(SJTU) Lectures on QFT 2017.10.12 6 / 41 Quantum Mechanics Quantum mechanics Hamiltonian: Canonical quantization Lagrangian: Path
    [Show full text]