Relating Field Theories Via Stochastic Quantization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stochastic Quantization of Fermionic Theories: Renormalization of the Massive Thirring Model
Instituto de Física Teórica IFT Universidade Estadual Paulista October/92 IFT-R043/92 Stochastic Quantization of Fermionic Theories: Renormalization of the Massive Thirring Model J.C.Brunelli Instituto de Física Teórica Universidade Estadual Paulista Rua Pamplona, 145 01405-900 - São Paulo, S.P. Brazil 'This work was supported by CNPq. Instituto de Física Teórica Universidade Estadual Paulista Rua Pamplona, 145 01405 - Sao Paulo, S.P. Brazil Telephone: 55 (11) 288-5643 Telefax: 55(11)36-3449 Telex: 55 (11) 31870 UJMFBR Electronic Address: [email protected] 47553::LIBRARY Stochastic Quantization of Fermionic Theories: 1. Introduction Renormalization of the Massive Thimng Model' The stochastic quantization method of Parisi-Wu1 (for a review see Ref. 2) when applied to fermionic theories usually requires the use of a Langevin system modified by the introduction of a kernel3 J. C. Brunelli (1.1a) InBtituto de Física Teórica (1.16) Universidade Estadual Paulista Rua Pamplona, 145 01405 - São Paulo - SP where BRAZIL l = 2Kah(x,x )8(t - ?). (1.2) Here tj)1 tp and the Gaussian noises rj, rj are independent Grassmann variables. K(xty) is the aforementioned kernel which ensures the proper equilibrium limit configuration for Accepted for publication in the International Journal of Modern Physics A. mas si ess theories. The specific form of the kernel is quite arbitrary but in what follows, we use K(x,y) = Sn(x-y)(-iX + ™)- Abstract In a number of cases, it has been verified that the stochastic quantization procedure does not bring new anomalies and that the equilibrium limit correctly reproduces the basic (jJsfsini g the Langevin approach for stochastic processes we study the renormalizability properties of the models considered4. -
Second Quantization
Chapter 1 Second Quantization 1.1 Creation and Annihilation Operators in Quan- tum Mechanics We will begin with a quick review of creation and annihilation operators in the non-relativistic linear harmonic oscillator. Let a and a† be two operators acting on an abstract Hilbert space of states, and satisfying the commutation relation a,a† = 1 (1.1) where by “1” we mean the identity operator of this Hilbert space. The operators a and a† are not self-adjoint but are the adjoint of each other. Let α be a state which we will take to be an eigenvector of the Hermitian operators| ia†a with eigenvalue α which is a real number, a†a α = α α (1.2) | i | i Hence, α = α a†a α = a α 2 0 (1.3) h | | i k | ik ≥ where we used the fundamental axiom of Quantum Mechanics that the norm of all states in the physical Hilbert space is positive. As a result, the eigenvalues α of the eigenstates of a†a must be non-negative real numbers. Furthermore, since for all operators A, B and C [AB, C]= A [B, C] + [A, C] B (1.4) we get a†a,a = a (1.5) − † † † a a,a = a (1.6) 1 2 CHAPTER 1. SECOND QUANTIZATION i.e., a and a† are “eigen-operators” of a†a. Hence, a†a a = a a†a 1 (1.7) − † † † † a a a = a a a +1 (1.8) Consequently we find a†a a α = a a†a 1 α = (α 1) a α (1.9) | i − | i − | i Hence the state aα is an eigenstate of a†a with eigenvalue α 1, provided a α = 0. -
General Quantization
General quantization David Ritz Finkelstein∗ October 29, 2018 Abstract Segal’s hypothesis that physical theories drift toward simple groups follows from a general quantum principle and suggests a general quantization process. I general- quantize the scalar meson field in Minkowski space-time to illustrate the process. The result is a finite quantum field theory over a quantum space-time with higher symmetry than the singular theory. Multiple quantification connects the levels of the theory. 1 Quantization as regularization Quantum theory began with ad hoc regularization prescriptions of Planck and Bohr to fit the weird behavior of the electromagnetic field and the nuclear atom and to handle infinities that blocked earlier theories. In 1924 Heisenberg discovered that one small change in algebra did both naturally. In the early 1930’s he suggested extending his algebraic method to space-time, to regularize field theory, inspiring the pioneering quantum space-time of Snyder [43]. Dirac’s historic quantization program for gravity also eliminated absolute space-time points from the quantum theory of gravity, leading Bergmann too to say that the world point itself possesses no physical reality [5, 6]. arXiv:quant-ph/0601002v2 22 Jan 2006 For many the infinities that still haunt physics cry for further and deeper quanti- zation, but there has been little agreement on exactly what and how far to quantize. According to Segal canonical quantization continued a drift of physical theory toward simple groups that special relativization began. He proposed on Darwinian grounds that further quantization should lead to simple groups [32]. Vilela Mendes initiated the work in that direction [37]. -
Chaotic Decompositions in Z2-Graded Quantum Stochastic Calculus
QUANTUM PROBABILITY BANACH CENTER PUBLICATIONS, VOLUME 43 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1998 CHAOTIC DECOMPOSITIONS IN Z2-GRADED QUANTUM STOCHASTIC CALCULUS TIMOTHY M. W. EYRE Department of Mathematics, University of Nottingham Nottingham, NG7 2RD, UK E-mail: [email protected] Abstract. A brief introduction to Z2-graded quantum stochastic calculus is given. By inducing a superalgebraic structure on the space of iterated integrals and using the heuristic classical relation df(Λ) = f(Λ+dΛ)−f(Λ) we provide an explicit formula for chaotic expansions of polynomials of the integrator processes of Z2-graded quantum stochastic calculus. 1. Introduction. A theory of Z2-graded quantum stochastic calculus was was in- troduced in [EH] as a generalisation of the one-dimensional Boson-Fermion unification result of quantum stochastic calculus given in [HP2]. Of particular interest in Z2-graded quantum stochastic calculus is the result that the integrators of the theory provide a time-indexed family of representations of a broad class of Lie superalgebras. The notion of a Lie superalgebra was introduced in [K] and has received considerable attention since. It is essentially a Z2-graded analogue of the notion of a Lie algebra with a bracket that is, in a certain sense, partly a commutator and partly an anticommutator. Another work on Lie superalgebras is [S] and general superalgebras are treated in [C,S]. The Lie algebra representation properties of ungraded quantum stochastic calculus enabled an explicit formula for the chaotic expansion of elements of an associated uni- versal enveloping algebra to be developed in [HPu]. -
Arxiv:1809.04416V1 [Physics.Gen-Ph]
Path integral and Sommerfeld quantization Mikoto Matsuda1, ∗ and Takehisa Fujita2, † 1Japan Health and Medical technological college, Tokyo, Japan 2College of Science and Technology, Nihon University, Tokyo, Japan (Dated: September 13, 2018) The path integral formulation can reproduce the right energy spectrum of the harmonic oscillator potential, but it cannot resolve the Coulomb potential problem. This is because the path integral cannot properly take into account the boundary condition, which is due to the presence of the scattering states in the Coulomb potential system. On the other hand, the Sommerfeld quantization can reproduce the right energy spectrum of both harmonic oscillator and Coulomb potential cases since the boundary condition is effectively taken into account in this semiclassical treatment. The basic difference between the two schemes should be that no constraint is imposed on the wave function in the path integral while the Sommerfeld quantization rule is derived by requiring that the state vector should be a single-valued function. The limitation of the semiclassical method is also clarified in terms of the square well and δ(x) function potential models. PACS numbers: 25.85.-w,25.85.Ec I. INTRODUCTION Quantum field theory is the basis of modern theoretical physics and it is well established by now [1–4]. If the kinematics is non-relativistic, then one obtains the equation of quantum mechanics which is the Schr¨odinger equation. In this respect, if one solves the Schr¨odinger equation, then one can properly obtain the energy eigenvalue of the corresponding potential model . Historically, however, the energy eigenvalue is obtained without solving the Schr¨odinger equation, and the most interesting method is known as the Sommerfeld quantization rule which is the semiclassical method [5–8]. -
SECOND QUANTIZATION Lecture Notes with Course Quantum Theory
SECOND QUANTIZATION Lecture notes with course Quantum Theory Dr. P.J.H. Denteneer Fall 2008 2 SECOND QUANTIZATION x1. Introduction and history 3 x2. The N-boson system 4 x3. The many-boson system 5 x4. Identical spin-0 particles 8 x5. The N-fermion system 13 x6. The many-fermion system 14 1 x7. Identical spin- 2 particles 17 x8. Bose-Einstein and Fermi-Dirac distributions 19 Second Quantization 1. Introduction and history Second quantization is the standard formulation of quantum many-particle theory. It is important for use both in Quantum Field Theory (because a quantized field is a qm op- erator with many degrees of freedom) and in (Quantum) Condensed Matter Theory (since matter involves many particles). Identical (= indistinguishable) particles −! state of two particles must either be symmetric or anti-symmetric under exchange of the particles. 1 ja ⊗ biB = p (ja1 ⊗ b2i + ja2 ⊗ b1i) bosons; symmetric (1a) 2 1 ja ⊗ biF = p (ja1 ⊗ b2i − ja2 ⊗ b1i) fermions; anti − symmetric (1b) 2 Motivation: why do we need the \second quantization formalism"? (a) for practical reasons: computing matrix elements between N-particle symmetrized wave functions involves (N!)2 terms (integrals); see the symmetrized states below. (b) it will be extremely useful to have a formalism that can handle a non-fixed particle number N, as in the grand-canonical ensemble in Statistical Physics; especially if you want to describe processes in which particles are created and annihilated (as in typical high-energy physics accelerator experiments). So: both for Condensed Matter and High-Energy Physics this formalism is crucial! (c) To describe interactions the formalism to be introduced will be vastly superior to the wave-function- and Hilbert-space-descriptions. -
A Stochastic Fractional Calculus with Applications to Variational Principles
fractal and fractional Article A Stochastic Fractional Calculus with Applications to Variational Principles Houssine Zine †,‡ and Delfim F. M. Torres *,‡ Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] * Correspondence: delfi[email protected] † This research is part of first author’s Ph.D. project, which is carried out at the University of Aveiro under the Doctoral Program in Applied Mathematics of Universities of Minho, Aveiro, and Porto (MAP). ‡ These authors contributed equally to this work. Received: 19 May 2020; Accepted: 30 July 2020; Published: 1 August 2020 Abstract: We introduce a stochastic fractional calculus. As an application, we present a stochastic fractional calculus of variations, which generalizes the fractional calculus of variations to stochastic processes. A stochastic fractional Euler–Lagrange equation is obtained, extending those available in the literature for the classical, fractional, and stochastic calculus of variations. To illustrate our main theoretical result, we discuss two examples: one derived from quantum mechanics, the second validated by an adequate numerical simulation. Keywords: fractional derivatives and integrals; stochastic processes; calculus of variations MSC: 26A33; 49K05; 60H10 1. Introduction A stochastic calculus of variations, which generalizes the ordinary calculus of variations to stochastic processes, was introduced in 1981 by Yasue, generalizing the Euler–Lagrange equation and giving interesting applications to quantum mechanics [1]. Recently, stochastic variational differential equations have been analyzed for modeling infectious diseases [2,3], and stochastic processes have shown to be increasingly important in optimization [4]. In 1996, fifteen years after Yasue’s pioneer work [1], the theory of the calculus of variations evolved in order to include fractional operators and better describe non-conservative systems in mechanics [5]. -
A Short History of Stochastic Integration and Mathematical Finance
A Festschrift for Herman Rubin Institute of Mathematical Statistics Lecture Notes – Monograph Series Vol. 45 (2004) 75–91 c Institute of Mathematical Statistics, 2004 A short history of stochastic integration and mathematical finance: The early years, 1880–1970 Robert Jarrow1 and Philip Protter∗1 Cornell University Abstract: We present a history of the development of the theory of Stochastic Integration, starting from its roots with Brownian motion, up to the introduc- tion of semimartingales and the independence of the theory from an underlying Markov process framework. We show how the development has influenced and in turn been influenced by the development of Mathematical Finance Theory. The calendar period is from 1880 to 1970. The history of stochastic integration and the modelling of risky asset prices both begin with Brownian motion, so let us begin there too. The earliest attempts to model Brownian motion mathematically can be traced to three sources, each of which knew nothing about the others: the first was that of T. N. Thiele of Copen- hagen, who effectively created a model of Brownian motion while studying time series in 1880 [81].2; the second was that of L. Bachelier of Paris, who created a model of Brownian motion while deriving the dynamic behavior of the Paris stock market, in 1900 (see, [1, 2, 11]); and the third was that of A. Einstein, who proposed a model of the motion of small particles suspended in a liquid, in an attempt to convince other physicists of the molecular nature of matter, in 1905 [21](See [64] for a discussion of Einstein’s model and his motivations.) Of these three models, those of Thiele and Bachelier had little impact for a long time, while that of Einstein was immediately influential. -
Feynman Quantization
3 FEYNMAN QUANTIZATION An introduction to path-integral techniques Introduction. By Richard Feynman (–), who—after a distinguished undergraduate career at MIT—had come in as a graduate student to Princeton, was deeply involved in a collaborative effort with John Wheeler (his thesis advisor) to shake the foundations of field theory. Though motivated by problems fundamental to quantum field theory, as it was then conceived, their work was entirely classical,1 and it advanced ideas so radicalas to resist all then-existing quantization techniques:2 new insight into the quantization process itself appeared to be called for. So it was that (at a beer party) Feynman asked Herbert Jehle (formerly a student of Schr¨odinger in Berlin, now a visitor at Princeton) whether he had ever encountered a quantum mechanical application of the “Principle of Least Action.” Jehle directed Feynman’s attention to an obscure paper by P. A. M. Dirac3 and to a brief passage in §32 of Dirac’s Principles of Quantum Mechanics 1 John Archibald Wheeler & Richard Phillips Feynman, “Interaction with the absorber as the mechanism of radiation,” Reviews of Modern Physics 17, 157 (1945); “Classical electrodynamics in terms of direct interparticle action,” Reviews of Modern Physics 21, 425 (1949). Those were (respectively) Part III and Part II of a projected series of papers, the other parts of which were never published. 2 See page 128 in J. Gleick, Genius: The Life & Science of Richard Feynman () for a popular account of the historical circumstances. 3 “The Lagrangian in quantum mechanics,” Physicalische Zeitschrift der Sowjetunion 3, 64 (1933). The paper is reprinted in J. -
Second Quantization∗
Second Quantization∗ Jörg Schmalian May 19, 2016 1 The harmonic oscillator: raising and lowering operators Lets first reanalyze the harmonic oscillator with potential m!2 V (x) = x2 (1) 2 where ! is the frequency of the oscillator. One of the numerous approaches we use to solve this problem is based on the following representation of the momentum and position operators: r x = ~ ay + a b 2m! b b r m ! p = i ~ ay − a : (2) b 2 b b From the canonical commutation relation [x;b pb] = i~ (3) follows y ba; ba = 1 y y [ba; ba] = ba ; ba = 0: (4) Inverting the above expression yields rm! i ba = xb + pb 2~ m! r y m! i ba = xb − pb (5) 2~ m! ∗Copyright Jörg Schmalian, 2016 1 y demonstrating that ba is indeed the operator adjoined to ba. We also defined the operator y Nb = ba ba (6) which is Hermitian and thus represents a physical observable. It holds m! i i Nb = xb − pb xb + pb 2~ m! m! m! 2 1 2 i = xb + pb − [p;b xb] 2~ 2m~! 2~ 2 2 1 pb m! 2 1 = + xb − : (7) ~! 2m 2 2 We therefore obtain 1 Hb = ! Nb + : (8) ~ 2 1 Since the eigenvalues of Hb are given as En = ~! n + 2 we conclude that the eigenvalues of the operator Nb are the integers n that determine the eigenstates of the harmonic oscillator. Nb jni = n jni : (9) y Using the above commutation relation ba; ba = 1 we were able to show that p a jni = n jn − 1i b p y ba jni = n + 1 jn + 1i (10) y The operator ba and ba raise and lower the quantum number (i.e. -
Informal Introduction to Stochastic Calculus 1
MATH 425 PART V: INFORMAL INTRODUCTION TO STOCHASTIC CALCULUS G. BERKOLAIKO 1. Motivation: how to model price paths Differential equations have long been an efficient tool to model evolution of various mechanical systems. At the start of 20th century, however, science started to tackle modeling of systems driven by probabilistic effects, such as stock market (the work of Bachelier) or motion of small particles suspended in liquid (the work of Einstein and Smoluchowski). For us, the motivating questions are: Is there an equation describing the evolution of a stock price? And, perhaps more applicably, how can we simulate numerically a seemingly random path taken by the stock price? Example 1.1. We have seen in previous sections that we can model the distribution of stock prices at time t as p 2 St = S0 exp (µ − σ =2)t + σ tY ; (1.1) where Y is standard normal random variable. So perhaps, for every time t we can generate a standard normal variable, substitute it into equation (1.1) and plot the resulting St as a function of t? The result is shown in Figure 1 and it definitely does not look like a price path of a stock. The underlying reason is that we used equation (1.1) to simulate prices at different time points independently. However, if t1 is close to t2, the prices cannot be completely independent. It is the change in price that we assumed (in “Efficient Market Hypothesis") to be independent of the previous price changes. 2. Wiener process Definition 2.1. Wiener process (or Brownian motion) is a random function of t, denoted Wt = Wt(!) (where ! is the underlying random event) such that (a) Wt is a.s. -
Lecture Notes on Stochastic Calculus (Part II)
Lecture Notes on Stochastic Calculus (Part II) Fabrizio Gelsomino, Olivier L´ev^eque,EPFL July 21, 2009 Contents 1 Stochastic integrals 3 1.1 Ito's integral with respect to the standard Brownian motion . 3 1.2 Wiener's integral . 4 1.3 Ito's integral with respect to a martingale . 4 2 Ito-Doeblin's formula(s) 7 2.1 First formulations . 7 2.2 Generalizations . 7 2.3 Continuous semi-martingales . 8 2.4 Integration by parts formula . 9 2.5 Back to Fisk-Stratonoviˇc'sintegral . 10 3 Stochastic differential equations (SDE's) 11 3.1 Reminder on ordinary differential equations (ODE's) . 11 3.2 Time-homogeneous SDE's . 11 3.3 Time-inhomogeneous SDE's . 13 3.4 Weak solutions . 14 4 Change of probability measure 15 4.1 Exponential martingale . 15 4.2 Change of probability measure . 15 4.3 Martingales under P and martingales under PeT ........................ 16 4.4 Girsanov's theorem . 17 4.5 First application to SDE's . 18 4.6 Second application to SDE's . 19 4.7 A particular case: the Black-Scholes model . 20 4.8 Application : pricing of a European call option (Black-Scholes formula) . 21 1 5 Relation between SDE's and PDE's 23 5.1 Forward PDE . 23 5.2 Backward PDE . 24 5.3 Generator of a diffusion . 26 5.4 Markov property . 27 5.5 Application: option pricing and hedging . 28 6 Multidimensional processes 30 6.1 Multidimensional Ito-Doeblin's formula . 30 6.2 Multidimensional SDE's . 31 6.3 Drift vector, diffusion matrix and weak solution .